Skip to main content

Advertisement

Log in

Proteins-Based Nanocatalysts for Energy Conversion Reactions

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

In recent years, the incorporation of molecular enzymes into nanostructured frameworks to create efficient energy conversion biomaterials has gained increasing interest as a promising strategy owing to both the dynamic behavior of proteins for their electrocatalytic function and the unique properties of the synergistic interactions between proteins and nanosized materials. Herein, we review the impact of proteins on energy conversion fields and the contribution of proteins to the improved activity of the resulting nanocomposites. We address different strategies to fabricate protein-based nanocatalysts as well as current knowledge on the structure–function relationships of enzymes during the catalytic processes. Additionally, a comprehensive review of state-of-the-art bioelectrocatalytic materials for water-splitting reactions such as hydrogen evolution reaction (HER) and oxygen evolution reactions (OER) is afforded. Finally, we briefly envision opportunities to develop a new generation of electrocatalysts towards the electrochemical reduction of N2 to NH3 using theoretical tools to built nature-inspired nitrogen reduction reaction catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kornienko N, Zhang JZ, Sakimoto KK, Yang PD, Reisner E (2018) Nat Nanotechnol 13:890. https://doi.org/10.1038/s41565-018-0251-7

    Article  CAS  PubMed  Google Scholar 

  2. Kornienko N, Ly KH, Robinson WE, Heidary N, Zhang JZ, Reisner E (2019) Acc Chem Res 52:1439. https://doi.org/10.1021/acs.accounts.9b00087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hitaishi VP, Mazurenko I, Harb M, Clement R, Taris M, Castano S, Duche D, Lecomte S, Ilbert M, de Poulpiquet A, Lojou E (2018) ACS Catal 8:12004. https://doi.org/10.1021/acscatal.8b03443

    Article  CAS  Google Scholar 

  4. Lancaster L, Abdallah W, Banta S, Wheeldon I (2018) Chem Soc Rev 47:5177. https://doi.org/10.1039/c8cs00085a

    Article  CAS  PubMed  Google Scholar 

  5. Xiao XX, Xia HQ, Wu RR, Bai L, Yan L, Magner E, Cosnier S, Lojou E, Zhu ZG, Liu AH (2019) Chem Rev 119:9509. https://doi.org/10.1021/acs.chemrev.9b00115

    Article  CAS  PubMed  Google Scholar 

  6. Franco A, Cano M, Giner-Casares JJ, Rodriguez-Castellon E, Luque R, Puente-Santiago AR (2019) Chem Commun 55:4671. https://doi.org/10.1039/c9cc01625b

    Article  CAS  Google Scholar 

  7. Patra S, Sene S, Mousty C, Serre C, Chausse A, Legrand L, Steunou N (2016) ACS Appl Mater Interfaces 8:20012. https://doi.org/10.1021/acsami.6b05289

    Article  CAS  PubMed  Google Scholar 

  8. Le Goff A, Holzinger M, Cosnier S (2015) Cell Mol Life Sci 72:941. https://doi.org/10.1007/s00018-014-1828-4

    Article  CAS  PubMed  Google Scholar 

  9. Lalaoui N, Rousselot-Pailley P, Robert V, Mekmouche Y, Villalonga R, Holzinger M, Cosnier S, Tron T, Le Goff A (2016) ACS Catal 6:1894. https://doi.org/10.1021/acscatal.5b02442

    Article  CAS  Google Scholar 

  10. Campbell E, Kaltenbach M, Correy GJ, Carr PD, Porebski BT, Livingstone EK, Afriat-Jurnou L, Buckle AM, Weik M, Hollfelder F, Tokuriki N, Jackson CJ (2016) Nat Chem Biol 12:944. https://doi.org/10.1038/nchembio.2175

    Article  CAS  PubMed  Google Scholar 

  11. Singh P, Francis K, Kohen A (2015) ACS Catal 5:3067. https://doi.org/10.1021/acscatal.5b00331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Otten R, Liu L, Kenner LR, Clarkson MW, Mavor D, Tawfik DS, Kern D, Fraser JS (2018) Nat Commun 9:1314. https://doi.org/10.1038/s41467-018-03562-9

