Skip to main content

Recent Advances in the Engineering of Single-Atom Catalysts Through Metal–Organic Frameworks

Abstract

This mini-review highlights some recent progress in the engineering of single-atom catalysts (SACs) through metal–organic frameworks (MOFs) and derivatives. The inherent molecular and chemical specificities within the MOFs and derivatives can offer stabilisation of the SACs with high atomic isolation and dispersion. As MOFs are often considered an infinite array of self-assembled molecular catalysts, specifically designed structures can provide further functionalities to suit the needs of different catalytic applications. In brief, we can divide the preparation approaches into three main categories: (1) fabrication onto functional groups of the ligands, (2) fabrication onto Lewis acid sites of nodal centres, and (3) synthesis via a pyrolysis-mediated technique. Through these approaches, strong metal–support interactions can be established to aid the fine-tuning of the catalytic properties. We also discuss how recent progress in the development of state-of-the-art microscopic, spectroscopic, and crystallographic techniques has enabled scientists to elucidate the structure–activity relationship.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Reprinted (adapted) with permission from Ref. [38]. Copyright (2015) American Chemical Society

Fig. 3

Reprinted (adapted) with permission from Ref. [49]. Copyright (2015) American Chemical Society

Fig. 4

Reprinted (adapted) with permission from Ref. [14]. Copyright (2019) American Chemical Society

Fig. 5

Reprinted (adapted) with permission from Ref. [58]. Copyright (2020) American Chemical Society

Fig. 6
Fig. 7

Reprinted (adapted) with permission from Ref. [68]. Copyright (2017) American Chemical Society

Fig. 8

References

  1. 1.

    Li F, Hu D, Yuan Y et al (2018) Zeolite Y encapsulated Cu (II) and Zn (II)-imidazole-salen catalysts for benzyl alcohol oxidation. Mol Catal 452:75–82

    CAS  Google Scholar 

  2. 2.

    Liu L, Díaz U, Arenal R et al (2017) Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat Mater 16:132–138

    CAS  PubMed  Google Scholar 

  3. 3.

    Fang X, Shang Q, Wang Y et al (2018) Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv Mater 30:1–7

    Google Scholar 

  4. 4.

    Jiao L, Wan G, Zhang R et al (2018) From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: efficient oxygen reduction in both alkaline and acidic media. Angew Chemie - Int Ed 57:8525–8529

    CAS  Google Scholar 

  5. 5.

    Wang X, Chen Z, Zhao X et al (2018) Regulation of coordination number over single co sites: triggering the efficient electroreduction of CO2. Angew Chemie - Int Ed 57:1944–1948

    CAS  Google Scholar 

  6. 6.

    Klet RC, Tussupbayev S, Borycz J et al (2015) Single-site organozirconium catalyst embedded in a metal-organic framework. J Am Chem Soc 137:15680–15683

    CAS  PubMed  Google Scholar 

  7. 7.

    Karthik P, Shaheer ARM, Vinu A et al (2019) Amine Functionalized Metal – Organic Framework Coordinated with Transition Metal Ions: d – d Transition Enhanced Optical Absorption and Role of Transition Metal Sites on Solar Light Driven H 2 Production. Wiley Online Libr 1902990:1–10. https://doi.org/10.1002/smll.201902990

    CAS  Article  Google Scholar 

  8. 8.

    Teixeira IF, Lo BTW, Kostetskyy P et al (2018) Direct catalytic conversion of biomass-derived furan and ethanol to ethylbenzene. ACS Catal 8(3):1843–1850

    CAS  Google Scholar 

  9. 9.

    Wu J, Xiong L, Zhao B et al (2020) Densely populated single atom catalysts. Small Methods 4:1900540

    CAS  Google Scholar 

  10. 10.

    Jakub Z, Hulva J, Meier M et al (2019) Local structure and coordination define adsorption in a model Ir 1 /Fe 3 O 4 single-atom catalyst. Angew Chemie 131:14099–14106

    Google Scholar 

  11. 11.

    Zhai P, Wang T, Yang W et al (2019) Uniform lithium deposition assisted by single-atom doping toward high-performance lithium metal anodes. Adv Energy Mater 9:1804019

    Google Scholar 

  12. 12.

