Skip to main content
Log in

Recent Progress in the Selective Functionalization of P(O)–OH Bonds

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

As we all know, organic phosphorus compounds have high application values in chemical industries. Compared with traditional compounds with P–X (X = Cl, Br, I) and P–H bonds, phosphorylation reagents containing P(O)–OH bonds are stable, environmentally friendly, and inexpensive. However, in recent years, there have been few studies on the selective functionalization of P(O)–OH bonds for the fabrication of P–C and P–Z bonds. In general, four-coordinated P(O)–OH compounds have reached coordination saturation due to the phosphorus atom center, but cannot evolve the phosphorus coordination center through intra-molecular tautomerization; however, the weak coordination effects between the P=O bond and transition metals can be utilized to activate P(O)–OH bonds. This review highlights the most important recent contributions toward the selective functionalization of P(O)–OH bonds via cyclization/cross coupling/esterification reactions using transition metals or small organic molecules as the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Scheme 58

Similar content being viewed by others

References

  1. Yang J, Chen T, Han LB (2015) J Am Chem Soc 137:1782–1785

    Article  CAS  PubMed  Google Scholar 

  2. Liu T, Li Y, Cheng F, Shen X, Liu J, Lin J (2019) Green Chem 21:3536–3541

    Article  CAS  Google Scholar 

  3. Imamoto T, Saitoh Y, Koide A, Ogura T, Yoshida K (2007) Angew Chem Int Ed 46:8636–8639

    Article  CAS  Google Scholar 

  4. Li KJ, Jiang YY, Xu K, Zeng CC, Sun BG (2019) Green Chem 21:4412–4421

    Article  CAS  Google Scholar 

  5. Lu Y, Nakatsuji H, Okumura Y, Yao L, Ishihara K (2018) J Am Chem Soc 140:6039–6043

    Article  CAS  PubMed  Google Scholar 

  6. Nie SZ, Davison R, Dong V (2018) J Am Chem Soc 140:16450–16454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Unoh Y, Hirano K, Miura M (2017) J Am Chem Soc 139:6106–6109

