Skip to main content

Advertisement

Log in

Methods for Intracellular Delivery of Quantum Dots

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Quantum dots (QDs) have attracted considerable attention as fluorescent probes for life sciences. The advantages of using QDs in fluorescence-based studies include high brilliance, a narrow emission band allowing multicolor labeling, a chemically active surface for conjugation, and especially, high photostability. Despite these advantageous features, the size of the QDs prevents their free transport across the plasma membrane, limiting their use for specific labeling of intracellular structures. Over the years, various methods have been evaluated to overcome this issue to explore the full potential of the QDs. Thus, in this review, we focused our attention on physical and biochemical QD delivery methods—electroporation, microinjection, cell-penetrating peptides, molecular coatings, and liposomes—discussing the benefits and drawbacks of each strategy, as well as presenting recent studies in the field. We hope that this review can be a useful reference source for researches that already work or intend to work in this area.

Graphic Abstract

Strategies for the intracellular delivery of quantum dots discussed in this review (electroporation, microinjection, cell-penetrating peptides, molecular coatings, and liposomes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

© 2010, Springer Nature

Fig. 2

© 2014, ACS Publications

Fig. 3

© 2018, ACS Publications

Fig. 4

© 2017, Royal Society of Chemistry

Fig. 5

© 2018, ACS Publications

Fig. 6

© 2019, Wiley

Fig. 7

© 2016, The Royal Society of Chemistry

Fig. 8

© 2017, Elsevier

Similar content being viewed by others

References

  1. Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16:63–72. https://doi.org/10.1016/j.copbio.2004.11.003

    Article  CAS  PubMed  Google Scholar 

  2. Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76. https://doi.org/10.1146/annurev.bioeng.7.060804.100432

    Article  CAS  PubMed  Google Scholar 

  3. Pereira MGC, Leite ES, Pereira GAL, Fontes A, Santos BS (2016) Chapter 4—quantum dots. In: Sanchez-Dominguez M, Rodriguez-Abreu C (eds) Nanocolloids—a meeting point for scientists and technologists. Elsevier, Amsterdam, pp 131–158. https://doi.org/10.1016/B978-0-12-801578-0.00004-7

    Chapter  Google Scholar 

  4. Cunha CRA, Oliveira ADPR, Firmino TVC, Tenório DPLA, Pereira G, Carvalho LB, Santos BS, Correia MTS, Fontes A (2018) Biomedical applications of glyconanoparticles based on quantum dots. Biochim Biophys Acta Gen Subj 1862:427–439. https://doi.org/10.1016/j.bbagen.2017.11.010

    Article  CAS  PubMed  Google Scholar 

  5. Cabral Filho PE, Cardoso ALC, Pereira MIA, Ramos APM, Hallwass F, Castro MMCA, Geraldes CFGC, Santos BS, Pedroso de Lima MC, Pereira GAL, Fontes A (2016) CdTe quantum dots as fluorescent probes to study transferrin receptors in glioblastoma cells. Biochim. Biophys. Acta Gen. Subj. 1860:28–35. https://doi.org/10.1016/j.bbagen.2015.09.021

    Article  CAS  Google Scholar 

  6. He D, Wang D, Shi X, Quan W, Xiong R, Yu C-Y, Huang H (2017) Simultaneous fluorescence analysis of the different carbohydrates expressed on living cell surfaces using functionalized quantum dots. RSC Adv 7:12374–12381. https://doi.org/10.1039/C6RA27612A

    Article  CAS  Google Scholar 

  7. Breger J, Delehanty JB, Medintz IL (2015) Continuing progress toward controlled intracellular delivery of semiconductor quantum dots. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:131–151. https://doi.org/10.1002/wnan.1281

    Article  CAS  PubMed  Google Scholar 

  8. Dudu V, Rotari V, Vazquez M (2012) Sendai virus-based liposomes enable targeted cytosolic delivery of nanoparticles in brain tumor-derived cells. J Nanobiotechnol 10:9. https://doi.org/10.1186/1477-3155-10-9

    Article  CAS  Google Scholar 

  9. Oh N, Park J-H (2014) Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomed 9:51–63. https://doi.org/10.2147/IJN.S26592

    Article  CAS  Google Scholar 

  10. Delehanty JB, Mattoussi H, Medintz IL (2009) Delivering quantum dots into cells: strategies, progress and remaining issues. Anal Bioanal Chem 393:1091–1105. https://doi.org/10.1007/s00216-008-2410-4

    Article  CAS  PubMed  Google Scholar 

  11. Derfus AM, Chan WCW, Bhatia SN (2004a) Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv Mater 16:961–966. https://doi.org/10.1002/adma.200306111

    Article  CAS  Google Scholar 

  12. Xiao Y, Forry SP, Gao X, Holbrook RD, Telford WG, Tona A (2010) Dynamics and mechanisms of quantum dot nanoparticle cellular uptake. J Nanobiotechnol 8:1–9. https://doi.org/10.1186/1477-3155-8-13