    Yao Y, Hu S, Chen W et al (2019) Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat Catal 2:304–313

    CAS  Google Scholar 

  13. 13.

    Lai W, Miao Z, Wang Y et al (2019) Atomic-local environments of single-atom catalysts: synthesis, electronic structure, and activity. Adv Energy Mater 9:1900722

    CAS  Google Scholar 

  14. 14.

    Abdel-Mageed AM, Rungtaweevoranit B, Parlinska-Wojtan M et al (2019) Highly active and stable single-atom Cu catalysts supported by a metal-organic framework. J Am Chem Soc 141:5201–5210

    CAS  PubMed  Google Scholar 

  15. 15.

    Zhang Y, Feng X, Yuan S et al (2016) Challenges and recent advances in MOF-polymer composite membranes for gas separation. Inorg Chem Front 3:896–909

    CAS  Google Scholar 

  16. 16.

    Goesten MG, Juan-Alcañiz J, Ramos-Fernandez EV et al (2011) Sulfation of metal-organic frameworks: opportunities for acid catalysis and proton conductivity. J Catal 281:177–187

    CAS  Google Scholar 

  17. 17.

    Chen W, Wu C (2018) Synthesis, functionalisation, and applications of metal-organic frameworks in biomedicine. Dalt Trans 47:2114–2133

    CAS  Google Scholar 

  18. 18.

    García-García P, Müller M, Corma A (2014) MOF catalysis in relation to their homogeneous counterparts and conventional solid catalysts. Chem Sci 5:2979–3007

    Google Scholar 

  19. 19.

    Huang YB, Liang J, Wang XS et al (2017) Multifunctional metal-organic framework catalysts: Synergistic catalysis and tandem reactions. Chem Soc Rev 46:126–157

    CAS  PubMed  Google Scholar 

  20. 20.

    Barth JV (2009) Fresh perspectives for surface coordination chemistry. Surf Sci 603:1533–1541

    CAS  Google Scholar 

  21. 21.

    Chae HK, Siberio-Pérez DY, Kim J et al (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427:523–527

    CAS  PubMed  Google Scholar 

  22. 22.

    Masoomi MY, Morsali A, Dhakshinamoorthy A et al (2019) Mixed-metal MOFs: unique opportunities in metal-organic framework (MOF) functionality and design. Angew Chem Int Ed 58:15188–15205

    CAS  Google Scholar 

  23. 23.

    Wang L, Qu X, Zhao Y et al (2019) Exploiting single atom iron centers in a porphyrin-like MOF for efficient cancer phototherapy. ACS Appl Mater Interfaces 11:35228–35237

    CAS  PubMed  Google Scholar 

  24. 24.

    Xiao F, Xu G-L, Sun C-J et al (2019) Nitrogen-coordinated single iron atom catalysts derived from metal organic frameworks for oxygen reduction reaction. Nano Energy 61:60–68

    CAS  Google Scholar 

  25. 25.

    Gui B, Yee K-K, Wong Y-L et al (2015) Tackling poison and leach: catalysis by dangling thiol–palladium functions within a porous metal–organic solid. Chem Commun 51:6917–6920

    CAS  Google Scholar 

  26. 26.

    Mukherjee S, Manna B, Desai AV et al (2016) Harnessing Lewis acidic open metal sites of metal-organic frameworks: The foremost route to achieve highly selective benzene sorption over cyclohexane. Chem Commun 52:8215–8218

    CAS  Google Scholar 

  27. 27.

    Noro SI, Kitagawa S, Akutagawa T et al (2009) Coordination polymers constructed from transition metal ions and organic N-containing heterocyclic ligands: Crystal structures and microporous properties. Prog Polym Sci 34(3):240–279

    CAS  Google Scholar 

  28. 28.

    Liang Z, Qu C, Xia D et al (2018) Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew Chem Int Ed 57:9604–9633

    CAS  Google Scholar 

  29. 29.

    Ranocchiari M, Bokhoven JAVAN (2011) Catalysis by metal-organic frameworks: Fundamentals and opportunities. Phys Chem Chem Phys 13:6388–6396

    CAS  PubMed  Google Scholar 

  30. 30.

