Skip to main content
Log in

Conductive Metal–Organic Frameworks: Mechanisms, Design Strategies and Recent Advances

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs), constructed from metal ions and organic ligands through coordination assembly, exhibit considerable conductivity, which originates from the ionic or electronic transport pathway between the host architecture and guest species. In recent decades, the study of conductive MOFs has accelerated deservedly due to their importance in the electronic information industry. In this review, we first briefly describe the different mechanisms of ionic and electronic conduction. The design strategies of constructing intrinsic and doping MOFs are then summarized and generalized into three major categories (host-based-, guest-based- and host–guest-related systems) in terms of promoting conductive performance. In the next section we provide an overview of recent progress in research on conductive MOFs, providing details according to the various carriers of transporting electrons, protons and other ions. We conclude with a discussion on the practicability and emerging applications of conductive MOFs and a section on the existing challenges and development prospects.

Graphic Abstract

Conduction mechanisms, design strategies, recent progresses and emerging applications of conductive MOFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

adp:

Adipic acid

BDC:

Benzene-1,4-dicarboxylate

BHT:

Benzenehexathiol

bpdc:

4,4′-Biphenyldicarboxylic acid

bpy:

4,4′-Bipyridine

BTC:

1,3,5-Benzenetricarboxylate

BUT:

Beijing University of Technology

m-ClPhH3IDC:

2-(m-chlorophenyl)Imidazole-4,5-dicarboxylic acid

p-ClPhH3IDC:

2-(p-chlorophenyl)Imidazole-4,5-dicarboxylic acid

CS:

Chitosan

dhbq2−/3− :

2,5-Dioxidobenzoquinone/1,2-dioxido-4,5-semiquinone

DMA:

Dimethylammonium

DMF:

N,N-dimethylformamide

dobdc4− :

1,4-Dioxido-2,5-benzenedicarboxylate

dobpdc4− :

4,4′-Dioxidobiphenyl-3,3′-dicarboxylate

DPNI:

N,N′-di-(4-pyridyl)-1,4,5,8-naphthalenetetracarboxydiimide

DSOA:

2,2′-Disulfonate-4,4″-oxydibenzoic acid

EDOT:

3,4-Ethylenedioxythiophene

Emim+ :

1-Ethyl-3-methyl imidazolium

Fc:

Ferrocene

FTO:

Fluorine-doped tin oxide

H4bptc:

3,3′,4,4′-Biphenyltetracarboxylic acid

H2DCDPP:

5,15-Di(4-carboxylphenyl)-10,20-di(4-pyridyl)porphyrin

H2DHBQ:

2,5-Dihydroxy-1,4-benzoquinone

H4DSBDC:

2,5-Disulfhydrylbenzene-1,4-dicarboxylic acid

H2SDB:

4,4′-Sulfonyldibenzoic acid

H2TPyP:

5,10,15,20-Tetra-4-pyridyl-21H,23Hporphine

H4TTFTB:

Tetrathiafulvalenetetrabenzoate

HAB:

Hexaaminobenzene

HHTP:

2,3,6,7,10,11-Hexahydroxytriphenylene

HKUST:

Hong Kong University of Science and Technology

HPCA:

4-Pyridinecarboxylic acid

HTT:

2,3,6,7,10,11-Triphenylene hexathiol

Hq:

Hydroquinone

IA:

Isophthalic acid

IL:

Ionic liquids

Im or ImH:

Imidazole

p-IPhH3IDC:

2-(p-N-imidazol-1-yl)-phenyl-1H-imidazole-4,5-dicarboxylic acid

JLU:

Jilin University

MFM:

Manchester Framework Material

MIL:

Material Institute Lavoisier

MV2+ :

π-Acidic methyl viologen

NCTA:

[3-(Naphthalene-1-carbonyl)-thioureido] acetic acid

NDC:

Naphthalene-2,6-dicarboxylate

NDIs:

Naphthalenediimides

NiCB:

Nickel-(IV) bis(dicarbollide)

NU:

Northwestern University

ox:

Oxalate

PAMPS:

Poly(2-acrylamido-2-methylpropane sulfonic acid)

PCMOF:

Proton conductive MOF

PcOH:

2,3,9,10,16,17,23,24-Octahydroxy-29H,31H-phthalocyanine

PEDOT:

Poly-ethylenedioxythiophene

PHIA:

5-(Phosphonomethyl)isophthalic acid)

pdc:

Pyridine-3,5-dicarboxylate

pdt:

Pyrazine-2,3-dithiolate

PiPhtA:

5-(Dihydroxyphosphoryl)isophthalic acid

PTC:

1,2,3,4,5,6,7,8,9,10,11,12-Perthiolated coronene

PVA:

Poly(vinyl alcohol)

PyOH:

4-Pyridinol

pymca:

Pyrimidine-2-carboxylato

Pz:

1H-Pyrazole

SPEEK:

Sulfonated poly(ether ether ketone)

TAG:

Tris(amino)-guanidinium, ClCNAn2−, chlorocyanoanilate dianionic

TCNQ:

7,7,8,8-Tetracyanoquinodimethane

TFSI:

Bis(trifluoro methanesulfonyl)imide

THT:

2,3,6,7,10,11-Triphenylenehexathiolate

TMBP:

3,3′5,5′-Tetramethyl-4,4′-bipyrazole

Tp:

Terephthalate

TPDAP:

2,5,8-Tri(4-pyridyl)1,3-diazaphenalene

TPP:

4-(4H-1,2,4-triazol-4-yl)-phenyl phosphonate

TTF:

Tetrathiafulvalene

TTFTC:

Tetrathiafulvalenetetracarboxylate

Tz or TzH:

1H-1,2,4-Triazole

UiO:

University of Oslo

VNU:

Vietnam National University

ZCN:

Zeolitic imidazolate framework/carbon nanotube hybrid crosslinked networks

ZIF:

Zeolitic imidazolate framework

References

  1. He J, Zha M, Cui J, Zeller M, Hunter AD, Yiu SM, Lee ST, Xu Z (2013) Convenient detection of Pd(II) by a metal–organic framework with sulfur and olefin functions. J Am Chem Soc 135:7807–7810

    CAS  PubMed  Google Scholar 

  2. Peng Y, Zhao M, Chen B, Zhang Z, Huang Y, Dai F, Lai Z, Cui X, Tan C, Zhang H (2018) Hybridization of MOFs and COFs: a new strategy for construction of MOF@COF core-shell hybrid materials. Adv Mater 30:1705454

    Google Scholar 

  3. Tsuruoka T, Matsuyama T, Miyanaga A, Ohhashi T, Takashima Y, Akamatsu K (2016) Site-selective growth of metal–organic frameworks using an interfacial growth approach combined with VUV photolithography. RSC Adv 6:77297–77300

    CAS  Google Scholar 

  4. Li B, Wen HM, Cui Y, Zhou W, Qian G, Chen B (2016) Emerging multifunctional metal–organic framework materials. Adv Mater 28:8819–8860

    CAS  PubMed  Google Scholar 

  5. Ricco R, Pfeiffer C, Sumida K, Sumby CJ, Falcaro P, Furukawa S, Champness NR, Doonan CJ (2016) Emerging applications of metal–organic frameworks. CrystEngComm 18:6532–6542

    CAS  Google Scholar 

  6. Dong QC, Meng ZG, Ho CL, Guo HG, Yang WY, Manners I, Xu LL, Wong WY (2018) A molecular approach to magnetic metallic nanostructures from metallopolymer precursors. Chem Soc Rev 47:4934–4953

    CAS  PubMed  Google Scholar 

  7. Yuan D, Lu W, Zhao D, Zhou HC (2011) Highly stable porous polymer networks with exceptionally high gas-uptake capacities. Adv Mater 23:3723–3725

    CAS  PubMed  Google Scholar 

  8. Peng Y, Krungleviciute V, Eryazici I, Hupp JT, Farha OK, Yildirim T (2013) Methane storage in metal–organic frameworks: current records, surprise findings, and challenges. J Am Chem Soc 135:11887–11894

    CAS  PubMed  Google Scholar 

  9. Li JR, Sculley J, Zhou HC (2012) Metal–organic frameworks for separations. Chem Rev 112:869–932

    CAS  PubMed  Google Scholar 

  10. Jiao L, Wang Y, Jiang HL, Xu Q (2018) Metal–organic frameworks as platforms for catalytic applications. Adv Mater 30:1703663

    Google Scholar 

  11. Gui B, Yee KK, Wong YL, Yiu SM, Zeller M, Wang C, Xu Z (2015) Tackling poison and leach: catalysis by dangling thiol-palladium functions within a porous metal–organic solid. Chem Commun 51:6917–6920

    CAS  Google Scholar 

  12. Gassensmith JJ, Kim JY, Holcroft JM, Farha OK, Stoddart JF, Hupp JT, Jeong NC (2014) A metal–organic framework-based material for electrochemical sensing of carbon dioxide. J Am Chem Soc 136:8277–8282

    CAS  PubMed  Google Scholar 

  13. He C, Lu K, Liu D, Lin W (2014) Nanoscale metal–organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J Am Chem Soc 136:5181–5184

    CAS  PubMed  PubMed Central  Google Scholar 

  14. So MC, Wiederrecht GP, Mondloch JE, Hupp JT, Farha OK (2015) Metal–organic framework materials for light-harvesting and energy transfer. Chem Commun 51:3501–3510

    CAS  Google Scholar 

  15. Karim MR, Hatakeyama K, Koinuma M, Hayami S (2017) Proton conductors produced by chemical modifications of carbon allotropes, perovskites and metal organic frameworks. J Mater Chem A 5:7243–7256