    Article  CAS  Google Scholar 

  13. Damalakiene L, Karabanovas V, Bagdonas S, Valius M, Rotomskis R (2013) Intracellular distribution of nontargeted quantum dots after natural uptake and microinjection. Int J Nanomed 8:555–568. https://doi.org/10.2147/IJN.S39658

    Article  CAS  Google Scholar 

  14. Huotari J, Helenius A (2011) Endosome maturation. EMBO J 30:3481–3500. https://doi.org/10.1038/emboj.2011.286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pollard TD, Earnshaw WC, Lippincott-Schwartz J, Johnson GT (2017) Chapter 22—endocytosis and the endosomal membrane system. Cell biology. Elsevier, New York, pp 377–392

    Google Scholar 

  16. Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44. https://doi.org/10.1038/nature01451

    Article  CAS  PubMed  Google Scholar 

  17. Sahay G, Alakhova DY, Kabanov AV (2010) Endocytosis of nanomedicines. J Control Release 145:182–195. https://doi.org/10.1016/j.jconrel.2010.01.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902. https://doi.org/10.1146/annurev.biochem.78.081307.110540

    Article  CAS  PubMed  Google Scholar 

  19. Gladkovskaya O, Gun’ko YK, O’Connor GM, Gogvadze V, Rochev Y (2016) In one harness: the interplay of cellular responses and subsequent cell fate after quantum dot uptake. Nanomedicine 11:2603–2615. https://doi.org/10.2217/nnm-2016-0068

    Article  CAS  PubMed  Google Scholar 

  20. De Robertis EDP, De Robertis EMF (1980) Cell and molecular biology, 7th edn. Saunders College, Minnesota

    Google Scholar 

  21. Boukany PE, Wu Y, Zhao X, Kwak KJ, Glazer PJ, Leong K, Lee LJ (2014) Nonendocytic delivery of lipoplex nanoparticles into living cells using nanochannel electroporation. Adv Healthc Mater 3:682–689. https://doi.org/10.1002/adhm.201300213

    Article  CAS  PubMed  Google Scholar 

  22. Zhang LW, Monteiro-Riviere NA (2009) Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol Sci. https://doi.org/10.1093/toxsci/kfp087

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jiang X, Röcker C, Hafner M, Brandholt S, Dörlich RM, Nienhaus GU (2010) Endo- and exocytosis of zwitterionic quantum dot nanoparticles by live HeLa cells. ACS Nano 4:6787–6797. https://doi.org/10.1021/nn101277w

    Article  CAS  PubMed  Google Scholar 

  24. Pi QM, Zhang WJ, Zhou GD, Liu W, Cao Y (2010) Degradation or excretion of quantum dots in mouse embryonic stem cells. BMC Biotechnol 10:36. https://doi.org/10.1186/1472-6750-10-36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Derfus AM, Chan WCW, Bhatia SN (2004b) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18. https://doi.org/10.1021/nl0347334

    Article  CAS  PubMed  Google Scholar 

  26. Chang E, Thekkek N, Yu WW, Colvin VL, Drezek R (2006) Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small 2:1412–1417. https://doi.org/10.1002/smll.200600218

    Article  CAS  PubMed  Google Scholar 

  27. Kamkaew A, Sun H, England CG, Cheng L, Liu Z, Cai W (2016) Quantum dot–NanoLuc bioluminescence resonance energy transfer enables tumor imaging and lymph node mapping in vivo. Chem Commun 52:6997–7000. https://doi.org/10.1039/C6CC02764D

    Article  CAS  Google Scholar 

  28. Pons T, Bouccara S, Loriette V, Lequeux N, Pezet S, Fragola A (2019) In vivo imaging of single tumor cells in fast-flowing bloodstream using near-infrared quantum dots and time-gated imaging. ACS Nano 13:3125–3131. https://doi.org/10.1021/acsnano.8b08463

    Article  CAS  PubMed  Google Scholar 

  29. Pinaud F, Clarke S, Sittner A, Dahan M (2010) Probing cellular events, one quantum dot at a time. Nat Methods 7:275. https://doi.org/10.1038/nmeth.1444

    Article  CAS  PubMed  Google Scholar 

  30. Delehanty JB, Bradburne CE, Boeneman K, Susumu K, Farrell D, Mei BC, Blanco-Canosa JB, Dawson G, Dawson PE, Mattoussi H, Medintz IL (2010) Delivering quantum dot-peptide bioconjugates to the cellular cytosol: escaping from the endolysosomal system. Integrat Biol 2:265–277. https://doi.org/10.1039/C0IB00002G

    Article  CAS  Google Scholar 

  31. Tan RS, Naruchi K, Amano M, Hinou H, Nishimura S-I (2015) Rapid endolysosomal escape and controlled intracellular trafficking of cell surface mimetic quantum-dots-anchored peptides and glycopeptides. ACS Chem Biol 10:2073–2086. https://doi.org/10.1021/acschembio.5b00434