    Li B, Ju Z, Zhou M et al (2019) A reusable MOF-supported single-site zinc(II) catalyst for efficient intramolecular hydroamination of o-alkynylanilines. Angew Chem Int Ed 58:7687–7691

    CAS  Google Scholar 

  31. 31.

    Yang S, Pattengale B, Lee S, Huang J (2018) Real-time visualization of active species in a single-site metal-organic framework photocatalyst. ACS Energy Lett 3:532–539

    CAS  Google Scholar 

  32. 32.

    Jiao L, Jiang HL (2019) Metal-organic-framework-based single-atom catalysts for energy applications. Chem 5:786–804

    CAS  Google Scholar 

  33. 33.

    Zhang H, Wei J, Dong J et al (2016) Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew Chem Int Ed 55:14310–14314

    CAS  Google Scholar 

  34. 34.

    Sun WJ, Gao EQ (2019) MIL-101 supported highly active single-site metal catalysts for tricomponent coupling. Appl Catal A Gen 569:110–116

    CAS  Google Scholar 

  35. 35.

    Hasan Z, Jun JW, Jhung SH (2015) Sulfonic acid-functionalized MIL-101(Cr): an efficient catalyst for esterification of oleic acid and vapor-phase dehydration of butanol. Chem Eng J 278:265–271

    CAS  Google Scholar 

  36. 36.

    Wang A, Liu XY, Mou CY, Zhang T (2013) Understanding the synergistic effects of gold bimetallic catalysts. J Catal 308:258–271

    CAS  Google Scholar 

  37. 37.

    Wang R, Wu Z, Chen C et al (2013) Graphene-supported Au-Pd bimetallic nanoparticles with excellent catalytic performance in selective oxidation of methanol to methyl formate. Chem Commun 49:8250–8252

    CAS  Google Scholar 

  38. 38.

    Li B, Leng K, Zhang Y et al (2015) Metal-organic framework based upon the synergy of a Brønsted acid framework and Lewis acid centers as a highly efficient heterogeneous catalyst for fixed-bed reactions. J Am Chem Soc 137:4243–4248

    CAS  PubMed  Google Scholar 

  39. 39.

    Sun WJ, Xi FG, Pan WL, Gao EQ (2017) MIL-101(Cr)-SO3Ag: An efficient catalyst for solvent-free A3 coupling reactions. Mol Catal 430:36–42

    CAS  Google Scholar 

  40. 40.

    Li GP, Zhang K, Zhang PF et al (2019) Thiol-functionalized pores via post-synthesis modification in a metal-organic framework with selective removal of Hg(II) in water. Inorg Chem 58:3409–3415

    CAS  PubMed  Google Scholar 

  41. 41.

    Liu DC, Ouyang T, Xiao R et al (2019) Anchoring coii ions into a thiol-laced metal-organic framework for efficient visible-light-driven conversion of CO2 into CO. Chemsuschem 12:2166–2170

    CAS  PubMed  Google Scholar 

  42. 42.

    Lin S, Usov PM, Morris AJ (2018) The role of redox hopping in metal-organic framework electrocatalysis. Chem Commun 54:6965–6974

    CAS  Google Scholar 

  43. 43.

    Han A, Wang B, Kumar A et al (2019) Recent advances for MOF-derived carbon-supported single-atom catalysts. Small Methods 3:1800471

    Google Scholar 

  44. 44.

    Kim IS, Borycz J, Platero-Prats AE et al (2015) Targeted single-site MOF node modification: trivalent metal loading via atomic layer deposition. Chem Mater 27:4772–4778

    CAS  Google Scholar 

  45. 45.

    Klet RC, Wang TC, Fernandez LE et al (2016) Synthetic access to atomically dispersed metals in metal-organic frameworks via a combined atomic-layer-deposition-in-MOF and metal-exchange approach. Chem Mater 28:1213–1219

    CAS  Google Scholar 

  46. 46.

    Otake KI, Cui Y, Buru CT et al (2018) Single-atom-based vanadium oxide catalysts supported on metal-organic frameworks: selective alcohol oxidation and structure-activity relationship. J Am Chem Soc 140:8652–8656

    CAS  PubMed  Google Scholar 

  47. 47.