    CAS  Google Scholar 

  16. He J, Yin Y-G, Wu T, Li D, Huang X-C (2006) Design and solvothermal synthesis of luminescent copper(I)-pyrazolate coordination oligomer and polymer frameworks. Chem Commun 27:2845–2847

  17. Wang N, Liu T, Shen H, Ji S, Li J-R, Zhang R (2016) Ceramic tubular MOF hybrid membrane fabricated through in situ layer-by-layer self-assembly for nanofiltration. AIChE J 62:538–546

    CAS  Google Scholar 

  18. Zhang R, Ji S, Wang N, Wang L, Zhang G, Li JR (2014) Coordination-driven in situ self-assembly strategy for the preparation of metal–organic framework hybrid membranes. Angew Chem Int Ed 53:9775–9779

    CAS  Google Scholar 

  19. Chandrasekhar P, Mukhopadhyay A, Savitha G, Moorthy JN (2017) Orthogonal self-assembly of a trigonal triptycene triacid: signaling of exfoliation of porous 2D metal–organic layers by fluorescence and selective CO2 capture by the hydrogen-bonded MOF. J Mater Chem A 5:5402–5412

    CAS  Google Scholar 

  20. Yamada T, Sadakiyo M, Kitagawa H (2009) High proton conductivity of one-dimensional ferrous oxalate dihydrate. J Am Chem Soc 131:3144–3145

    CAS  PubMed  Google Scholar 

  21. Stankiewicz J, Tomás M, Dobrinovitch IT, Forcén-Vázquez E, Falvello LR (2014) Proton conduction in a nonporous one dimensional coordination polymer. Chem Mater 26:5282–5287

    CAS  Google Scholar 

  22. Umeyama D, Horike S, Inukai M, Itakura T, Kitagawa S (2012) Inherent proton conduction in a 2D coordination framework. J Am Chem Soc 134:12780–12785

    CAS  PubMed  Google Scholar 

  23. Liu R, Zhao L, Yu S, Liang X, Li Z, Li G (2018) Enhancing proton conductivity of a 3D metal–organic framework by attaching guest NH3 molecules. Inorg Chem 57:11560–11568

    CAS  PubMed  Google Scholar 

  24. Sun L, Campbell MG, Dincă M (2016) Electrically conductive porous metal–organic frameworks. Angew Chem Int Ed 55:3566–3579

    CAS  Google Scholar 

  25. Butler KT, Hendon CH, Walsh A (2014) Electronic chemical potentials of porous metal–organic frameworks. J Am Chem Soc 136:2703–2706

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Li A-L, Gao Q, Xu J, Bu X-H (2017) Proton-conductive metal–organic frameworks: recent advances and perspectives. Coord Chem Rev 344:54–82

    CAS  Google Scholar 

  27. Xu Z (2006) A selective review on the making of coordination networks with potential semiconductive properties. Coord Chem Rev 250:2745–2757

    CAS  Google Scholar 

  28. Bao S-S, Shimizu GKH, Zheng L-M (2019) Proton conductive metal phosphonate frameworks. Coord Chem Rev 378:577–594

    CAS  Google Scholar 

  29. Yoshida Y, Kitagawa H (2018) Ionic conduction in metal–organic frameworks with incorporated ionic liquids. ACS Sustain Chem Eng 7:70–81

    Google Scholar 

  30. Ramaswamy P, Wong NE, Shimizu GK (2014) MOFs as proton conductors—challenges and opportunities. Chem Soc Rev 43:5913–5932

    CAS  PubMed  Google Scholar 

  31. Meng X, Wang HN, Song SY, Zhang HJ (2017) Proton-conducting crystalline porous materials. Chem Soc Rev 46:464–480

    CAS  PubMed  Google Scholar 

  32. Sadakiyo M, Yamada T, Kitagawa H (2016) Hydrated proton-conductive metal–organic frameworks. ChemPlusChem 81:691–701

    CAS  PubMed  Google Scholar 

  33. Tominaka S, Coudert FX, Dao TD, Nagao T, Cheetham AK (2015) Insulator-to-proton-conductor transition in a dense metal–organic framework. J Am Chem Soc 137:6428–6431

    CAS  PubMed  Google Scholar 

  34. Dong XY, Hu XP, Yao HC, Zang SQ, Hou HW, Mak TC (2014) Alkaline earth metal (Mg, Sr, Ba)-organic frameworks based on 2,2′,6,6′-tetracarboxybiphenyl for proton conduction. Inorg Chem 53:12050–12057

    CAS  PubMed  Google Scholar 

  35. Zou L, Yao S, Zhao J, Li D-S, Li G, Huo Q, Liu Y (2017) Enhancing proton conductivity in a 3D metal–organic framework by the cooperation of guest [Me2NH2]+ cations, water molecules, and host carboxylates. Cryst Growth Des 17:3556–3561

    CAS  Google Scholar 

  36. Ponomareva VG, Kovalenko KA, Chupakhin AP, Dybtsev DN, Shutova ES, Fedin VP (2012) Imparting high proton conductivity to a metal–organic framework material by controlled acid impregnation. J Am Chem Soc 134:15640–15643

    CAS  PubMed  Google Scholar 

  37. Phang WJ, Jo H, Lee WR, Song JH, Yoo K, Kim B, Hong CS (2015) Superprotonic conductivity of a UiO-66 framework functionalized with sulfonic acid groups by facile postsynthetic oxidation. Angew Chem Int Ed 54:5142–5146

    CAS  Google Scholar 

  38. Meng X, Wei MJ, Wang HN, Zang HY, Zhou ZY (2018) Multifunctional luminescent Zn(II)-based metal–organic framework for high proton-conductivity and detection of Cr3+ ions in the presence of mixed metal ions. Dalton Trans 47:1383–1387

    CAS  PubMed  Google Scholar 

  39. Xu Z, Wong YL, Xiao R, Hou Y (2017) Electronic and ionic conductivity of metal–organic frameworks. In: Atwood JL (ed) Comprehensive supramolecular chemistry II. Amsterdam, Elsevier BV, pp 399–423

    Google Scholar 

  40. Bhardwaj SK, Bhardwaj N, Kaur R, Mehta J, Sharma AL, Kim K-H, Deep A (2018) An overview of different strategies to introduce conductivity in metal–organic frameworks and miscellaneous applications thereof. J Mater Chem A 6:14992–15009

    CAS  Google Scholar 

  41. Wu HB, Lou XWD (2017) Metal–organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges. Sci Adv 3:1–16

    Google Scholar 

  42. Xu Z (2014) Semiconducting metal–organic frameworks. Metal-organic framework materials. Encyclopedia of inorganic and bioinorganic chemistry. Wiley, New York

    Google Scholar 

  43. Xu X, Tang J, Qian H, Hou S, Bando Y, Hossain MSA, Pan L, Yamauchi Y (2017) Three-dimensional networked metal–organic frameworks with conductive polypyrrole tubes for flexible supercapacitors. ACS Appl Mater Interfaces 9:38737–38744

    CAS  PubMed  Google Scholar 

  44. Lim DW, Yoon JW, Ryu KY, Suh MP (2012) Magnesium nanocrystals embedded in a metal–organic framework: hybrid hydrogen storage with synergistic effect on physi- and chemisorption. Angew Chem Int Ed 51:9814–9817

    CAS  Google Scholar 

  45. Schneemann A, Bon V, Schwedler I, Senkovska I, Kaskel S, Fischer RA (2014) Flexible metal–organic frameworks. Chem Soc Rev 43:6062–6096

    CAS  PubMed  Google Scholar 

  46. Nagatomi H, Yanai N, Yamada T, Shiraishi K, Kimizuka N (2018) Synthesis and electric properties of a two-dimensional metal–organic framework based on phthalocyanine. Chem Eur J 24:1806–1810

    CAS  PubMed  Google Scholar 

  47. Horike S, Umeyama D, Kitagawa S (2013) Ion conductivity and transport by porous coordination polymers and metal–organic frameworks. Acc Chem Res 46:2376–2384

    CAS  PubMed  Google Scholar 

  48. Xie XX, Yang YC, Dou BH, Li ZF, Li G (2020) Proton conductive carboxylate-based metal–organic frameworks. Coord Chem Rev 404:213100

    Google Scholar 

  49. Wang HN, Meng X, Dong LZ, Chen Y, Li SL, Lan YQ (2019) Coordination polymer-based conductive materials: ionic conductivity vs. electronic conductivity. J Mater Chem A 7:24059–24091

    CAS  Google Scholar 

  50. Mehta V, Cooper JS (2003) Review and analysis of PEM fuel cell design and manufacturing. J Power Sources 114:32–53

    CAS  Google Scholar 

  51. Agmon N (1995) The Grotthuss mechanism. Chem Phys Lett 244:456–462

    CAS  Google Scholar 

  52. Wu D, Guo Z, Yin X, Pang Q, Tu B, Zhang L, Wang YG, Li Q (2014) Metal–organic frameworks as cathode materials for Li-O2 batteries. Adv Mater 26:3258–3262

    CAS  PubMed  Google Scholar 

  53. Chui SS-Y, Lo SM-F, Charmant JPH, Orpen AG, Williams ID (1999) A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283:1148–1150

    CAS  PubMed  Google Scholar 

  54. Zacher D, Shekhah O, Woll C, Fischer RA (2009) Thin films of metal–organic frameworks. Chem Soc Rev 38:1418–1429

    CAS  PubMed  Google Scholar 

  55. Sun L, Miyakai T, Seki S, Dincă M (2013) Mn2(2,5-disulfhydrylbenzene-1,4-dicarboxylate): a microporous metal–organic framework with infinite (–Mn–S–) infinity chains and high intrinsic charge mobility. J Am Chem Soc 135:8185–8188