    Article  CAS  PubMed  Google Scholar 

  8. Song S, Zhang Y, Yeerlan A, Zhu B, Liu J, Jiao N (2017) Angew Chem Int Ed 56:2487–2491

    Article  CAS  Google Scholar 

  9. Guo H, Yoshimura A, Chen T, Saga Y, Han LB (2017) Green Chem 19:1502–1506

    Article  CAS  Google Scholar 

  10. Quint V, Morlet-Savary F, Lohier JF, Lalevée J, Gaumont AC, Lakhdar S (2016) J Am Chem Soc 138:7436–7441

    Article  CAS  PubMed  Google Scholar 

  11. Gupta S, Baranwal S, Chaudharya P, Kandasamy J (2019) Org Chem Front 6:2260–2265

    Article  CAS  Google Scholar 

  12. Chen T, Zhao CQ, Han LB (2018) J Am Chem Soc 140:3139–3155

    Article  CAS  PubMed  Google Scholar 

  13. Wang Y, Qian P, Su JH, Li Y, Bi M, Zha Z, Wang Z (2017) Green Chem 19:4769–4773

    Article  CAS  Google Scholar 

  14. Chen XY, Pu M, Cheng HG, Sperger T, Schoenebeck F (2019) Angew Chem Int Ed 58:11395–11399

    Article  CAS  Google Scholar 

  15. Zhu Y, Chen T, Li S, Shimada S, Han LB (2016) J Am Chem Soc 138:5825–5828

    Article  CAS  PubMed  Google Scholar 

  16. Peng AY, Ding YX (2003) J Am Chem Soc 125:15006–15007

    Article  CAS  PubMed  Google Scholar 

  17. Peng AY, Ding YX (2005) Org Lett 7:3299–3301

    Article  CAS  PubMed  Google Scholar 

  18. Sakakura A, Katsukawa M, Ishihara K (2007) Angew Chem Int Ed 46:1423–1426

    Article  CAS  Google Scholar 

  19. Sakakura A, Sakuma M, Katsukawa M, Ishihara K (2008) Heterocycles 76:657–665

    Article  CAS  Google Scholar 

  20. Coudray L, Bravo-Altamirano K, Montchamp JL (2008) Org Lett 10:1123–1126

    Article  CAS  PubMed  Google Scholar 

  21. Kanada J, Tanaka M (2011) Adv Synth Catal 353:890–896

    Article  CAS  Google Scholar 

  22. Xu Q, Shen R, Ono Y, Nagahata R, Shimada S, Goto M, Han LB (2011) Chem Commun 47:2333–2335

    Article  CAS  Google Scholar 

  23. Park Y, Seo J, Park S, Yoo EJ, Lee PH (2013) Chem Eur J 19:16461–16468

    Article  CAS  PubMed  Google Scholar 

  24. Park Y, Jeon I, Shin S, Min J, Lee PH (2013) J Org Chem 78:10209–10220

    Article  CAS  PubMed  Google Scholar 

  25. Ryu T, Kim J, Park Y, Kim S, Lee PH (2013) Org Lett 15:3986–3989

    Article  CAS  PubMed  Google Scholar 

  26. Unoh Y, Hashimoto Y, Takeda D, Hirano K, Satoh T, Miura M (2013) Org Lett 15:3258–3261

    Article  CAS  PubMed  Google Scholar 

  27. Eom D, Jeong Y, Kim YR, Lee E, Choi W, Lee PH (2013) Org Lett 15:5210–5213

    Article  CAS  PubMed  Google Scholar 

  28. Shin S, Jeong Y, Jeon WH, Lee PH (2014) Org Lett 16:2930–2933

    Article  CAS  PubMed  Google Scholar 

  29. Xiong B, Feng X, Zhu L, Chen T, Zhou Y, Au CT, Yin SF (2015) ACS Catal 5:537–543

    Article  CAS  Google Scholar 

  30. Xiong B, Zeng K, Zhang S, Zhou Y, Au CT, Yin SF (2015) Tetrahedron 71:9293–9298

    Article  CAS  Google Scholar 

  31. Xiong B, Cheng Q, Hu C, Zhang P, Liu Y, Tang K (2017) Chemistryselect 2:6891–6894

    Article  CAS  Google Scholar 

  32. Qiao MM, Liu YY, Yao S, Ma TC, Tang ZL, Shi DQ, Xiao WJ (2019) J Org Chem 84:6798–6806

    Article  CAS  PubMed  Google Scholar 

  33. Trost BM, Spohr SM, Rolka AB, Kalnmals CA (2019) J Am Chem Soc 141:14098–14103

    Article  CAS  PubMed  Google Scholar 

  34. Wang G, Xiong B, Zhou C, Liu Y, Xu W, Yang CA, Tang KW, Wong WY (2019) Chem Asian J 14:4365–4374

    Article  CAS  PubMed  Google Scholar 

  35. Sakakura A, Katsukawa M, Ishihara K (2005) Org Lett 7:1999–2002

    Article  CAS  PubMed  Google Scholar 

  36. Yoshino T, Imori S, Togo H (2006) Tetrahedron 62:1309–1317

    Article  CAS  Google Scholar 

  37. Sakakura A, Katsukawa M, Hayashi T, Ishihara K (2007) Green Chem 9:1166–1169

    Article  CAS  Google Scholar 

  38. Wärme R, Juhlin L (2010) Phosphorus Sulfur Silicon 185:2402–2408

    Article  Google Scholar 

  39. Kasemsuknimit A, Satyender A, Chavasiri W, Jang DO (2011) Bull Korean Chem Soc 32:3486–3488

    Article  CAS  Google Scholar 

  40. Pu Y, Gao L, Liu H, Yan J (2012) Synthesis 44:99–103

    Article  CAS  Google Scholar 

  41. Keglevich G, Kiss NZ, Mucsi Z, Körtvélyesi T (2012) Org Biomol Chem 10:2011–2018

    Article  CAS  PubMed  Google Scholar 

  42. Keglevich G, Kiss NZ, Drahos L, Körtvélyesi T (2013) Tetrahedron Lett 54:466–469

    Article  CAS  Google Scholar 

  43. Jablonkai E, Milen M, Drahos L, Keglevich G (2013) Tetrahedron Lett 54:5873–5875

    Article  CAS  Google Scholar 

  44. Jablonkai E, Henyecz R, Milen M, Koti J, Keglevich G (2014) Tetrahedron 70:8280–8285

    Article  CAS  Google Scholar 

  45. Xiong B, Ye Q, Feng X, Zhu L, Chen T, Zhou Y, Au CT, Yin SF (2014) Tetrahedron 70:9057–9063

    Article  CAS  Google Scholar 

  46. Qi N, Zhang N, Allu SR, Gao J, Guo J, He Y (2016) Org Lett 18:6204–6207

    Article  CAS  PubMed  Google Scholar 

  47. Zeng K, Chen L, Xiong B, Zhou Y, Au CT, Yin SF (2016) Tetrahedron Lett 57:2222–2226

    Article  CAS  Google Scholar 

  48. Xiong B, Wang G, Zhou C, Liu Y, Li J, Zhang P, Tang K (2018) Phosphorus Sulfur Silicon 193:239–244

    Article  CAS  Google Scholar 

  49. Xiong B, Hu C, Li H, Zhou C, Zhang P, Liu Y, Tang K (2017) Tetrahedron Lett 58:2482–2486

    Article  CAS  Google Scholar 

  50. Xiong B, Wang G, Zhou C, Liu Y, Zhang P, Tang K (2018) J Org Chem 83:993–999

    Article  CAS  PubMed  Google Scholar 

  51. Li H, Lei J, Liu Y, Chen Y, Au CT, Yin SF (2019) Org Biomol Chem 17:302–308

    Article  CAS  PubMed  Google Scholar 

  52. Xiong B, Xu S, Zhu Y, Yao L, Zhou C, Liu Y, Tang KW, Wong WY (2020) Chem Eur J 26:9556–9560

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (21606080), Natural Science Foundation of Hunan Province (2019JJ50203), Scientific Research Fund of Hunan Provincial Education Department (19A197), Innovation research group project of Natural Science Foundation of Hunan Province (no. 2020JJ1004) and Hunan Provincial Innovation Foundation for Postgraduate (CX20201132). W.-Y.W. thanks the Hong Kong Polytechnic University (1-ZE1C) and the Endowed Professorship in Energy from Ms Clarea Au (847S) for the financial support. P.-C. Q. thanks the Foundation of Wenzhou Science & Technology Bureau (no. W20170003) and the National Natural Science Foundation of China (no. 21828102) for support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Biquan Xiong, Ke-Wen Tang, Peng-Cheng Qian or Wai-Yeung Wong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, B., Xu, S., Liu, Y. et al. Recent Progress in the Selective Functionalization of P(O)–OH Bonds. Top Curr Chem (Z) 379, 5 (2021). https://doi.org/10.1007/s41061-020-00319-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-020-00319-1

Keywords

Navigation