    Ikuno T, Zheng J, Vjunov A et al (2017) Methane oxidation to methanol catalysed by Cu-Oxo clusters stabilised in NU-1000 metal-organic framework. J Am Chem Soc 139:10294–10301

    CAS  PubMed  Google Scholar 

  48. 48.

    Yang D, Odoh SO, Wang TC et al (2015) Metal-Organic framework nodes as nearly ideal supports for molecular catalysts: NU-1000- and UiO-66-supported iridium complexes. J Am Chem Soc 137:7391–7396

    CAS  PubMed  Google Scholar 

  49. 49.

    Park HD, Dincă M, ̆Román-Leshkov Y (2018) Continuous-flow production of succinic anhydrides via catalytic β-lactone carbonylation by Co (CO) 4⊂ Cr-MIL-101. J Am Chem Soc 140:10669–10672

    CAS  PubMed  Google Scholar 

  50. 50.

    Gutov OV, Hevia MG, Escudero-Adán EC, Shafir A (2015) Metal-organic framework (MOF) defects under control: Insights into the missing linker sites and their implication in the reactivity of zirconium-based frameworks. Inorg Chem 54:8396–8400

    CAS  PubMed  Google Scholar 

  51. 51.

    Sholl DS, Lively RP (2015) Defects in metal-organic frameworks: challenge or opportunity? J Phys Chem Lett 6:3437–3444

    CAS  PubMed  Google Scholar 

  52. 52.

    Park TH, Hickman AJ, Koh K et al (2011) Highly dispersed palladium(II) in a defective metal-organic framework: Application to C-H activation and functionalisation. J Am Chem Soc 133:20138–20141

    CAS  PubMed  Google Scholar 

  53. 53.

    Rogge SMJ, Bavykina A, Hajek J et al (2017) Metal-organic and covalent organic frameworks as single-site catalysts. Chem Soc Rev 46:3134–3184

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    DeStefano MR, Islamoglu T, Garibay SJ et al (2017) Room-temperature synthesis of UiO-66 and thermal modulation of densities of defect sites. Chem Mater 29:1357–1361

    CAS  Google Scholar 

  55. 55.

    Wu H, Chua YS, Krungleviciute V et al (2013) Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. J Am Chem Soc 135:10525–10532

    CAS  PubMed  Google Scholar 

  56. 56.

    Manna K, Ji P, Lin Z et al (2016) Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes. Nat Commun 7:1–11

    Google Scholar 

  57. 57.

    Manna K, Ji P, Greene FX, Lin W (2016) Metal–organic framework nodes support single-site magnesium–alkyl catalysts for hydroboration and hydroamination reactions. J Am Chem Soc 138:7488–7491

    CAS  PubMed  Google Scholar 

  58. 58.

    Zeng L, Wang Z, Wang Y et al (2020) Photoactivation of Cu centers in metal-organic frameworks for selective CO2 conversion to ethanol. J Am Chem Soc 142:75–79

    CAS  PubMed  Google Scholar 

  59. 59.

    Chen Y, Ji S, Chen C et al (2018) Single-atom catalysts : synthetic strategies and electrochemical applications. Joule 2:1242–1264

    CAS  Google Scholar 

  60. 60.

    Wang Y, Wang J, Wei D, Li M (2019) A “mOF-Protective-Pyrolysis” strategy for the preparation of Fe-N-C catalysts and the role of Fe, N, and C in the oxygen reduction reaction in acidic medium. ACS Appl Mater Interfaces 11:35755–35763

    CAS  PubMed  Google Scholar 

  61. 61.

    Gong Y, Jiao L, Qian Y et al (2020) Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew Chem 132:2727–2731

    Google Scholar 

  62. 62.

    Li Y, Lin S, Wang D et al (2020) Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium-sulfur batteries. Adv Mater 32:1–10

    Google Scholar 

  63. 63.

    Liu W, Chen Y, Qi H et al (2018) A durable nickel single-atom catalyst for hydrogenation reactions and cellulose valorisation under harsh conditions. Angew Chem 130:7189–7193

    Google Scholar 

  64. 64.

    Luo E, Zhang H, Wang X et al (2019) Single-atom Cr−N4 sites designed for durable oxygen reduction catalysis in acid media. Angew Chem Int Ed 58:12469–12475

    CAS  Google Scholar 

  65. 65.