    CAS  PubMed  Google Scholar 

  56. Kobayashi Y, Jacobs B, Allendorf MD, Long JR (2010) Conductivity, doping, and redox chemistry of a microporous dithiolene-based metal–organic framework. Chem Mater 22:4120–4122

    CAS  Google Scholar 

  57. Shigematsu A, Yamada T, Kitagawa H (2011) Wide control of proton conductivity in porous coordination polymers. J Am Chem Soc 133:2034–2036

    CAS  PubMed  Google Scholar 

  58. Bryce MR (1991) Recent progress on conducting organic charge-transfer salts. Chem Soc Rev 20:355–390

    CAS  Google Scholar 

  59. Ferraris J, Cowan DO, Walatka V, Perlstein JH (1973) Electron transfer in a new highly conducting donor-acceptor complex. J Am Chem Soc 95:948–949

    CAS  Google Scholar 

  60. Dragasser A, Shekhah O, Zybaylo O, Shen C, Buck M, Woll C, Schlettwein D (2012) Redox mediation enabled by immobilised centres in the pores of a metal–organic framework grown by liquid phase epitaxy. Chem Commun 48:663–665

    Google Scholar 

  61. Kambe T, Sakamoto R, Hoshiko K, Takada K, Miyachi M, Ryu JH, Sasaki S, Kim J, Nakazato K, Takata M, Nishihara H (2013) π-Conjugated nickel bis(dithiolene) complex nanosheet. J Am Chem Soc 135:2462–2465

    CAS  PubMed  Google Scholar 

  62. Sheberla D, Sun L, Blood-Forsythe MA, Er S, Wade CR, Brozek CK, Aspuru-Guzik A, Dincă M (2014) High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal–organic graphene analogue. J Am Chem Soc 136:8859–8862

    CAS  PubMed  Google Scholar 

  63. Yan Q, Toghiani H, Lee Y-W, Liang K, Causey H (2006) Effect of sub-freezing temperatures on a PEM fuel cell performance, startup and fuel cell components. J Power Sources 160:1242–1250

    CAS  Google Scholar 

  64. Ye Y, Zhang L, Peng Q, Wang GE, Shen Y, Li Z, Wang L, Ma X, Chen QH, Zhang Z, Xiang S (2015) High anhydrous proton conductivity of imidazole-loaded mesoporous polyimides over a wide range from subzero to moderate temperature. J Am Chem Soc 137:913–918

    CAS  PubMed  Google Scholar 

  65. Bai Y, Dou Y, Xie LH, Rutledge W, Li JR, Zhou HC (2016) Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chem Soc Rev 45:2327–2367

    CAS  PubMed  Google Scholar 

  66. Chen Q, Chang Z, Song WC, Song H, Song HB, Hu TL, Bu XH (2013) A controllable gate effect in cobalt(II) organic frameworks by reversible structure transformations. Angew Chem Int Ed 52:11550–11553

    CAS  Google Scholar 

  67. Planas N, Mondloch JE, Tussupbayev S, Borycz J, Gagliardi L, Hupp JT, Farha OK, Cramer CJ (2014) Defining the proton topology of the Zr6-based metal–organic framework NU-1000. J Phys Chem Lett 5:3716–3723

    CAS  PubMed  Google Scholar 

  68. Zhang DS, Chang Z, Li YF, Jiang ZY, Xuan ZH, Zhang YH, Li JR, Chen Q, Hu TL, Bu XH (2013) Fluorous metal–organic frameworks with enhanced stability and high H2/CO2 storage capacities. Sci Rep 3:3312–3318

    PubMed  PubMed Central  Google Scholar 

  69. Zhang X, Zhang YZ, Zhang DS, Zhu B, Li JR (2015) A hydrothermally stable Zn(II)-based metal–organic framework: structural modulation and gas adsorption. Dalton Trans 44:15697–15702

    CAS  PubMed  Google Scholar 

  70. Sadakiyo M, Yamada T, Kitagawa H (2014) Proton conductivity control by ion substitution in a highly proton-conductive metal–organic framework. J Am Chem Soc 136:13166–13169

    CAS  PubMed  Google Scholar 

  71. Yoon M, Suh K, Natarajan S, Kim K (2013) Protonenleitung in metall-organischen Gerüsten und verwandten modularen porösen Festkörpern. Angew Chem 125:2752–2764

    Google Scholar 

  72. Yamada T, Otsubo K, Makiura R, Kitagawa H (2013) Designer coordination polymers: dimensional crossover architectures and proton conduction. Chem Soc Rev 42:6655–6669

    CAS  PubMed  Google Scholar 

  73. Li S-L, Xu Q (2013) Metal–organic frameworks as platforms for clean energy. Energy Environ Sci 6:1656–1683

    CAS  Google Scholar 

  74. Yoon M, Suh K, Natarajan S, Kim K (2013) Proton conduction in metal–organic frameworks and related modularly built porous solids. Angew Chem Int Ed 52:2688–2700

    CAS  Google Scholar 

  75. Panda T, Kundu T, Banerjee R (2013) Structural isomerism leading to variable proton conductivity in indium(III) isophthalic acid based frameworks. Chem Commun 49:6197–6199

    CAS  Google Scholar 

  76. Okawa H, Sadakiyo M, Yamada T, Maesato M, Ohba M, Kitagawa H (2013) Proton-conductive magnetic metal–organic frameworks, {NR3(CH2COOH)}[MIIa MIIIb (ox)3]: effect of carboxyl residue upon proton conduction. J Am Chem Soc 135:2256–2262

    CAS  PubMed  Google Scholar 

  77. Umeyama D, Horike S, Inukai M, Hijikata Y, Kitagawa S (2011) Confinement of mobile histamine in coordination nanochannels for fast proton transfer. Angew Chem Int Ed 50:11706–11709

    CAS  Google Scholar 

  78. Horike S, Umeyama D, Inukai M, Itakura T, Kitagawa S (2012) Coordination-network-based ionic plastic crystal for anhydrous proton conductivity. J Am Chem Soc 134:7612–7615

    CAS  PubMed  Google Scholar 

  79. Shota M, Teppei Y, Hiroshi K (2009) Crystal structure and proton conductivity of a one-dimensional coordination polymer, {Mn(DHBQ)(H2O)2}. Chem Lett 38:654–655

    Google Scholar 

  80. Mallick A, Kundu T, Banerjee R (2012) Correlation between coordinated water content and proton conductivity in Ca-BTC-based metal–organic frameworks. Chem Commun 48:8829–8831

    CAS  Google Scholar 

  81. Tu TN, Phan NQ, Vu TT, Nguyen HL, Cordova KE, Furukawa H (2016) High proton conductivity at low relative humidity in an anionic Fe-based metal–organic framework. J Mater Chem A 4:3638–3641

    CAS  Google Scholar 

  82. Begum S, Wang Z, Donnadio A, Costantino F, Casciola M, Valiullin R, Chmelik C, Bertmer M, Karger J, Haase J, Krautscheid H (2014) Water-mediated proton conduction in a robust triazolyl phosphonate metal–organic framework with hydrophilic nanochannels. Chem Eur J 20:8862–8866

    CAS  PubMed  Google Scholar 

  83. Bao S-S, Li N-Z, Taylor JM, Shen Y, Kitagawa H, Zheng L-M (2015) Co-Ca phosphonate showing humidity-sensitive single crystal to single crystal structural transformation and tunable proton conduction properties. Chem Mater 27:8116–8125

    CAS  Google Scholar 

  84. Grohol D, Subramanian MA, Poojary DM, Clearfield A (1996) Synthesis, crystal structures, and proton conductivity of two linear-chain uranyl phenylphosphonates. Inorg Chem 35:5264–5271

    CAS  Google Scholar 

  85. Taylor JM, Mah RK, Moudrakovski IL, Ratcliffe CI, Vaidhyanathan R, Shimizu GKH (2010) Facile proton conduction via ordered water molecules in a phosphonate metal–organic framework. J Am Chem Soc 132:14055–14057

    CAS  PubMed  Google Scholar 

  86. Sone Y, Ekdunge P, Simonsson D (1996) Proton conductivity of Nafion 117 as measured by a four-electrode AC impedance method. J Electrochem Soc 143:1254–1259

    CAS  Google Scholar 

  87. Yang F, Huang H, Wang X, Li F, Gong Y, Zhong C, Li J-R (2015) Proton conductivities in functionalized UiO-66: tuned properties, thermogravimetry mass, and molecular simulation analyses. Cryst Growth Des 15:5827–5833

    CAS  Google Scholar 

  88. Feng L, Wang HS, Xu HL, Huang WT, Zeng TY, Cheng QR, Pan ZQ, Zhou H (2019) A water stable layered Tb(III) polycarboxylate with high proton conductivity over 10−2 S cm−1 in a wide temperature range. Chem Commun 55:1762–1765

    CAS  Google Scholar 

  89. Rought P, Marsh C, Pili S, Silverwood IP, Sakai VG, Li M, Brown MS, Argent SP, Vitorica-Yrezabal I, Whitehead G, Warren MR, Yang S, Schroder M (2019) Modulating proton diffusion and conductivity in metal–organic frameworks by incorporation of accessible free carboxylic acid groups. Chem Sci 10:1492–1499

    CAS  PubMed  Google Scholar 

  90. Elahi SM, Chand S, Deng WH, Pal A, Das MC (2018) Polycarboxylate-templated coordination polymers: role of templates for superprotonic conductivities of up to 10−1 S cm−1. Angew Chem Int Ed 57:6662–6666