    Article  CAS  PubMed  Google Scholar 

  32. Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160. https://doi.org/10.1016/S0302-4598(96)05062-3

    Article  CAS  Google Scholar 

  33. Gehl J (2003) Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand 177:437–447. https://doi.org/10.1046/j.1365-201X.2003.01093.x

    Article  CAS  PubMed  Google Scholar 

  34. Kummrow M, Helfrich W (1991) Deformation of giant lipid vesicles by electric fields. Phys Rev A 44:8356–8360. https://doi.org/10.1103/PhysRevA.44.8356

    Article  CAS  PubMed  Google Scholar 

  35. Kinosita K Jr, Ashikawa I, Saita N, Yoshimura H, Itoh H, Nagayama K, Ikegami A (1988) Electroporation of cell membrane visualized under a pulsed-laser fluorescence microscope. Biophys J 53:1015–1019. https://doi.org/10.1016/S0006-3495(88)83181-3

    Article  PubMed  PubMed Central  Google Scholar 

  36. Riske KA, Dimova R (2005) Electro-deformation and poration of giant vesicles viewed with high temporal resolution. Biophys J 88:1143–1155. https://doi.org/10.1529/biophysj.104.050310

    Article  CAS  PubMed  Google Scholar 

  37. Kennedy SM, Ji Z, Hedstrom JC, Booske JH, Hagness SC (2008) Quantification of electroporative uptake kinetics and electric field heterogeneity effects in cells. Biophys J 94:5018–5027. https://doi.org/10.1529/biophysj.106.103218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pakhomova ON, Gregory BW, Khorokhorina VA, Bowman AM, Xiao S, Pakhomov AG (2011) Electroporation-induced electrosensitization. PLoS One 6:e17100. https://doi.org/10.1371/journal.pone.0017100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim K, Lee WG (2017) Electroporation for nanomedicine: a review. J Mater Chem B 5:2726–2738. https://doi.org/10.1039/C7TB00038C

    Article  CAS  PubMed  Google Scholar 

  40. Rosen AB, Kelly DJ, Schuldt AJT, Lu J, Potapova IA, Doronin SV, Robichaud KJ, Robinson RB, Rosen MR, Brink PR, Gaudette GR, Cohen IS (2007) Finding fluorescent needles in the cardiac haystack: tracking human mesenchymal stem cells labeled with quantum dots for quantitative in vivo three-dimensional fluorescence analysis. Stem Cells 25:2128–2138. https://doi.org/10.1634/stemcells.2006-0722

    Article  CAS  PubMed  Google Scholar 

  41. Chen F, Gerion D (2004) Fluorescent CdSe/ZnS nanocrystal−peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett 4:1827–1832. https://doi.org/10.1021/nl049170q

    Article  CAS  Google Scholar 

  42. Sun C, Cao Z, Wu M, Lu C (2014) Intracellular tracking of single native molecules with electroporation-delivered quantum dots. Anal Chem 86:11403–11409. https://doi.org/10.1021/ac503363m

    Article  CAS  PubMed  Google Scholar 

  43. Hatakeyama H, Nakahata Y, Yarimizu H, Kanzaki M (2017) Live-cell single-molecule labeling and analysis of myosin motors with quantum dots. Mol Biol Cell 28:173–181. https://doi.org/10.1091/mbc.E16-06-0413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Katrukha EA, Mikhaylova M, van Brakel HX, van Bergenen Henegouwen PM, Akhmanova A, Hoogenraad CC, Kapitein LC (2017) Probing cytoskeletal modulation of passive and active intracellular dynamics using nanobody-functionalized quantum dots. Nat Commun 8:14772. https://doi.org/10.1038/ncomms14772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stewart MP, Sharei A, Ding X, Sahay G, Langer R, Jensen KF (2016) In vitro and ex vivo strategies for intracellular delivery. Nature 538:183. https://doi.org/10.1038/nature19764

    Article  CAS  PubMed  Google Scholar 

  46. Zhang Y, Yu L-C (2008) Microinjection as a tool of mechanical delivery. Curr Opin Biotechnol 19:506–510. https://doi.org/10.1016/j.copbio.2008.07.005

    Article  CAS  PubMed  Google Scholar 

  47. Tiefenboeck P, Kim JA, Leroux J-C (2018) Intracellular delivery of colloids: past and future contributions from microinjection. Adv Drug Deliv Rev 132:3–15. https://doi.org/10.1016/j.addr.2018.06.013

    Article  CAS  PubMed  Google Scholar 

  48. Koike S, Jahn R (2017) Probing and manipulating intracellular membrane traffic by microinjection of artificial vesicles. Proc Natl Acad Sci 114:E9883. https://doi.org/10.1073/pnas.1713524114