    Huang L, Chen J, Gan L et al (2019) Single-atom nanozymes. Sci Adv 5(5):eaav5490

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Xiong Y, Dong J, Huang ZQ et al (2020) Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat Nanotechnol 15(5):390–397

    CAS  PubMed  Google Scholar 

  67. 67.

    Yin P, Yao T, Wu Y et al (2016) Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew chemie Int Ed 55:10800–10805

    CAS  Google Scholar 

  68. 68.

    Zhao C, Dai X, Yao T et al (2017) Ionic exchange of metal–organic frameworks to access single nickel sites for efficient electroreduction of CO2. J Am Chem Soc 139:8078–8081

    CAS  PubMed  Google Scholar 

  69. 69.

    Chen W, Pei J, He CT et al (2018) Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv Mater 30:1800396

    Google Scholar 

  70. 70.

    Gong S, Wang C, Jiang P et al (2018) Designing highly efficient dual-metal single-atom electrocatalysts for the oxygen reduction reaction inspired by biological enzyme systems. J Mater Chem A 6(27):13254–13262

    CAS  Google Scholar 

  71. 71.

    Zhang M, Zhang E, Hu C et al (2020) Controlled synthesis of Co@N-doped carbon by pyrolysis of ZIF with 2-aminobenzimidazole ligand for enhancing oxygen reduction reaction and the application in Zn-air battery. ACS Appl Mater Interfaces 12:11693–11701

    CAS  PubMed  Google Scholar 

  72. 72.

    Sun X, Sun S, Gu S et al (2019) High-performance single atom bifunctional oxygen catalysts derived from ZIF-67 superstructures. Nano Energy 61:245–250

    CAS  Google Scholar 

  73. 73.

    Wang T, Zhao Q, Fu Y et al (2019) Carbon-rich nonprecious metal single atom electrocatalysts for CO2 reduction and hydrogen evolution. Small Methods 3:1–17

    CAS  Google Scholar 

  74. 74.

    Pan H, Peng Y, Lu X et al (2020) Well-constructed Ni@CN material derived from di-ligands Ni-MOF to catalyse mild hydrogenation of nitroarenes. Mol Catal 485:110838

    Google Scholar 

  75. 75.

    Wang Z, Gu L, Song L et al (2018) Facile one-pot synthesis of MOF supported gold pseudo-single-atom catalysts for hydrogenation reactions. Mater Chem Front 2:1024–1030

    CAS  Google Scholar 

  76. 76.

    Braglia L, Borfecchia E, Maddalena L et al (2017) Exploring structure and reactivity of Cu sites in functionalised UiO-67 MOFs. Catal Today 283:89–103

    CAS  Google Scholar 

  77. 77.

    Thacker NC, Lin Z, Zhang T et al (2016) Robust and porous β-diketiminate-functionalized metal-organic frameworks for earth-abundant-metal-catalyzed C-H amination and hydrogenation. J Am Chem Soc 138:3501–3509

    CAS  PubMed  Google Scholar 

  78. 78.

    Li B, Ju Z, Zhou M et al (2019) A reusable MOF-supported single-site zinc(II) catalyst for efficient intramolecular hydroamination of o-alkynylanilines. Angew Chem Int Ed 58:7687–7691

    CAS  Google Scholar 

  79. 79.

    Zhang H, Wei J, Dong J et al (2016) Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew Chem 128:14522–14526

    Google Scholar 

  80. 80.

    Zhang T, Manna K, Lin W (2016) Metal-organic frameworks stabilize solution-inaccessible cobalt catalysts for highly efficient broad-scope organic transformations. J Am Chem Soc 138:3241–3249

    CAS  PubMed  Google Scholar 

  81. 81.

    Li Z, Schweitzer NM, League AB et al (2016) Sintering-resistant single-site nickel catalyst supported by metal-organic framework. J Am Chem Soc 138:1977–1982

    CAS  PubMed  Google Scholar 

  82. 82.

    Song Y, Li Z, Ji P et al (2019) Metal-organic framework nodes support single-site nickel(II) hydride catalysts for the hydrogenolysis of aryl ethers. ACS Catal 9:1578–1583

    CAS  Google Scholar 

  83. 83.