    CAS  Google Scholar 

  91. Zhai QG, Mao C, Zhao X, Lin Q, Bu F, Chen X, Bu X, Feng P (2015) Cooperative crystallization of heterometallic indium-chromium metal–organic polyhedra and their fast proton conductivity. Angew Chem Int Ed 54:7886–7890

    CAS  Google Scholar 

  92. Dong XY, Wang R, Li JB, Zang SQ, Hou HW, Mak TC (2013) A tetranuclear Cu43-OH)2-based metal–organic framework (MOF) with sulfonate-carboxylate ligands for proton conduction. Chem Commun 49:10590–10592

    CAS  Google Scholar 

  93. Dong X-Y, Wang R, Wang J-Z, Zang S-Q, Mak TCW (2015) Highly selective Fe3+ sensing and proton conduction in a water-stable sulfonate-carboxylate Tb-organic-framework. J Mater Chem A 3:641–647

    CAS  Google Scholar 

  94. Meng X, Song S-Y, Song X-Z, Zhu M, Zhao S-N, Wu L-L, Zhang H-J (2015) A tetranuclear copper cluster-based MOF with sulfonate-carboxylate ligands exhibiting high proton conduction properties. Chem Commun 51:8150–8152

    CAS  Google Scholar 

  95. Bazaga-García M, Papadaki M, Colodrero RMP, Olivera-Pastor P, Losilla ER, Nieto-Ortega B, Aranda MÁG, Choquesillo-Lazarte D, Cabeza A, Demadis KD (2015) Tuning proton conductivity in alkali metal phosphonocarboxylates by cation size-induced and water-facilitated proton transfer pathways. Chem Mater 27:424–435

    Google Scholar 

  96. Taddei M, Donnadio A, Costantino F, Vivani R, Casciola M (2013) Synthesis, crystal structure, and proton conductivity of one-dimensional, two-dimensional, and three-dimensional zirconium phosphonates based on glyphosate and glyphosine. Inorg Chem 52:12131–12139

    CAS  PubMed  Google Scholar 

  97. Donnadio A, Nocchetti M, Costantino F, Taddei M, Casciola M, da Silva Lisboa F, Vivani R (2014) A layered mixed zirconium phosphate/phosphonate with exposed carboxylic and phosphonic groups: X-ray powder structure and proton conductivity properties. Inorg Chem 53:13220–13226

    CAS  PubMed  Google Scholar 

  98. Ramaswamy P, Wong NE, Gelfand BS, Shimizu GK (2015) A water stable magnesium MOF that conducts protons over 10−2 S cm−1. J Am Chem Soc 137:7640–7643

    CAS  PubMed  Google Scholar 

  99. Fard ZH, Wong NE, Malliakas CD, Ramaswamy P, Taylor JM, Otsubo K, Shimizu GKH (2018) Superprotonic phase change to a robust phosphonate metal–organic framework. Chem Mater 30:314–318

    Google Scholar 

  100. Wong NE, Ramaswamy P, Lee AS, Gelfand BS, Bladek KJ, Taylor JM, Spasyuk DM, Shimizu GKH (2017) Tuning intrinsic and extrinsic proton conduction in metal–organic frameworks by the lanthanide contraction. J Am Chem Soc 139:14676–14683

    CAS  PubMed  Google Scholar 

  101. Taylor JM, Dawson KW, Shimizu GK (2013) A water-stable metal–organic framework with highly acidic pores for proton-conducting applications. J Am Chem Soc 135:1193–1196

    CAS  PubMed  Google Scholar 

  102. Kim S, Dawson KW, Gelfand BS, Taylor JM, Shimizu GK (2013) Enhancing proton conduction in a metal–organic framework by isomorphous ligand replacement. J Am Chem Soc 135:963–966

    CAS  PubMed  Google Scholar 

  103. Kim S, Joarder B, Hurd JA, Zhang J, Dawson KW, Gelfand BS, Wong NE, Shimizu GKH (2018) Achieving superprotonic conduction in metal–organic frameworks through iterative design advances. J Am Chem Soc 140:1077–1082

    CAS  PubMed  Google Scholar 

  104. Yang F, Xu G, Dou Y, Wang B, Zhang H, Wu H, Zhou W, Li J-R, Chen B (2017) A flexible metal–organic framework with a high density of sulfonic acid sites for proton conduction. Nat Energy 2:877–883

    CAS  Google Scholar 

  105. Liu L, Yao Z, Ye Y, Lin Q, Chen S, Zhang Z, Xiang S (2018) Enhanced intrinsic proton conductivity of metal–organic frameworks by tuning the degree of interpenetration. Cryst Growth Des 18:3724–3728

    CAS  Google Scholar 

  106. Taylor JM, Dekura S, Ikeda R, Kitagawa H (2015) Defect control to enhance proton conductivity in a metal–organic framework. Chem Mater 27:2286–2289

    CAS  Google Scholar 

  107. Liu S, Yue Z, Liu Y (2015) Incorporation of imidazole within the metal–organic framework UiO-67 for enhanced anhydrous proton conductivity. Dalton Trans 44:12976–12980

    CAS  PubMed  Google Scholar 

  108. Ye Y, Wu X, Yao Z, Wu L, Cai Z, Wang L, Ma X, Chen Q-H, Zhang Z, Xiang S (2016) Metal–organic frameworks with a large breathing effect to host hydroxyl compounds for high anhydrous proton conductivity over a wide temperature range from subzero to 125°C. J Mater Chem A 4:4062–4070

    CAS  Google Scholar 

  109. Su X, Yao Z, Ye Y, Zeng H, Xu G, Wu L, Ma X, Chen QH, Wang L, Zhang Z, Xiang S (2016) 40-fold enhanced intrinsic proton conductivity in coordination polymers with the same proton-conducting pathway by tuning metal cation nodes. Inorg Chem 55:983–986

    CAS  PubMed  Google Scholar 

  110. Wang X, Lou D, Lu X, Wu J, Mu Y, Yan Y, Zhang Q, Bai M (2018) Switching on the proton transport pathway of a lanthanide metal–organic framework by one-pot loading of tetraethylene glycol for high proton conduction. Dalton Trans 47:9096–9102

    CAS  PubMed  Google Scholar 

  111. Sadakiyo M, Yamada T, Kitagawa H (2009) Rational designs for highly proton-conductive metal–organic frameworks. J Am Chem Soc 131:9906–9907

    CAS  PubMed  Google Scholar 

  112. Ōkawa H, Shigematsu A, Sadakiyo M, Miyagawa T, Yoneda K, Ohba M, Kitagawa H (2009) Oxalate-bridged bimetallic complexes {NH(prol)3}[MCr(ox)3] (M = MnII, FeII, CoII; NH(prol)3+=tri(3-hydroxypropyl)ammonium) exhibiting coexistent ferromagnetism and proton conduction. J Am Chem Soc 131:13516–13522

    PubMed  Google Scholar 

  113. Sadakiyo M, Okawa H, Shigematsu A, Ohba M, Yamada T, Kitagawa H (2012) Promotion of low-humidity proton conduction by controlling hydrophilicity in layered metal–organic frameworks. J Am Chem Soc 134:5472–5475

    CAS  PubMed  Google Scholar 

  114. Wang R, Dong XY, Xu H, Pei RB, Ma ML, Zang SQ, Hou HW, Mak TC (2014) A super water-stable europium-organic framework: guests inducing low-humidity proton conduction and sensing of metal ions. Chem Commun 50:9153–9156

    CAS  Google Scholar 

  115. Liu S-J, Cao C, Yang F, Yu M-H, Yao S-L, Zheng T-F, He W-W, Zhao H-X, Hu T-L, Bu X-H (2016) High proton conduction in two CoII and MnII anionic metal–organic frameworks derived from 1,3,5-benzenetricarboxylic acid. Cryst Growth Des 16:6776–6780

    CAS  Google Scholar 

  116. Wei YS, Hu XP, Han Z, Dong XY, Zang SQ, Mak TC (2017) Unique proton dynamics in an efficient MOF-based proton conductor. J Am Chem Soc 139:3505–3512

    CAS  PubMed  Google Scholar 

  117. Pardo E, Train C, Gontard G, Boubekeur K, Fabelo O, Liu H, Dkhil B, Lloret F, Nakagawa K, Tokoro H, Ohkoshi S, Verdaguer M (2011) High proton conduction in a chiral ferromagnetic metal–organic quartz-like framework. J Am Chem Soc 133:15328–15331

    CAS  PubMed  Google Scholar 

  118. Bazaga-García M, Colodrero RM, Papadaki M, Garczarek P, Zon J, Olivera-Pastor P, Losilla ER, Leon-Reina L, Aranda MA, Choquesillo-Lazarte D, Demadis KD, Cabeza A (2014) Guest molecule-responsive functional calcium phosphonate frameworks for tuned proton conductivity. J Am Chem Soc 136:5731–5739

    PubMed  Google Scholar 

  119. Liang X, Li B, Wang M, Wang J, Liu R, Li G (2017) Effective approach to promoting the proton conductivity of metal–organic frameworks by exposure to aqua-ammonia vapor. ACS Appl Mater Interfaces 9:25082–25086

    CAS  PubMed  Google Scholar 

  120. Zhang FM, Dong LZ, Qin JS, Guan W, Liu J, Li SL, Lu M, Lan YQ, Su ZM, Zhou HC (2017) Effect of imidazole arrangements on proton-conductivity in metal–organic frameworks. J Am Chem Soc 139:6183–6189

    CAS  PubMed  Google Scholar 

  121. Wiers BM, Foo ML, Balsara NP, Long JR (2011) A solid lithium electrolyte via addition of lithium isopropoxide to a metal–organic framework with open metal sites. J Am Chem Soc 133:14522–14525