    Article  CAS  PubMed  Google Scholar 

  49. Medintz IL, Pons T, Delehanty JB, Susumu K, Brunel FM, Dawson PE, Mattoussi H (2008) Intracellular delivery of quantum dot−protein cargos mediated by cell penetrating peptides. Bioconjug Chem 19:1785–1795. https://doi.org/10.1021/bc800089r

    Article  CAS  PubMed  Google Scholar 

  50. Saurabh S, Beck LE, Maji S, Baty CJ, Wang Y, Yan Q, Watkins SC, Bruchez MP (2014) Multiplexed modular genetic targeting of quantum dots. ACS Nano 8:11138–11146. https://doi.org/10.1021/nn5044367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Afsari HS, Cardoso Dos Santos M, Linden S, Chen T, Qiu X, van Bergen En Henegouwen PM, Jennings TL, Susumu K, Medintz IL, Hildebrandt N, Miller LW (2016) Time-gated FRET nanoassemblies for rapid and sensitive intra- and extracellular fluorescence imaging. Sci Adv 2:e1600265. https://doi.org/10.1126/sciadv.1600265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grady ME, Parrish E, Caporizzo MA, Seeger SC, Composto RJ, Eckmann DM (2017) Intracellular nanoparticle dynamics affected by cytoskeletal integrity. Soft Matter 13:1873–1880. https://doi.org/10.1039/C6SM02464E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Field LD, Walper SA, Susumu K, Lasarte-Aragones G, Oh E, Medintz IL, Delehanty JB (2018) A quantum dot-protein bioconjugate that provides for extracellular control of intracellular drug release. Bioconjug Chem 29:2455–2467. https://doi.org/10.1021/acs.bioconjchem.8b00357

    Article  CAS  PubMed  Google Scholar 

  54. Huang Y-W, Lee H-J (2018) 13 - Cell-penetrating peptides for medical theranostics and targeted drug delivery. In: Koutsopoulos S (ed) Peptide applications in biomedicine, biotechnology and bioengineering. Woodhead Publishing, Sawston, pp 359–370

    Chapter  Google Scholar 

  55. Reissmann S (2014) Cell penetration: scope and limitations by the application of cell-penetrating peptides. J Pept Sci 20:760–784. https://doi.org/10.1002/psc.2672

    Article  CAS  PubMed  Google Scholar 

  56. Koren E, Torchilin VP (2012) Cell-penetrating peptides: breaking through to the other side. Trends Mol Med 18:385–393. https://doi.org/10.1016/j.molmed.2012.04.012

    Article  CAS  PubMed  Google Scholar 

  57. Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189–1193. https://doi.org/10.1016/0092-8674(88)90263-2

    Article  CAS  PubMed  Google Scholar 

  58. Derossi D, Chassaing G, Prochiantz A (1998) Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol 8:84–87. https://doi.org/10.1016/S0962-8924(98)80017-2

    Article  CAS  PubMed  Google Scholar 

  59. Borrelli A, Tornesello AL, Tornesello ML, Buonaguro FM (2018) Cell penetrating peptides as molecular carriers for anti-cancer agents. Molecules 23:295. https://doi.org/10.3390/molecules23020295

    Article  CAS  PubMed Central  Google Scholar 

  60. Almeida CS, Herrmann IK, Howes PD, Stevens MM (2015) Tailoring cellular uptake of conjugated polymer nanoparticles using modular amphiphilic peptide capping ligands. Chem Mater 27:6879–6889. https://doi.org/10.1021/acs.chemmater.5b03337

    Article  CAS  Google Scholar 

  61. Dalal C, Jana NR (2017) Multivalency effect of TAT-peptide-functionalized nanoparticle in cellular endocytosis and subcellular trafficking. J Phys Chem B 121:2942–2951. https://doi.org/10.1021/acs.jpcb.6b12182

    Article  CAS  PubMed  Google Scholar 

  62. Lo SL, Wang S (2008) An endosomolytic Tat peptide produced by incorporation of histidine and cysteine residues as a nonviral vector for DNA transfection. Biomaterials 29:2408–2414. https://doi.org/10.1016/j.biomaterials.2008.01.031

    Article  CAS  PubMed  Google Scholar 

  63. Wadia JS, Stan RV, Dowdy SF (2004) Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 10:310–315. https://doi.org/10.1038/nm996

    Article  CAS  PubMed  Google Scholar 

  64. Lee Y-J, Johnson G, Pellois J-P (2010) Modeling of the endosomolytic activity of HA2-TAT peptides with red blood cells and ghosts. Biochemistry-Us 49:7854–7866. https://doi.org/10.1021/bi1008408

    Article  CAS  Google Scholar 

  65. Martin ME, Rice KG (2007) Peptide-guided gene delivery. AAPS J 9:E18–E29. https://doi.org/10.1208/aapsj0901003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Glover DJ, Lipps HJ, Jans DA (2005) Towards safe, non-viral therapeutic gene expression in humans. Nat Rev Genet 6:299–310. https://doi.org/10.1038/nrg1577