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ma BY, Nussinov R (2016) Nat Chem Biol 12:890. https://doi.org/10.1038/nchembio.2212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hanoian P, Liu CT, Hammes-Schiffer S, Benkovic S (2015) Acc Chem Res 48:482. https://doi.org/10.1021/ar500390e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stiller JB, Kerns SJ, Hoemberger M, Cho YJ, Otten R, Hagan MF, Kern D (2019) Nat Catal 2:726. https://doi.org/10.1038/s41929-019-0307-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu F, Su L, Yu P, Mao LQ (2017) J Am Chem Soc 139:1565. https://doi.org/10.1021/jacs.6b11469

    Article  CAS  PubMed  Google Scholar 

  17. Lalaoui N, David R, Jamet H, Holzinger M, Le Goff A, Cosnier S (2016) ACS Catal 6:4259. https://doi.org/10.1021/acscatal.6b00797

    Article  CAS  Google Scholar 

  18. Bollella P, Hibino Y, Kano K, Gorton L, Antiochia R (2018) ACS Catal 8:10279. https://doi.org/10.1021/acscatal.8b02729

    Article  CAS  Google Scholar 

  19. Puente-Santiago AR, Rodriguez-Padron D, Quan XB, Batista MJM, Martins LO, Verrna S, Varma RS, Zhou J, Luque R (2019) ACS Sustain Chem Eng 7:1474. https://doi.org/10.1021/acssuschemeng.8b05107

    Article  CAS  Google Scholar 

  20. Le Goff A, Holzinger M (2018) Sustain Energy Fuels 2:2555. https://doi.org/10.1039/c8se00374b

    Article  CAS  Google Scholar 

  21. Al-Lolage FA, Bartlett PN, Gounel S, Staigre P, Mano N (2019) ACS Catal 9:2068. https://doi.org/10.1021/acscatal.8b04340

    Article  CAS  Google Scholar 

  22. Dagys M, Laurynenas A, Ratautas D, Kulys J, Vidziunaite R, Talaikis M, Niaura G, Marcinkeviciene L, Meskys R, Shleev S (2017) Energy Environ Sci 10:498. https://doi.org/10.1039/c6ee02232d

    Article  CAS  Google Scholar 

  23. Lalaoui N, Le Goff A, Holzinger M, Mermoux M, Cosnier S (2015) Chem Eur J 21:3198. https://doi.org/10.1002/chem.201405557

    Article  CAS  PubMed  Google Scholar 

  24. Navaee A, Salimi A (2015) J Mat Chem A 3:7623. https://doi.org/10.1039/c4ta06867j

    Article  CAS  Google Scholar 

  25. Ben Tahar A, Romdhane A, Lalaoui N, Reverdy-Bruas N, Le Goff A, Holzinger M, Cosnier S, Chaussy D, Belgacem N (2018) J Power Sources 408:1. https://doi.org/10.1016/j.jpowsour.2018.10.059

    Article  CAS  Google Scholar 

  26. Xu R, Tang RZ, Zhou QJ, Li FT, Zhang BR (2015) Chem Eng J 262:88. https://doi.org/10.1016/j.cej.2014.09.072

    Article  CAS  Google Scholar 

  27. Guo DH, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J (2016) Science 351:361. https://doi.org/10.1126/science.aad0832

    Article  CAS  PubMed  Google Scholar 

  28. Singh SK, Takeyasu K, Nakamura J (2019) Adv Mater 31:e1804297. https://doi.org/10.1002/adma.201804297

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sokolov SV, Sepunaru L, Compton RG (2017) Appl Mater Today 7:82. https://doi.org/10.1016/j.apmt.2017.01.005

    Article  Google Scholar 

  30. Page CC, Moser CC, Dutton PL (2003) Curr Opin Chem Biol 7:551. https://doi.org/10.1016/j.cbpa.2003.08.005

    Article  CAS  PubMed  Google Scholar 

  31. Sjodin M, Styring S, Wolpher H, Xu YH, Sun LC, Hammarstrom L (2005) J Am Chem Soc 127:3855. https://doi.org/10.1021/ja044395o