    CAS  PubMed  Google Scholar 

  122. Ameloot R, Aubrey M, Wiers BM, Gómora-Figueroa AP, Patel SN, Balsara NP, Long JR (2013) Ionic conductivity in the metal–organic framework UiO-66 by dehydration and insertion of lithiumtert-butoxide. Chem Eur J 19:5533–5536

    CAS  PubMed  Google Scholar 

  123. Wang X, Wang Y, Silver MA, Gui D, Bai Z, Wang Y, Liu W, Chen L, Diwu J, Chai Z, Wang S (2018) Superprotonic conduction through one-dimensional ordered alkali metal ion chains in a lanthanide-organic framework. Chem Commun 54:4429–4432

    CAS  Google Scholar 

  124. Taylor JM, Komatsu T, Dekura S, Otsubo K, Takata M, Kitagawa H (2015) The role of a three dimensionally ordered defect sublattice on the acidity of a sulfonated metal–organic framework. J Am Chem Soc 137:11498–11506

    CAS  PubMed  Google Scholar 

  125. Pili S, Argent SP, Morris CG, Rought P, Garcia-Sakai V, Silverwood IP, Easun TL, Li M, Warren MR, Murray CA, Tang CC, Yang S, Schroder M (2016) Proton conduction in a phosphonate-based metal–organic framework mediated by intrinsic “free diffusion inside a sphere”. J Am Chem Soc 138:6352–6355

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Li X-M, Dong L-Z, Li S-L, Xu G, Liu J, Zhang F-M, Lu L-S, Lan Y-Q (2017) Synergistic conductivity effect in a proton sources-coupled metal–organic framework. ACS Energy Lett 2:2313–2318

    CAS  Google Scholar 

  127. Phang WJ, Lee WR, Yoo K, Ryu DW, Kim B, Hong CS (2014) pH-dependent proton conducting behavior in a metal–organic framework material. Angew Chem Int Ed 53:8383–8387

    CAS  Google Scholar 

  128. Nguyen MV, Lo THN, Luu LC, Nguyen HTT, Tu TN (2018) Enhancing proton conductivity in a metal–organic framework at T > 80°C by an anchoring strategy. J Mater Chem A 6:1816–1821

    CAS  Google Scholar 

  129. Dong X-Y, Li J-J, Han Z, Duan P-G, Li L-K, Zang S-Q (2017) Tuning the functional substituent group and guest of metal–organic frameworks in hybrid membranes for improved interface compatibility and proton conduction. J Mater Chem A 5:3464–3474

    CAS  Google Scholar 

  130. Luo H-B, Ren Q, Wang P, Zhang J, Wang L, Ren X-M (2019) High proton conductivity achieved by encapsulation of imidazole molecules into proton-conducting MOF-808. ACS Appl Mater Interfaces 11:9164–9171

    CAS  PubMed  Google Scholar 

  131. Tang Q, Liu Y, Liu S, He D, Miao J, Wang X, Yang G, Shi Z, Zheng Z (2014) High proton conduction at above 100°C mediated by hydrogen bonding in a lanthanide metal–organic framework. J Am Chem Soc 136:12444–12449

    CAS  PubMed  Google Scholar 

  132. Hurd JA, Vaidhyanathan R, Thangadurai V, Ratcliffe CI, Moudrakovski IL, Shimizu GK (2009) Anhydrous proton conduction at 150°C in a crystalline metal–organic framework. Nat Chem 1:705–710

    CAS  PubMed  Google Scholar 

  133. Khatua S, Bar AK, Sheikh JA, Clearfield A, Konar S (2018) Achieving amphibious superprotonic conductivity in a CuI metal–organic framework by strategic pyrazinium salt impregnation. Chem Eur J 24:872–880

    CAS  PubMed  Google Scholar 

  134. Nagarkar SS, Unni SM, Sharma A, Kurungot S, Ghosh SK (2014) Two-in-one: inherent anhydrous and water-assisted high proton conduction in a 3D metal–organic framework. Angew Chem Int Ed 53:2638–2642

    CAS  Google Scholar 

  135. Gui D, Dai X, Tao Z, Zheng T, Wang X, Silver MA, Shu J, Chen L, Wang Y, Zhang T, Xie J, Zou L, Xia Y, Zhang J, Zhang J, Zhao L, Diwu J, Zhou R, Chai Z, Wang S (2018) Unique proton transportation pathway in a robust inorganic coordination polymer leading to intrinsically high and sustainable anhydrous proton conductivity. J Am Chem Soc 140:6146–6155

    CAS  PubMed  Google Scholar 

  136. Inukai M, Horike S, Itakura T, Shinozaki R, Ogiwara N, Umeyama D, Nagarkar SS, Nishiyama Y, Malon M, Hayashi A, Ohhara T, Kiyanagi R, Kitagawa S (2016) Encapsulating mobile proton carriers into structural defects in coordination polymer crystals: high anhydrous proton conduction and fuel cell application. J Am Chem Soc 138:8505–8511

    CAS  PubMed  Google Scholar 

  137. Nagarkar SS, Anothumakkool B, Desai AV, Shirolkar MM, Kurungot S, Ghosh SK (2016) High hydroxide conductivity in a chemically stable crystalline metal–organic framework containing a water-hydroxide supramolecular chain. Chem Commun 52:8459–8462

    CAS  Google Scholar 

  138. Mao C, Kudla RA, Zuo F, Zhao X, Mueller LJ, Bu X, Feng P (2014) Anion stripping as a general method to create cationic porous framework with mobile anions. J Am Chem Soc 136:7579–7582

    CAS  PubMed  Google Scholar 

  139. Montoro C, Ocon P, Zamora F, Navarro JA (2016) Metal–organic frameworks containing missing-linker defects leading to high hydroxide-ion conductivity. Chem Eur J 22:1646–1651

    CAS  PubMed  Google Scholar 

  140. Liu C, Feng S, Zhuang Z, Qi D, Li G, Zhao C, Li X, Na H (2015) Towards basic ionic liquid-based hybrid membranes as hydroxide-conducting electrolytes under low humidity conditions. Chem Commun 51:12629–12632

    CAS  Google Scholar 

  141. Liu C, Zhang G, Zhao C, Li X, Li M, Na H (2014) MOFs synthesized by the ionothermal method addressing the leaching problem of IL-polymer composite membranes. Chem Commun 50:14121–14124

    CAS  Google Scholar 

  142. Chen WX, Xu HR, Zhuang GL, Long LS, Huang RB, Zheng LS (2011) Temperature-dependent conductivity of Emim+ (Emim+ = 1-ethyl-3-methyl imidazolium) confined in channels of a metal–organic framework. Chem Commun 47:11933–11935

    CAS  Google Scholar 

  143. Li Z, Zhang Z, Ye Y, Cai K, Du F, Zeng H, Tao J, Lin Q, Zheng Y, Xiang S (2017) Rationally tuning host-guest interactions to free hydroxide ions within intertrimerically cuprophilic metal–organic frameworks for high OH conductivity. J Mater Chem A 5:7816–7824

    CAS  Google Scholar 

  144. Aubrey ML, Ameloot R, Wiers BM, Long JR (2014) Metal–organic frameworks as solid magnesium electrolytes. Energy Environ Sci 7:667–671

    CAS  Google Scholar 

  145. Erkartal M, Usta H, Citir M, Sen U (2016) Proton conducting poly(vinyl alcohol) (PVA)/poly(2-acrylamido-2-methylpropane sulfonic acid) (PAMPS)/zeolitic imidazolate framework (ZIF) ternary composite membrane. J Membr Sci 499:156–163

    CAS  Google Scholar 

  146. Zhang J, Bai HJ, Ren Q, Luo HB, Ren XM, Tian ZF, Lu S (2018) Extra water- and acid-stable MOF-801 with high proton conductivity and its composite membrane for proton-exchange membrane. ACS Appl Mater Interfaces 10:28656–28663

    CAS  PubMed  Google Scholar 

  147. Luo HB, Wang M, Liu SX, Xue C, Tian ZF, Zou Y, Ren XM (2017) Proton conductance of a superior water-stable metal–organic framework and its composite membrane with poly(vinylidene fluoride). Inorg Chem 56:4169–4175

    CAS  PubMed  Google Scholar 

  148. Nagarkar SS, Horike S, Itakura T, Le Ouay B, Demessence A, Tsujimoto M, Kitagawa S (2017) Enhanced and optically switchable proton conductivity in a melting coordination polymer crystal. Angew Chem Int Ed 56:4976–4981

    CAS  Google Scholar 

  149. Ogiwara N, Inukai M, Itakura T, Horike S, Kitagawa S (2016) Fast conduction of organic cations in metal sulfate frameworks. Chem Mater 28:3968–3975

    CAS  Google Scholar 

  150. Ye Y, Guo W, Wang L, Li Z, Song Z, Chen J, Zhang Z, Xiang S, Chen B (2017) Straightforward loading of imidazole molecules into metal–organic framework for high proton conduction. J Am Chem Soc 139:15604–15607

    CAS  PubMed  Google Scholar 

  151. Donnadio A, Narducci R, Casciola M, Marmottini F, D’Amato R, Jazestani M, Chiniforoshan H, Costantino F (2017) Mixed membrane matrices based on Nafion/UiO-66/SO3H-UiO-66 nano-MOFs: revealing the effect of crystal size, sulfonation, and filler loading on the mechanical and conductivity properties. ACS Appl Mater Interfaces 9:42239–42246