    Article  CAS  PubMed  Google Scholar 

  67. McKenzie DL, Smiley E, Kwok KY, Rice KG (2000) Low molecular weight disulfide cross-linking peptides as nonviral gene delivery carriers. Bioconjug Chem 11:901–909. https://doi.org/10.1021/bc000056i

    Article  CAS  PubMed  Google Scholar 

  68. Read ML, Singh S, Ahmed Z, Stevenson M, Briggs SS, Oupicky D, Barrett LB, Spice R, Kendall M, Berry M, Preece JA, Logan A, Seymour LW (2005) A versatile reducible polycation-based system for efficient delivery of a broad range of nucleic acids. Nucleic Acids Res 33:e86–e86. https://doi.org/10.1093/nar/gni085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Maity AR, Stepensky D (2016) Efficient subcellular targeting to the cell nucleus of quantum dots densely decorated with a nuclear localization sequence peptide. ACS Appl Mater Interfaces 8:2001–2009. https://doi.org/10.1021/acsami.5b10295

    Article  CAS  PubMed  Google Scholar 

  70. Breger JC, Muttenthaler M, Delehanty JB, Thompson DA, Oh E, Susumu K, Deschamps JR, Anderson GP, Field LD, Walper SA, Dawson PE, Medintz IL (2017) Nanoparticle cellular uptake by dendritic wedge peptides: achieving single peptide facilitated delivery. Nanoscale 9:10447–10464. https://doi.org/10.1039/C7NR03362A

    Article  CAS  PubMed  Google Scholar 

  71. Sayers EJ, Cleal K, Eissa NG, Watson P, Jones AT (2014) Distal phenylalanine modification for enhancing cellular delivery of fluorophores, proteins and quantum dots by cell penetrating peptides. J Control Release 195:55–62. https://doi.org/10.1016/j.jconrel.2014.07.055

    Article  CAS  PubMed  Google Scholar 

  72. Farkhani SM, Johari-ahar M, Zakeri-Milani P, ShahbaziMojarrad J, Valizadeh H (2016) Enhanced cellular internalization of CdTe quantum dots mediated by arginine- and tryptophan-rich cell-penetrating peptides as efficient carriers. Artif Cells Nanomed Biotechnol 44:1424–1428. https://doi.org/10.3109/21691401.2015.1031906

    Article  CAS  PubMed  Google Scholar 

  73. Getz T, Qin J, Medintz IL, Delehanty JB, Susumu K, Dawson PE, Dawson G (2016) Quantum dot-mediated delivery of siRNA to inhibit sphingomyelinase activities in brain-derived cells. J Neurochem 139:872–885. https://doi.org/10.1111/jnc.13841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lin CY, Huang JY, Lo L-W (2017) Depicting binding-mediated translocation of HIV-1 Tat peptides in living cells with nanoscale pens of Tat-conjugated quantum dots. Sensors (Basel, Switzerland) 17:315. https://doi.org/10.3390/s17020315

    Article  CAS  Google Scholar 

  75. Macchi S, Signore G, Boccardi C, Di Rienzo C, Beltram F, Cardarelli F (2015) Spontaneous membrane-translocating peptides: influence of peptide self-aggregation and cargo polarity. Sci Rep 5:16914. https://doi.org/10.1038/srep16914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kapur A, Medina SH, Wang W, Palui G, Ji X, Schneider JP, Mattoussi H (2018) Enhanced uptake of luminescent quantum dots by live cells mediated by a membrane-active peptide. ACS Omega 3:17164–17172. https://doi.org/10.1021/acsomega.8b02918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sangtani A, Petryayeva E, Wu M, Susumu K, Oh E, Huston AL, Lasarte-Aragones G, Medintz IL, Algar WR, Delehanty JB (2018) Intracellularly actuated quantum dot–peptide–doxorubicin nanobioconjugates for controlled drug delivery via the endocytic pathway. Bioconjug Chem 29:136–148. https://doi.org/10.1021/acs.bioconjchem.7b00658

    Article  CAS  PubMed  Google Scholar 

  78. Carnevale KJF, Muroski ME, Vakil PN, Foley ME, Laufersky G, Kenworthy R, Zorio DAR, Morgan TJ, Levenson CW, Strouse GF (2018) Selective uptake into drug resistant mammalian cancer by cell penetrating peptide-mediated delivery. Bioconjug Chem 29:3273–3284. https://doi.org/10.1021/acs.bioconjchem.8b00429

    Article  CAS  PubMed  Google Scholar 

  79. Lee H-J, Huang Y-W, Aronstam RS (2019) Intracellular delivery of nanoparticles mediated by lactoferricin cell-penetrating peptides in an endocytic pathway. J Nanosci Nanotechnol 19:613–621. https://doi.org/10.1166/jnn.2019.15751

    Article  CAS  PubMed  Google Scholar 

  80. Wang J, Dai J, Yang X, Yu X, Emory SR, Yong X, Xu J, Mei L, Xie J, Han N, Zhang X, Ruan G (2019) Intracellular targeted delivery of quantum dots with extraordinary performance enabled by a novel nanomaterial design. Nanoscale 11:552–567. https://doi.org/10.1039/C8NR06191B