    VanVelthoven N, Waitschat S, Chavan SM et al (2019) Single-site metal-organic framework catalysts for the oxidative coupling of arenes: Via C-H/C-H activation. Chem Sci 10:3616–3622

    CAS  Google Scholar 

  84. 84.

    Dubey RJC, Comito RJ, Wu Z et al (2017) Highly stereoselective heterogeneous diene polymerization by Co-MFU-4l: a single-site catalyst prepared by cation exchange. J Am Chem Soc 139:12664–12669

    CAS  PubMed  Google Scholar 

  85. 85.

    Ji P, Manna K, Lin Z et al (2017) Single-site cobalt catalysts at new Zr12(μ3-O)8(μ3-OH)8(μ2-OH)6 metal-organic framework nodes for highly active hydrogenation of nitroarenes, nitriles, and isocyanides. J Am Chem Soc 139:7004–7011

    CAS  PubMed  Google Scholar 

  86. 86.

    Manna K, Ji P, Lin Z et al (2016) Chemoselective single-site Earth-abundant metal catalysts at metal-organic framework nodes. Nat Commun 7:1–11

    Google Scholar 

  87. 87.

    Feng X, Ji P, Li Z et al (2019) Aluminum hydroxide secondary building units in a metal-organic framework support earth-abundant metal catalysts for broad-scope organic transformations. ACS Catal 9:3327–3337

    CAS  Google Scholar 

  88. 88.

    Wang X, Chen Z, Zhao X et al (2018) Regulation of coordination number over single co sites: triggering the efficient electroreduction of CO2. Angew Chemie 130:1962–1966

    Google Scholar 

  89. 89.

    Chen Y, Ji S, Wang Y et al (2017) Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew Chemie 129:7041–7045

    Google Scholar 

  90. 90.

    Zhang H, Hwang S, Wang M et al (2017) Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J Am Chem Soc 139:14143–14149

    CAS  PubMed  Google Scholar 

  91. 91.

    Fan L, Liu PF, Yan X et al (2016) Atomically isolated nickel species anchored on graphitised carbon for efficient hydrogen evolution electrocatalysis. Nat Commun 7:1–7

    Google Scholar 

  92. 92.

    Qu Y, Li Z, Chen W et al (2018) Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat Catal 1:781–786

    CAS  Google Scholar 

  93. 93.

    Li J, Chen M, Cullen DA et al (2018) Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat Catal 1:935–945

    CAS  Google Scholar 

  94. 94.

    Wang J, Huang Z, Liu W et al (2017) Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction. J Am Chem Soc 139:17281–17284

    CAS  PubMed  Google Scholar 

  95. 95.

    Zhang D, Chen W, Li Z et al (2018) Isolated Fe and Co dual active sites on nitrogen-doped carbon for a highly efficient oxygen reduction reaction. Chem Commun 54:4274–4277

    CAS  Google Scholar 

  96. 96.

    Lo BTW, Ye L, Tsang SCE (2018) The contribution of synchrotron X-ray powder diffraction to modern zeolite applications: a mini-review and prospects. Chem 4:1–31

    Google Scholar 

Download references

Acknowledgements

TWBL thanks the National Natural Science Foundation of China (21902139) and the Hong Kong Research Grants Council (25300918 and 15300819) for financial support. PZ thanks the Glasstone Research Fellowship in Science (University of Oxford).

Funding

TWBL thanks the Hong Kong Research Grants Council (25300918 and 15300819) and the National Natural Science Foundation of China (21902139) for financial support. PZ thanks the Glasstone Research Fellowship in Science (University of Oxford).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Benedict T. W. Lo.

Ethics declarations

Conflict of interest/Competing interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xue, Q., Zhang, Z., Ng, B.K.Y. et al. Recent Advances in the Engineering of Single-Atom Catalysts Through Metal–Organic Frameworks. Top Curr Chem (Z) 379, 11 (2021). https://doi.org/10.1007/s41061-021-00324-y

Download citation

Keywords

  • Metal–organic frameworks
  • Single-atom catalysts
  • Structural characterisation
  • Catalyst design