    Article  CAS  PubMed  Google Scholar 

  32. Butterfield CN, Tao LZ, Chacon KN, Spiro TG, Blackburn NJ, Casey WH, Britt RD, Tebo BM (2015) BBA-Proteins Proteom 1854:1853. https://doi.org/10.1016/j.bbapap.2015.08.012

    Article  CAS  Google Scholar 

  33. Yates NDJ, Fascione MA, Parkin A (2018) Chem Eur J 24:12164. https://doi.org/10.1002/chem.201800750

    Article  CAS  PubMed  Google Scholar 

  34. Saboe PO, Conte E, Farell M, Bazan GC, Kumar M (2017) Energy Environ Sci 10:14. https://doi.org/10.1039/c6ee02801b

    Article  CAS  Google Scholar 

  35. Shafaat HS, Rudiger O, Ogata H, Lubitz W (2013) Biochim Biophys 1827:986. https://doi.org/10.1016/j.bbabio.2013.01.015

    Article  CAS  Google Scholar 

  36. Mazurenko I, Wang X, de Poulpiquet A, Lojou E (2017) Sustain Energ Fuels 1:1475. https://doi.org/10.1039/c7se00180k

    Article  CAS  Google Scholar 

  37. Gentil S, Mansor SMC, Jamet H, Cosnier S, Cavazza C, Le Goff A (2018) ACS Catal 8:3957. https://doi.org/10.1021/acscatal.8b00708

    Article  CAS  Google Scholar 

  38. McDonald TJ, Svedruzic D, Kim YH, Blackburn JL, Zhang SB, King PW, Heben MJ (2007) Nanoletters 7:3528. https://doi.org/10.1021/nl072319o

    Article  CAS  Google Scholar 

  39. Enguita FJ, Martins LO, Henriques AO, Carrondo MA (2003) J Biol Chem 278:19416. https://doi.org/10.1074/jbc.M301251200

    Article  CAS  PubMed  Google Scholar 

  40. Gell DA (2018) Blood Cell Mol Dis 70:13. https://doi.org/10.1016/j.bcmd.2017.10.006

    Article  CAS  Google Scholar 

  41. Yeung N, Lin YW, Gao YG, Zhao X, Russell BS, Lei LY, Miner KD, Robinson H, Lu Y (2009) Nature 462:1079. https://doi.org/10.1038/nature08620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maia LB, Fonseca L, Moura I, Moura JJG (2016) J Am Chem Soc 138:8834. https://doi.org/10.1021/jacs.6b03941

    Article  CAS  PubMed  Google Scholar 

  43. Parimi NS, Umasankar Y, Atanassov P, Ramasamy RP (2012) Acs Catalysis 2:38. https://doi.org/10.1021/cs200527c

    Article  CAS  Google Scholar 

  44. Jin B, Wang GX, Millo D, Hildebrandt P, Xia XH (2012) J Phys Chem C 116:13038. https://doi.org/10.1021/jp303740e

    Article  CAS  Google Scholar 

  45. Mukherjee S, Mukherjee A, Bhagi-Damodaran A, Mukherjee M, Lu Y, Dey A (2015) Nat Commun: 6:8467. https://doi.org/10.1038/ncomms9467

    Article  PubMed  Google Scholar 

  46. Liu JW, Zheng Y, Hong ZL, Cai K, Zhao F, Han HY (2016) Sci Adv 2:144. https://doi.org/10.1126/sciadv.1600858

    Article  CAS  Google Scholar 

  47. Hou YN, Liu H, Han JL, Cai WW, Zhou JZ, Wang AJ, Cheng HY (2016) ACS Sustain Chem Eng 4:5392. https://doi.org/10.1021/acssuschemeng.6b00647

    Article  CAS  Google Scholar 

  48. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Nature 435:1098. https://doi.org/10.1038/nature03661

    Article  CAS  PubMed  Google Scholar 

  49. Sekretaryova AN, Vagin MY, Turner APF, Eriksson M (2016) J Am Chem Soc 138:2504. https://doi.org/10.1021/Jacs.5b13149