    CAS  PubMed  Google Scholar 

  152. Mileo PGM, Adil K, Davis L, Cadiau A, Belmabkhout Y, Aggarwal H, Maurin G, Eddaoudi M, Devautour-Vinot S (2018) Achieving superprotonic conduction with a 2D fluorinated metal–organic framework. J Am Chem Soc 140:13156–13160

    CAS  PubMed  Google Scholar 

  153. Umeyama D, Horike S, Inukai M, Kitagawa S (2013) Integration of intrinsic proton conduction and guest-accessible nanospace into a coordination polymer. J Am Chem Soc 135:11345–11350

    CAS  PubMed  Google Scholar 

  154. Liang X, Zhang F, Feng W, Zou X, Zhao C, Na H, Liu C, Sun F, Zhu G (2013) From metal–organic framework (MOF) to MOF-polymer composite membrane: enhancement of low-humidity proton conductivity. Chem Sci 4:983–992

    CAS  Google Scholar 

  155. Wang Z, Tan R, Wang H, Yang L, Hu J, Chen H, Pan F (2018) A metal–organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery. Adv Mater 30:1704436

    Google Scholar 

  156. Sun Z, Yu S, Zhao L, Wang J, Li Z, Li G (2018) A highly stable two-dimensional copper(II) organic framework for proton conduction and ammonia impedance sensing. Chem Eur J 24:10829–10839

    CAS  PubMed  Google Scholar 

  157. Niluroutu N, Pichaimuthu K, Sarmah S, Dhanasekaran P, Shukla A, Unni SM, Bhat SD (2018) A copper-trimesic acid metal–organic framework incorporated sulfonated poly(ether ether ketone) based polymer electrolyte membrane for direct methanol fuel cells. New J Chem 42:16758–16765

    CAS  Google Scholar 

  158. Sun H, Tang B, Wu P (2017) Two-dimensional zeolitic imidazolate framework/carbon nanotube hybrid networks modified proton exchange membranes for improving transport properties. ACS Appl Mater Interfaces 9:35075–35085

    CAS  PubMed  Google Scholar 

  159. Horike S, Chen W, Itakura T, Inukai M, Umeyama D, Asakura H, Kitagawa S (2014) Order-to-disorder structural transformation of a coordination polymer and its influence on proton conduction. Chem Commun 50:10241–10243

    CAS  Google Scholar 

  160. Wu H, Yang F, Lv X-L, Wang B, Zhang Y-Z, Zhao M-J, Li J-R (2017) A stable porphyrinic metal–organic framework pore-functionalized by high-density carboxylic groups for proton conduction. J Mater Chem A 5:14525–14529

    CAS  Google Scholar 

  161. Alberti G, Boccali L, Casciola M, Massinelli L, Montoneri E (1996) Protonic conductivity of layered zirconium phosphonates containing –SO3H groups. III. Preparation and characterization of γ-zirconium sulfoaryl phosphonates. Solid State Ionics 84:97–104

    CAS  Google Scholar 

  162. Alberti G, Casciola M (1997) Layered metalIV phosphonates, a large class of inorgano-organic proton conductors. Solid State Ionics 97:177–186

    CAS  Google Scholar 

  163. Benmansour S, Abherve A, Gomez-Claramunt P, Valles-Garcia C, Gomez-Garcia CJ (2017) Nanosheets of two-dimensional magnetic and conducting Fe(II)/Fe(III) mixed-valence metal–organic frameworks. ACS Appl Mater Interfaces 9:26210–26218

    CAS  PubMed  Google Scholar 

  164. Jiménez-García L, Kaltbeitzel A, Enkelmann V, Gutmann JS, Klapper M, Müllen K (2011) Organic proton-conducting molecules as solid-state separator materials for fuel cell applications. Adv Funct Mater 21:2216–2224

    Google Scholar 

  165. Shalini S, Aggarwal S, Singh SK, Dutt M, Ajithkumar TG, Vaidhyanathan R (2016) 10000-fold enhancement in proton conduction by doping of cesium ions in a proton-conducting zwitterionic metal–organic framework. Eur J Inorg Chem 27:4382–4386

  166. Tezuka T, Tadanaga K, Hayashi A, Tatsumisago M (2006) Inorganic-organic hybrid membranes with anhydrous proton conduction prepared from 3-aminopropyltriethoxysilane and sulfuric acid by the Sol-Gel method. J Am Chem Soc 128:16470–16471

    CAS  PubMed  Google Scholar 

  167. Alberti BG, Casciola M, Costantino U, Vivani R (1996) Layered and pillared metal(IV) phosphates and phosphonates. Adv Mater 8:291–303

    CAS  Google Scholar 

  168. Ogawa T, Ushiyama H, Lee J-M, Yamaguchi T, Yamashita K (2011) Theoretical studies on proton transfer among a high density of acid groups: surface of zirconium phosphate with adsorbed water molecules. J Phys Chem C 115:5599–5606

    CAS  Google Scholar 

  169. Bureekaew S, Horike S, Higuchi M, Mizuno M, Kawamura T, Tanaka D, Yanai N, Kitagawa S (2009) One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity. Nat Mater 8:831–836

    CAS  PubMed  Google Scholar 

  170. Sieradzki A, Pawlus S, Tripathy SN, Gagor A, Ptak M, Paluch M, Maczka M (2017) Dielectric relaxation and anhydrous proton conduction in [C2H5NH3][Na0.5Fe0.5(HCOO)3] metal–organic frameworks. Dalton Trans 46:3681–3687

    CAS  PubMed  Google Scholar 

  171. Inukai M, Horike S, Umeyama D, Hijikata Y, Kitagawa S (2012) Investigation of post-grafted groups of a porous coordination polymer and its proton conduction behavior. Dalton Trans 41:13261–13263

    CAS  PubMed  Google Scholar 

  172. Sadakiyo M, Kasai H, Kato K, Takata M, Yamauchi M (2014) Design and synthesis of hydroxide ion-conductive metal–organic frameworks based on salt inclusion. J Am Chem Soc 136:1702–1705

    CAS  PubMed  Google Scholar 

  173. Liu W, Yin X-B (2016) Metal–organic frameworks for electrochemical applications. Trend Anal Chem 75:86–96

    CAS  Google Scholar 

  174. Ke F-S, Wu Y-S, Deng H (2015) Metal–organic frameworks for lithium ion batteries and supercapacitors. J Solid State Chem 223:109–121

    CAS  Google Scholar 

  175. Fujie K, Otsubo K, Ikeda R, Yamada T, Kitagawa H (2015) Low temperature ionic conductor: ionic liquid incorporated within a metal–organic framework. Chem Sci 6:4306–4310

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Stavila V, Talin AA, Allendorf MD (2014) MOF-based electronic and opto-electronic devices. Chem Soc Rev 43:5994–6010

    CAS  PubMed  Google Scholar 

  177. Wang TC, Hod I, Audu CO, Vermeulen NA, Nguyen ST, Farha OK, Hupp JT (2017) Rendering high surface area, mesoporous metal–organic frameworks electronically conductive. ACS Appl Mater Interfaces 9:12584–12591

    CAS  PubMed  Google Scholar 

  178. Narayan TC, Miyakai T, Seki S, Dincă M (2012) High charge mobility in a tetrathiafulvalene-based microporous metal–organic framework. J Am Chem Soc 134:12932–12935

    CAS  PubMed  Google Scholar 

  179. Leong CF, Chan B, Faust TB, D’Alessandro DM (2014) Controlling charge separation in a novel donor–acceptor metal–organic framework via redox modulation. Chem Sci 5:4724–4728

    CAS  Google Scholar 

  180. Sun L, Hendon CH, Minier MA, Walsh A, Dincă M (2015) Million-fold electrical conductivity enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E = S, O). J Am Chem Soc 137:6164–6167

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Talin AA, Centrone A, Ford AC, Foster ME, Stavila V, Haney P, Kinney RA, Szalai V, Gabaly FE, Yoon HP, Léonard F, Allendorf MD (2014) Tunable electrical conductivity in metal–organic framework thin-film devices. Science 33:66–69

    Google Scholar 

  182. Wu G, Huang J, Zang Y, He J, Xu G (2017) Porous field-effect transistors based on a semiconductive metal–organic framework. J Am Chem Soc 139:1360–1363

    CAS  PubMed  Google Scholar 

  183. Sahadevan SA, Abherve A, Monni N, Saenz de Pipaon C, Galan-Mascaros JR, Waerenborgh JC, Vieira BJC, Auban-Senzier P, Pillet S, Bendeif EE, Alemany P, Canadell E, Mercuri ML, Avarvari N (2018) Conducting anilate-based mixed-valence Fe(II)Fe(III) coordination polymer: small-polaron hopping model for oxalate-type Fe(II)Fe(III) 2D networks. J Am Chem Soc 140:12611–12621

    CAS  PubMed  Google Scholar 

  184. Rubio-Gimenez V, Galbiati M, Castells-Gil J, Almora-Barrios N, Navarro-Sanchez J, Escorcia-Ariza G, Mattera M, Arnold T, Rawle J, Tatay S, Coronado E, Marti-Gastaldo C (2018) Bottom-up fabrication of semiconductive metal–organic framework ultrathin films. Adv Mater 30:1704291

    Google Scholar 

  185. Hmadeh M, Lu Z, Liu Z, Gándara F, Furukawa H, Wan S, Augustyn V, Chang R, Liao L, Zhou F, Perre E, Ozolins V, Suenaga K, Duan X, Dunn B, Yamamto Y, Terasaki O, Yaghi OM (2012) New porous crystals of extended metal-catecholates. Chem Mater 24:3511–3513