    Article  CAS  PubMed  Google Scholar 

  81. Canton I, Battaglia G (2012) Endocytosis at the nanoscale. Chem Soc Rev 41:2718–2739. https://doi.org/10.1039/C2CS15309B

    Article  CAS  PubMed  Google Scholar 

  82. Chou LYT, Ming K, Chan WCW (2011) Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev 40:233–245. https://doi.org/10.1039/C0CS00003E

    Article  CAS  PubMed  Google Scholar 

  83. Kurtoglu YE, Navath RS, Wang B, Kannan S, Romero R, Kannan RM (2009) Poly(amidoamine) dendrimer–drug conjugates with disulfide linkages for intracellular drug delivery. Biomaterials 30:2112–2121. https://doi.org/10.1016/j.biomaterials.2008.12.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Muthiah M, Park S-H, Nurunnabi M, Lee J, Lee Y-K, Park H, Lee B-I, Min J-J, Park I-K (2014) Intracellular delivery and activation of the genetically encoded photosensitizer Killer Red by quantum dots encapsulated in polymeric micelles. Colloids Surf B 116:284–294. https://doi.org/10.1016/j.colsurfb.2014.01.001

    Article  CAS  Google Scholar 

  85. D’Amico M, Fiorica C, Palumbo FS, Militello V, Leone M, Dubertret B, Pitarresi G, Giammona G (2016) Uptake of silica covered Quantum Dots into living cells: long term vitality and morphology study on hyaluronic acid biomaterials. Mater Sci Eng C 67:231–236. https://doi.org/10.1016/j.msec.2016.04.082

    Article  CAS  Google Scholar 

  86. Park J, Lee J, Kwag J, Baek Y, Kim B, Yoon CJ, Bok S, Cho S-H, Kim KH, Ahn GO, Kim S (2015) Quantum dots in an amphiphilic polyethyleneimine derivative platform for cellular labeling, targeting, gene delivery, and ratiometric oxygen sensing. ACS Nano 9:6511–6521. https://doi.org/10.1021/acsnano.5b02357

    Article  CAS  PubMed  Google Scholar 

  87. Li Z, Xu W, Wang Y, Shah BR, Zhang C, Chen Y, Li Y, Li B (2015) Quantum dots loaded nanogels for low cytotoxicity, pH-sensitive fluorescence, cell imaging and drug delivery. Carbohyd Polym 121:477–485. https://doi.org/10.1016/j.carbpol.2014.12.016

    Article  CAS  Google Scholar 

  88. Zhao M-X, Zhu B-J, Yao W-J, Chen D-F, Wang C (2018) The delivery of doxorubicin of multifunctional β-cyclodextrin-modified CdSe/ZnS quantum dots for bioactivity and nano-probing. Chem Biol Drug Des 91:285–293. https://doi.org/10.1111/cbdd.13080

    Article  CAS  PubMed  Google Scholar 

  89. Gasparini G, Bang E-K, Molinard G, Tulumello DV, Ward S, Kelley SO, Roux A, Sakai N, Matile S (2014) Cellular uptake of substrate-initiated cell-penetrating poly(disulfide)s. J Am Chem Soc 136:6069–6074. https://doi.org/10.1021/ja501581b

    Article  CAS  PubMed  Google Scholar 

  90. Gasparini G, Bang E-K, Montenegro J, Matile S (2015) Cellular uptake: lessons from supramolecular organic chemistry. Chem Commun 51:10389–10402. https://doi.org/10.1039/C5CC03472H

    Article  CAS  Google Scholar 

  91. Derivery E, Bartolami E, Matile S, Gonzalez-Gaitan M (2017) Efficient delivery of quantum dots into the cytosol of cells using cell-penetrating poly(disulfide)s. J Am Chem Soc 139:10172–10175. https://doi.org/10.1021/jacs.7b02952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bartolami E, Basagiannis D, Zong L, Martinent R, Okamoto Y, Laurent Q, Ward TR, Gonzalez-Gaitan M, Sakai N, Matile S (2019) Diselenolane-mediated cellular uptake: efficient cytosolic delivery of probes, peptides, proteins, artificial metalloenzymes and protein-coated quantum dots. Chem Eur J 25:4047–4051. https://doi.org/10.1002/chem.201805900

    Article  CAS  PubMed  Google Scholar 

  93. Sharma D, Ali AAE, Trivedi LR (2018) An Updated review on: liposomes as drug delivery system. PharmaTutor 6:50–62. https://doi.org/10.29161/pt.v6.i2.2018.50

    Article  CAS  Google Scholar 

  94. Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S (2015) Advances and challenges of liposome assisted. Drug Deliv. https://doi.org/10.3389/fphar.2015.00286