    Article  CAS  PubMed  Google Scholar 

  50. Rodriguez-Padron D, Puente-Santiago AR, Caballero A, Balu AM, Romero AA, Luque R (2018) Nanoscale 10:3961. https://doi.org/10.1039/c8nr00512e

    Article  CAS  PubMed  Google Scholar 

  51. Wang XQ, Li ZJ, Qu YT, Yuan TW, Wang WY, Wu Y, Li YD (2019) Chem 5:1486. https://doi.org/10.1016/j.chempr.2019.03.002

    Article  CAS  Google Scholar 

  52. Luo MC, Zhao ZL, Zhang YL, Sun YJ, Xing Y, Lv F, Yang Y, Zhang X, Hwang S, Qin YN, Ma JY, Lin F, Su D, Lu G, Guo SJ (2019) Nature 574:81. https://doi.org/10.1038/s41586-019-1603-7

    Article  CAS  PubMed  Google Scholar 

  53. Dai LM (2019) Adv Mater 31:1970322. https://doi.org/10.1002/adma.201900973

    Article  PubMed  PubMed Central  Google Scholar 

  54. Guo CZ, Chen CG, Luo ZL (2014) J Power Sources 245:841. https://doi.org/10.1016/j.jpowsour.2013.07.037

    Article  CAS  Google Scholar 

  55. Chatterjee K, Ashokkumar M, Gullapalli H, Gong YJ, Vajtai R, Thanikaivelan P, Ajayan PM (2018) Carbon 130:645. https://doi.org/10.1016/j.carbon.2018.01.052

    Article  CAS  Google Scholar 

  56. Franco A, Cebrian-Garcia S, Rodriguez-Padron D, Puente-Santiago AR, Munoz-Batista MJ, Caballero A, Balu AM, Romero AA, Luque R (2018) ACS Sustain Chem Eng 6:11058. https://doi.org/10.1021/acssuschemeng.8b02529

    Article  CAS  Google Scholar 

  57. Guo CZ, Liao WL, Li ZB, Sun LT, Chen CG (2015) Nanoscale 7:15990. https://doi.org/10.1039/c5nr03828f

    Article  CAS  PubMed  Google Scholar 

  58. Firpo V, Le JM, Pavone V, Lombardi A, Bren KL (2018) Chem Sci 9:8582. https://doi.org/10.1039/c8sc01948g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rodriguez-Padron D, Puente-Santiago AR, Cano M, Caballero A, Munoz-Batista MJ, Luque R (2020) ACS Appl Mater Interf 12:2207. https://doi.org/10.1021/acsami.9b13571

    Article  CAS  Google Scholar 

  60. Kaila VRI, Verkhovsky MI, Wikstrom M (2010) Chem Rev 110:7062. https://doi.org/10.1021/cr1002003

    Article  CAS  PubMed  Google Scholar 

  61. Wikstrom M, Sharma V, Kaila VRI, Hosler JP, Hummer G (2015) Chem Rev 115:2196. https://doi.org/10.1021/cr500448t

    Article  CAS  PubMed  Google Scholar 

  62. Gorlin Y, Jaramillo TF (2010) J Am Chem Soc 132:13612. https://doi.org/10.1021/ja104587v

    Article  CAS  PubMed  Google Scholar 

  63. Lee K, Zhang L, Lui H, Hui R, Shi Z, Zhang JJ (2009) Electrochim Acta 54(4704):44. https://doi.org/10.1016/j.electacta.2009.03.081

    Article  CAS  Google Scholar 

  64. Dey S, Mondal B, Chatterjee S, Rana A, Amanullah SK, Dey A (2017) Nat Rev Chem 1:15. https://doi.org/10.1038/s41570-017-0098