    CAS  Google Scholar 

  186. Yao M-S, Lv X-J, Fu Z-H, Li W-H, Deng W-H, Wu G-D, Xu G (2017) Layer-by-layer assembled conductive metal–organic framework nanofilms for room-temperature chemiresistive sensing. Angew Chem Int Ed 56:16510–16514

    CAS  Google Scholar 

  187. Ogihara N, Ohba N, Kishida Y (2017) On/off switchable electronic conduction in intercalated metal–organic frameworks. Sci Adv 3:e1603103

    PubMed  PubMed Central  Google Scholar 

  188. Clough AJ, Skelton JM, Downes CA, de la Rosa AA, Yoo JW, Walsh A, Melot BC, Marinescu SC (2017) Metallic conductivity in a two-dimensional cobalt dithiolene metal–organic framework. J Am Chem Soc 139:10863–10867

    CAS  PubMed  Google Scholar 

  189. Huang X, Li H, Tu Z, Liu L, Wu X, Chen J, Liang Y, Zou Y, Yi Y, Sun J, Xu W, Zhu D (2018) Highly conducting neutral coordination polymer with infinite two-dimensional silver-sulfur networks. J Am Chem Soc 140:15153–15156

    CAS  PubMed  Google Scholar 

  190. Huang J, He Y, Yao M-S, He J, Xu G, Zeller M, Xu Z (2017) A semiconducting gyroidal metal-sulfur framework for chemiresistive sensing. J Mater Chem A 5:16139–16143

    CAS  Google Scholar 

  191. Dong R, Zhang Z, Tranca DC, Zhou S, Wang M, Adler P, Liao Z, Liu F, Sun Y, Shi W, Zhang Z, Zschech E, Mannsfeld SCB, Felser C, Feng X (2018) A coronene-based semiconducting two-dimensional metal–organic framework with ferromagnetic behavior. Nat Commun 9:2637

    PubMed  PubMed Central  Google Scholar 

  192. Dong R, Han P, Arora H, Ballabio M, Karakus M, Zhang Z, Shekhar C, Adler P, Petkov PS, Erbe A, Mannsfeld SCB, Felser C, Heine T, Bonn M, Feng X, Canovas E (2018) High-mobility band-like charge transport in a semiconducting two-dimensional metal–organic framework. Nat Mater 17:1027–1032

    CAS  PubMed  Google Scholar 

  193. He J, Cao P, Wu C, Huang J, Huang J, He Y, Yu L, Zeller M, Hunter AD, Xu Z (2015) Highly polarizable triiodide anions (I3) as cross-linkers for coordination polymers: closing the semiconductive band gap. Inorg Chem 54:6087–6089

    CAS  PubMed  Google Scholar 

  194. Campbell MG, Sheberla D, Liu SF, Swager TM, Dincă M (2015) Cu3(hexaiminotriphenylene)2: an electrically conductive 2D metal–organic framework for chemiresistive sensing. Angew Chem Int Ed 54:4349–4352

    CAS  Google Scholar 

  195. Xie LS, Sun L, Wan R, Park SS, DeGayner JA, Hendon CH, Dincă M (2018) Tunable mixed-valence doping toward record electrical conductivity in a three-dimensional metal–organic framework. J Am Chem Soc 140:7411–7414

    CAS  PubMed  Google Scholar 

  196. Kim J, Koo JY, Lee YH, Kojima T, Yakiyama Y, Ohtsu H, Oh JH, Kawano M (2017) Structural investigation of chemiresistive sensing mechanism in redox-active porous coordination network. Inorg Chem 56:8735–8738

    CAS  PubMed  Google Scholar 

  197. Darago LE, Aubrey ML, Yu CJ, Gonzalez MI, Long JR (2015) Electronic conductivity, ferrimagnetic ordering, and reductive insertion mediated by organic mixed-valence in a ferric semiquinoid metal–organic framework. J Am Chem Soc 137:15703–15711

    CAS  PubMed  Google Scholar 

  198. Kuang X, Chen S, Meng L, Chen J, Wu X, Zhang G, Zhong G, Hu T, Li Y, Lu CZ (2019) Supramolecular aggregation of a redox-active copper-naphthalenediimide network with intrinsic electron conduction. Chem Commun 55:1643–1646

    CAS  Google Scholar 

  199. Schneider C, Ukaj D, Koerver R, Talin AA, Kieslich G, Pujari SP, Zuilhof H, Janek J, Allendorf MD, Fischer RA (2018) High electrical conductivity and high porosity in a guest@MOF material: evidence of TCNQ ordering within Cu3BTC2 micropores. Chem Sci 9:7405–7412

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Guo Z, Panda DK, Maity K, Lindsey D, Parker TG, Albrecht-Schmitt TE, Barreda-Esparza JL, Xiong P, Zhou W, Saha S (2016) Modulating the electrical conductivity of metal–organic framework films with intercalated guest π-systems. J Mater Chem C 4:894–899

    CAS  Google Scholar 

  201. Lee DY, Kim EK, Shrestha NK, Boukhvalov DW, Lee JK, Han SH (2015) Charge transfer-induced molecular hole doping into thin film of metal–organic frameworks. ACS Appl Mater Interfaces 7:18501–18507

    CAS  PubMed  Google Scholar 

  202. Han S, Warren SC, Yoon SM, Malliakas CD, Hou X, Wei Y, Kanatzidis MG, Grzybowski BA (2015) Tunneling electrical connection to the interior of metal–organic frameworks. J Am Chem Soc 137:8169–8175

    CAS  PubMed  Google Scholar 

  203. Kung CW, Otake K, Buru CT, Goswami S, Cui Y, Hupp JT, Spokoyny AM, Farha OK (2018) Increased electrical conductivity in a mesoporous metal–organic framework featuring metallacarboranes guests. J Am Chem Soc 140:3871–3875

    CAS  PubMed  Google Scholar 

  204. Dhara B, Nagarkar SS, Kumar J, Kumar V, Jha PK, Ghosh SK, Nair S, Ballav N (2016) Increase in electrical conductivity of MOF to billion-fold upon filling the nanochannels with conducting polymer. J Phys Chem Lett 7:2945–2950

    CAS  PubMed  Google Scholar 

  205. Le Ouay B, Boudot M, Kitao T, Yanagida T, Kitagawa S, Uemura T (2016) Nanostructuration of PEDOT in porous coordination polymers for tunable porosity and conductivity. J Am Chem Soc 138:10088–10091

    PubMed  Google Scholar 

  206. Alfè M, Gargiulo V, Lisi L, Di Capua R (2014) Synthesis and characterization of conductive copper-based metal–organic framework/graphene-like composites. Mater Chem Phys 147:744–750

    Google Scholar 

  207. Hassan MH, Haikal RR, Hashem T, Rinck J, Koeniger F, Thissen P, Stefan H, Woll C, Alkordi MH (2019) Electrically conductive, monolithic metal–organic framework-graphene (MOF@G) composite coatings. ACS Appl Mater Interfaces 11:6442–6447

    CAS  PubMed  Google Scholar 

  208. Kim D, Kim DW, Hong WG, Coskun A (2016) Graphene/ZIF-8 composites with tunable hierarchical porosity and electrical conductivity. J Mater Chem A 4:7710–7717

    CAS  Google Scholar 

  209. Goswami S, Ray D, Otake KI, Kung CW, Garibay SJ, Islamoglu T, Atilgan A, Cui Y, Cramer CJ, Farha OK, Hupp JT (2018) A porous, electrically conductive hexa-zirconium(IV) metal–organic framework. Chem Sci 9:4477–4482

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Kambe T, Sakamoto R, Kusamoto T, Pal T, Fukui N, Hoshiko K, Shimojima T, Wang ZF, Hirahara T, Ishizaka K, Hasegawa S, Liu F, Nishihara H (2014) Redox control and high conductivity of nickel bis(dithiolene) complex π-nanosheet: a potential organic two-dimensional topological insulator. J Am Chem Soc 136:14357–14360

    CAS  PubMed  Google Scholar 

  211. Huang X, Sheng P, Tu ZY, Zhang FJ, Wang JH, Geng H, Zou Y, Di CA, Yi YP, Sun YM, Xu W, Zhu DB (2015) A two-dimensional π-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nat Commun 6:7408

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Sun L, Park SS, Sheberla D, Dincă M (2016) Measuring and reporting electrical conductivity in metal–organic frameworks: Cd2(TTFTB) as a case study. J Am Chem Soc 138:14772–14782

    CAS  PubMed  Google Scholar 

  213. Cho K, Han SH, Suh MP (2016) Copper-organic framework fabricated with CuS nanoparticles: synthesis, electrical conductivity, and electrocatalytic activities for oxygen reduction reaction. Angew Chem Int Ed 55:15301–15305

    CAS  Google Scholar 

  214. Takaishi S, Hosoda M, Kajiwara T, Miyasaka H, Yamashita M, Nakanishi Y, Kitagawa Y, Yamaguchi K, Kobayashi A, Kitagawa H (2009) Electroconductive porous coordination polymer Cu[Cu(pdt)2] composed of donor and acceptor building units. Inorg Chem 48:9048–9050

    CAS  PubMed  Google Scholar 

  215. Park J, Lee M, Feng D, Huang Z, Hinckley AC, Yakovenko A, Zou X, Cui Y, Bao Z (2018) Stabilization of hexaaminobenzene in a 2D conductive metal–organic framework for high power sodium storage. J Am Chem Soc 140:10315–10323

    CAS  PubMed  Google Scholar 

  216. Feng D, Lei T, Lukatskaya MR, Park J, Huang Z, Lee M, Shaw L, Chen S, Yakovenko AA, Kulkarni A, Xiao J, Fredrickson K, Tok JB, Zou X, Cui Y, Bao Z (2018) Robust and conductive two-dimensional metal–organic frameworks with exceptionally high volumetric and areal capacitance. Nat Energy 3:30–36