    Article  Google Scholar 

  95. Pattni BS, Chupin VV, Torchilin VP (2015) New developments in liposomal drug delivery. Chem Rev 115:10938–10966. https://doi.org/10.1021/acs.chemrev.5b00046

    Article  CAS  PubMed  Google Scholar 

  96. Ulrich AS (2002) Biophysical aspects of using liposomes as delivery vehicles. Biosci Rep 22:129–150. https://doi.org/10.1023/a:1020178304031

    Article  CAS  PubMed  Google Scholar 

  97. Piontek MC, Lira RB, Roos WH (2019) Active probing of the mechanical properties of biological and synthetic vesicles. Biochim Biophys Acta Gener Subj. https://doi.org/10.1016/j.bbagen.2019.129486

    Article  Google Scholar 

  98. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K (2013) Liposome: classification, preparation, and applications. Nanosc Res Lett 8:102. https://doi.org/10.1186/1556-276X-8-102

    Article  CAS  Google Scholar 

  99. Miller CR, Bondurant B, McLean SD, McGovern KA, O’Brien DF (1998) Liposome−cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochem Us 37:12875–12883. https://doi.org/10.1021/bi980096y

    Article  CAS  Google Scholar 

  100. Lin AJ, Slack NL, Ahmad A, George CX, Samuel CE, Safinya CR (2003) Three-dimensional imaging of lipid gene-carriers: membrane charge density controls universal transfection behavior in lamellar cationic liposome-DNA complexes. Biophys J 84:3307–3316. https://doi.org/10.1016/S0006-3495(03)70055-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ahmad A, Evans HM, Ewert K, George CX, Samuel CE, Safinya CR (2005) New multivalent cationic lipids reveal bell curve for transfection efficiency versus membrane charge density: lipid–DNA complexes for gene delivery. J Gene Med 7:739–748. https://doi.org/10.1002/jgm.717

    Article  CAS  PubMed  Google Scholar 

  102. Majzoub RN, Chan C-L, Ewert KK, Silva BFB, Liang KS, Jacovetty EL, Carragher B, Potter CS, Safinya CR (2014) Uptake and transfection efficiency of PEGylated cationic liposome–DNA complexes with and without RGD-tagging. Biomaterials 35:4996–5005. https://doi.org/10.1016/j.biomaterials.2014.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Plank C, Mechtler K, Szoka FC, Wagner E (1996) Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum Gene Ther 7:1437–1446. https://doi.org/10.1089/hum.1996.7.12-1437

    Article  CAS  PubMed  Google Scholar 

  104. Gregoriadis G, Florence AT (1993) Liposomes in drug delivery. Drugs 45:15–28. https://doi.org/10.2165/00003495-199345010-00003

    Article  CAS  PubMed  Google Scholar 

  105. Csiszár A, Hersch N, Dieluweit S, Biehl R, Merkel R, Hoffmann B (2010) Novel fusogenic liposomes for fluorescent cell labeling and membrane modification. Bioconjug Chem 21:537–543. https://doi.org/10.1021/bc900470y

    Article  CAS  PubMed  Google Scholar 

  106. Matos ALL, Pereira G, Cabral Filho PE, Santos BS, Fontes A (2017) Delivery of cationic quantum dots using fusogenic liposomes in living cells. J Photochem Photobiol B Biol 171:43–49. https://doi.org/10.1016/j.jphotobiol.2017.04.025

    Article  CAS  Google Scholar 

  107. Gopalakrishnan G, Danelon C, Izewska P, Prummer M, Bolinger P-Y, Geissbühler I, Demurtas D, Dubochet J, Vogel H (2006) Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells. Angew Chem Int Ed 45:5478–5483. https://doi.org/10.1002/anie.200600545

    Article  CAS  Google Scholar 

  108. Lira RB, Seabra MABL, Matos ALL, Vasconcelos JV, Bezerra DP, de Paula E, Santos BS, Fontes A (2013) Studies on intracellular delivery of carboxyl-coated CdTe quantum dots mediated by fusogenic liposomes. J Mater Chem B 1:4297–4305. https://doi.org/10.1039/C3TB20245C

    Article  CAS  PubMed  Google Scholar 

  109. Kube S, Hersch N, Naumovska E, Gensch T, Hendriks J, Franzen A, Landvogt L, Siebrasse J-P, Kubitscheck U, Hoffmann B, Merkel R, Csiszár A (2017) Fusogenic liposomes as nanocarriers for the delivery of intracellular proteins. Langmuir 33:1051–1059. https://doi.org/10.1021/acs.langmuir.6b04304

    Article  CAS  PubMed  Google Scholar 

  110. Lira RB, Robinson T, Dimova R, Riske KA (2019) Highly efficient protein-free membrane fusion: a giant vesicle study. Biophys J 116:79–91. https://doi.org/10.1016/j.bpj.2018.11.3128

    Article  CAS  PubMed  Google Scholar 

  111. Kunisawa J, Masuda T, Katayama K, Yoshikawa T, Tsutsumi Y, Akashi M, Mayumi T, Nakagawa S (2005) Fusogenic liposome delivers encapsulated nanoparticles for cytosolic controlled gene release. J Control Release 105:344–353. https://doi.org/10.1016/j.jconrel.2005.03.020

    Article  CAS  PubMed  Google Scholar 

  112. Lin Q, Mao K-L, Tian F-R, Yang J-J, Chen P-P, Xu J, Fan Z-L, Zhao Y-P, Li W-F, Zheng L, Zhao Y-Z, Lu C-T (2016) Brain tumor-targeted delivery and therapy by focused ultrasound introduced doxorubicin-loaded cationic liposomes. Cancer Chemother Pharmacol 77:269–280. https://doi.org/10.1007/s00280-015-2926-1

    Article  CAS  PubMed  Google Scholar 

  113. Guo X, Zhang Y, Liu J, Yang X, Huang J, Li L, Wan L, Wang K (2016) Red blood cell membrane-mediated fusion of hydrophobic quantum dots with living cell membranes for cell imaging. J Mater Chem B 4:4191–4197. https://doi.org/10.1039/C6TB01067A

    Article  CAS  PubMed  Google Scholar 

  114. Samadikhah HR, Nikkhah M, Hosseinkhani S (2017) Enhancement of cell internalization and photostability of red and green emitter quantum dots upon entrapment in novel cationic nanoliposomes. Luminescence 32:517–528. https://doi.org/10.1002/bio.3207

    Article  CAS  PubMed  Google Scholar 

  115. Aizik G, Waiskopf N, Agbaria M, Levi-Kalisman Y, Banin U, Golomb G (2017) Delivery of liposomal quantum dots via monocytes for imaging of inflamed tissue. ACS Nano 11:3038–3051. https://doi.org/10.1021/acsnano.7b00016

    Article  CAS  PubMed  Google Scholar 

  116. Seleci M, Ag Seleci D, Scheper T, Stahl F (2017) Theranostic liposome-nanoparticle hybrids for drug delivery and bioimaging. Int J Mol Sci 18:1415. https://doi.org/10.3390/ijms18071415

    Article  CAS  PubMed Central  Google Scholar 

  117. Xu H-L, Yang J-J, ZhuGe D-L, Lin M-T, Zhu Q-Y, Jin B-H, Tong M-Q, Shen B-X, Xiao J, Zhao Y-Z (2018) Glioma-targeted delivery of a theranostic liposome integrated with quantum dots, superparamagnetic iron oxide, and cilengitide for dual-imaging guiding cancer surgery. Adv Healthc Mater 7:1701130. https://doi.org/10.1002/adhm.201701130

    Article  CAS  Google Scholar 

  118. Aizik G, Waiskopf N, Agbaria M, Ben-David-Naim M, Levi-Kalisman Y, Shahar A, Banin U, Golomb G (2019) Liposomes of quantum dots configured for passive and active delivery to tumor tissue. Nano Lett 19:5844–5852. https://doi.org/10.1021/acs.nanolett.9b01027

    Article  CAS  PubMed  Google Scholar 

  119. Moghimi SM, Hunter AC (2001) Recognition by macrophages and liver cells of opsonized phospholipid vesicles and phospholipid headgroups. Pharm Res 18:1–8. https://doi.org/10.1023/A:1011054123304

    Article  CAS  PubMed  Google Scholar 

  120. Shao D, Li J, Pan Y, Zhang X, Zheng X, Wang Z, Zhang M, Zhang H, Chen L (2015) Noninvasive theranostic imaging of HSV-TK/GCV suicide gene therapy in liver cancer by folate-targeted quantum dot-based liposomes. Biomater Sci 3:833–841. https://doi.org/10.1039/C5BM00077G

    Article  CAS  PubMed  Google Scholar 

  121. Liu Y, Zhao Y, Luo H, Liu F, Wu Y (2017) Construction of EGFR peptide gefitinib/quantum dots long circulating polymeric liposomes for treatment and detection of nasopharyngeal carcinoma. Biochem Biophys Res Commun 490:141–146. https://doi.org/10.1016/j.bbrc.2017.06.011

    Article  CAS  PubMed  Google Scholar 

  122. Sharma A, Sharma US (1997) Liposomes in drug delivery: progress and limitations. Int J Pharm 154:123–140. https://doi.org/10.1016/S0378-5173(97)00135-X

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Brazilian agencies Coordenação de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Ciência e a Tecnologia do Estado de Pernambuco (FACEPE). This work is also linked to the National Institute of Photonics (INCT-INFo) and LARnano/UFPE.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adriana Fontes or Goreti Pereira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, S.O., Lira, R.B., Cunha, C.R.A. et al. Methods for Intracellular Delivery of Quantum Dots. Top Curr Chem (Z) 379, 1 (2021). https://doi.org/10.1007/s41061-020-00313-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-020-00313-7

Keywords

Navigation