    CAS  Google Scholar 

  217. Hendon CH, Tiana D, Walsh A (2012) Conductive metal–organic frameworks and networks: fact or fantasy? Phys Chem Chem Phys 14:13120–13132

    CAS  PubMed  Google Scholar 

  218. Komatsu T, Taylor JM, Kitagawa H (2016) Design of a conducting metal–organic framework: orbital-level matching in MIL-140A derivatives. Inorg Chem 55:546–548

    CAS  PubMed  Google Scholar 

  219. Farha OK, Shultz AM, Sarjeant AA, Nguyen ST, Hupp JT (2011) Active-site-accessible, porphyrinic metal–organic framework materials. J Am Chem Soc 133:5652–5655

    CAS  PubMed  Google Scholar 

  220. Fateeva A, Chater PA, Ireland CP, Tahir AA, Khimyak YZ, Wiper PV, Darwent JR, Rosseinsky MJ (2012) A water-stable porphyrin-based metal–organic framework active for visible-light photocatalysis. Angew Chem Int Ed 51:7440–7444

    CAS  Google Scholar 

  221. Chen Y, Hoang T, Ma S (2012) Biomimetic catalysis of a porous iron-based metal–metalloporphyrin framework. Inorg Chem 51:12600–12602

    CAS  PubMed  Google Scholar 

  222. Son HJ, Jin S, Patwardhan S, Wezenberg SJ, Jeong NC, So M, Wilmer CE, Sarjeant AA, Schatz GC, Snurr RQ, Farha OK, Wiederrecht GP, Hupp JT (2013) Light-harvesting and ultrafast energy migration in porphyrin-based metal–organic frameworks. J Am Chem Soc 135:862–869

    CAS  PubMed  Google Scholar 

  223. Betard A, Fischer RA (2012) Metal–organic framework thin films: from fundamentals to applications. Chem Rev 112:1055–1083

    CAS  PubMed  Google Scholar 

  224. Ahrenholtz SR, Epley CC, Morris AJ (2014) Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hopping charge-transfer mechanism. J Am Chem Soc 136:2464–2472

    CAS  PubMed  Google Scholar 

  225. Meng Z, Aykanat A, Mirica KA (2019) Welding metallophthalocyanines into bimetallic molecular meshes for ultrasensitive, low-power chemiresistive detection of gases. J Am Chem Soc 141:2046–2053

    CAS  PubMed  Google Scholar 

  226. Jia H, Yao Y, Zhao J, Gao Y, Luo Z, Du P (2018) A novel two-dimensional nickel phthalocyanine-based metal–organic framework for highly efficient water oxidation catalysis. J Mater Chem A 6:1188–1195

    CAS  Google Scholar 

  227. Dou J-H, Sun L, Ge Y, Li W, Hendon CH, Li J, Gul S, Yano J, Stach EA, Dincă M (2017) Signature of metallic behavior in the metal–organic frameworks M3(hexaiminobenzene)2 (M = Ni, Cu). J Am Chem Soc 139:13608–13611

    CAS  PubMed  Google Scholar 

  228. Sheberla D, Bachman JC, Elias JS, Sun CJ, Shao-Horn Y, Dincă M (2017) Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater 16:220–224

    CAS  PubMed  Google Scholar 

  229. Kung C-W, Wang TC, Mondloch JE, Fairen-Jimenez D, Gardner DM, Bury W, Klingsporn JM, Barnes JC, Van Duyne R, Stoddart JF, Wasielewski MR, Farha OK, Hupp JT (2013) Metal-organic framework thin films composed of free-standing acicular nanorods exhibiting reversible electrochromism. Chem Mater 25:5012–5017

    CAS  Google Scholar 

  230. Horwitz NE, Xie J, Filatov AS, Papoular RJ, Shepard WE, Zee DZ, Grahn MP, Gilder C, Anderson JS (2019) Redox-active 1D coordination polymers of iron-sulfur clusters. J Am Chem Soc 141:3940–3951

    CAS  PubMed  Google Scholar 

  231. He Y, Hu J-Y, Wong Y-L, Diao Y, Xian W-R, He J, Zeller M, Xu Z (2018) Beadwork and network: strings of silver ions stitch large-π pyrazolate patches into a two-dimensional sheet. Cryst Growth Des 18:3713–3718

    CAS  Google Scholar 

  232. Holliday BJ, Swager TM (2005) Conducting metallopolymers: the roles of molecular architecture and redox matching. Chem Commun: 2005:23–36. https://doi.org/10.1039/B408479A

  233. Sun L, Hendon CH, Park SS, Tulchinsky Y, Wan R, Wang F, Walsh A, Dincă M (2017) Is iron unique in promoting electrical conductivity in MOFs? Chem Sci 8:4450–4457

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Leong CF, Usov PM, D’Alessandro DM (2016) Intrinsically conducting metal-organic frameworks. MRS Bull 41:858–864

    Google Scholar 

  235. Shinde SS, Lee CH, Jung J-Y, Wagh NK, Kim S-H, Kim D-H, Lin C, Lee SU, Lee J-H (2019) Unveiling dual-linkage 3D hexaiminobenzene metal-organic frameworks towards long-lasting advanced reversible Zn-air batteries. Energy Environ Sci 12:727–738

    CAS  Google Scholar 

  236. Usman M, Mendiratta S, Batjargal S, Haider G, Hayashi M, Rao Gade N, Chen JW, Chen YF, Lu KL (2015) Semiconductor behavior of a three-dimensional strontium-based metal-organic framework. ACS Appl Mater Interfaces 7:22767–22774

    CAS  PubMed  Google Scholar 

  237. Cai S-L, Zhang Y-B, Pun AB, He B, Yang J, Toma FM, Sharp ID, Yaghi OM, Fan J, Zheng S-R, Zhang W-G, Liu Y (2014) Tunable electrical conductivity in oriented thin films of tetrathiafulvalene-based covalent organic framework. Chem Sci 5:4693–4700

    CAS  Google Scholar 

  238. Sengupta A, Datta S, Su C, Herng TS, Ding J, Vittal JJ, Loh KP (2016) Tunable electrical conductivity and magnetic property of the two dimensional metal organic framework [Cu(TPyP)Cu2(O2CCH3)4]. ACS Appl Mater Interfaces 8:16154–16159

    CAS  PubMed  Google Scholar 

  239. Sun L, Hendon CH, Dincă M (2018) Coordination-induced reversible electrical conductivity variation in the MOF-74 analogue Fe2(DSBDC). Dalton Trans 47:11739–11743

    CAS  PubMed  Google Scholar 

  240. Meilikhov M, Yusenko K, Fischer RA (2009) Turning MIL-53(Al) redox-active by functionalization of the bridging OH-group with 1,1′-ferrocenediyl-dimethylsilane. J Am Chem Soc 131:9644–9645

    CAS  PubMed  Google Scholar 

  241. Halls JE, Hernan-Gomez A, Burrows AD, Marken F (2012) Metal-organic frameworks post-synthetically modified with ferrocenyl groups: framework effects on redox processes and surface conduction. Dalton Trans 41:1475–1480

    CAS  PubMed  Google Scholar 

  242. Ma H, Li X, Yan T, Li Y, Zhang Y, Wu D, Wei Q, Du B (2016) Electrochemiluminescent immunosensing of prostate-specific antigen based on silver nanoparticles-doped Pb(II) metal-organic framework. Biosens Bioelectron 79:379–385

    CAS  PubMed  Google Scholar 

  243. Kung CW, Platero-Prats AE, Drout RJ, Kang J, Wang TC, Audu CO, Hersam MC, Chapman KW, Farha OK, Hupp JT (2018) Inorganic “conductive glass” approach to rendering mesoporous metal–organic frameworks electronically conductive and chemically responsive. ACS Appl Mater Interfaces 10:30532–30540

    CAS  PubMed  Google Scholar 

  244. Mohmeyer A, Schaate A, Hoppe B, Schulze HA, Heinemeyer T, Behrens P (2019) Direct grafting-from of PEDOT from a photoreactive Zr-based MOF—a novel route to electrically conductive composite materials. Chem Commun 55:3367–3370

    CAS  Google Scholar 

  245. Sakamoto R, Hoshiko K, Liu Q, Yagi T, Nagayama T, Kusaka S, Tsuchiya M, Kitagawa Y, Wong WY, Nishihara H (2015) A photofunctional bottom-up bis(dipyrrinato)zinc(II) complex nanosheet. Nat Commun 6:6713

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Sakamoto R, Yagi T, Hoshiko K, Kusaka S, Matsuoka R, Maeda H, Liu Z, Liu Q, Wong WY, Nishihara H (2017) Photofunctionality in porphyrin-hybridized bis(dipyrrinato)zinc(II) complex micro- and nanosheets. Angew Chem Int Ed 56:3526–3530

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21901046, 21871061, 21701029), Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01Z032), Science and Technology Planning Project of Guangdong Province (2017A050506051), Science and Technology Program of Guangzhou (201807010026), and Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter. In addition, we thank Dr. Lai-Hon Chung for his help in reviewing and revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Ming Liao or Jun He.

Ethics declarations

Conflict of interest

The authors declare that there are no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Hu, JY., Luo, J. et al. Conductive Metal–Organic Frameworks: Mechanisms, Design Strategies and Recent Advances. Top Curr Chem (Z) 378, 27 (2020). https://doi.org/10.1007/s41061-020-0289-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-020-0289-5

Keywords

Navigation