    Article  CAS  Google Scholar 

  65. Burgess JD, Rhoten MC, Hawkridge FM (1998) Langmuir 14:2467. https://doi.org/10.1021/la9711995

    Article  CAS  Google Scholar 

  66. Yoshikawa S, Shimada A (2015) Chem Rev 115:1936. https://doi.org/10.1021/cr500266a

    Article  CAS  PubMed  Google Scholar 

  67. Cracknell JA, Blanford CF (2012) Chem Sci 3:1567. https://doi.org/10.1039/c2sc00632d

    Article  CAS  Google Scholar 

  68. Blanford CF, Heath RS, Armstrong FA (2007) Chem Commun 22:1710. https://doi.org/10.1039/b703114a

    Article  CAS  Google Scholar 

  69. Jones SM, Solomon EI (2015) Cell Mol Life Sci 72:869. https://doi.org/10.1007/s00018-014-1826-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Collman JP, Rapta M, Broring M, Raptova L, Schwenninger R, Boitrel B, Fu L, L’Her M (1999) J Am Chem Soc 121:1387. https://doi.org/10.1021/ja983351a

    Article  CAS  Google Scholar 

  71. Collman JP, Devaraj NK, Decreau RA, Yang Y, Yan YL, Ebina W, Eberspacher TA, Chidsey CED (2007) Science 315:1565. https://doi.org/10.1126/science.1135844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shi CN, Anson FC (1990) Inorg Chem 29:4298. https://doi.org/10.1021/ic00346a027

    Article  CAS  Google Scholar 

  73. Rigsby ML, Wasylenko DJ, Pegis ML, Mayer JM (2015) J Am Chem Soc 137:4296. https://doi.org/10.1021/jacs.5b00359

    Article  CAS  PubMed  Google Scholar 

  74. Collman JP, Denisevich P, Konai Y, Marrocco M, Koval C, Anson FC (1980) J Am Chem Soc 102:6027. https://doi.org/10.1021/ja00539a009

    Article  CAS  Google Scholar 

  75. Alba-Molina D, Rodriguez-Padron D, Puente-Santiago AR, Giner-Casares JJ, Martin-Romero MT, Camacho L, Martins LO, Munoz-Batista MJ, Cano M, Luque R (2019) Nanoscale 11:1549. https://doi.org/10.1039/c8nr06001k

    Article  CAS  PubMed  Google Scholar 

  76. Montoya JH, Tsai C, Vojvodic A, Norskov JK (2015) Chemsuschem 8:2180. https://doi.org/10.1002/cssc.201500322

    Article  CAS  PubMed  Google Scholar 

  77. Foster SL, Bakovic SIP, Duda RD, Maheshwari S, Milton RD, Minteer SD, Janik MJ, Renner JN, Greenlee LF (2018) Nat Catal 1:490. https://doi.org/10.1038/s41929-018-0092-7

    Article  Google Scholar 

  78. Licht S, Cui BC, Wang BH, Li FF, Lau J, Liu SZ (2014) Science 345:637. https://doi.org/10.1126/science.1254234

    Article  CAS  PubMed  Google Scholar 

  79. Zhou FL, Azofra LM, Ali M, Kar M, Simonov AN, McDonnell-Worth C, Sun CH, Zhang XY, MacFarlane DR (2017) Energy Environ Sci 10:2516. https://doi.org/10.1039/c7ee02716h

    Article  CAS  Google Scholar 

  80. Kim H, Renteria-Marquez A, Islam MD, Chavez LA, Rosales CAG, Ahsan MA, Tseng TLB, Love ND, Lin YR (2019) J Am Ceramd Soc 102:3685. https://doi.org/10.1111/jace.16242

    Article  CAS  Google Scholar 

  81. Dominguez N, Torres B, Barrera LA, Rincon JE, Lin YR, Chianelli RR, Ahsan MA, Noveron JC (2018) ACS Omega 3:10243. https://doi.org/10.1021/acsomega.8b00654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. He T, Puente-Santiago AR, Du A (2020) J Catal 388:77–83.https://doi.org/10.1016/j.jcat.2020.05.009

Download references

Funding

This work was funded by the Prof. Rafael Luque Grant number CTQ2016-78289-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain R. Puente Santiago.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Surface-modified Nanobiomaterials for Electrochemical and Biomedicine Applications”; edited by “Alain R. Puente-Santiago, Daily Rodríguez-Padrón”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez-Padron, D., Ahsan, M.A., Sanad, M.F. et al. Proteins-Based Nanocatalysts for Energy Conversion Reactions. Top Curr Chem (Z) 378, 43 (2020). https://doi.org/10.1007/s41061-020-00306-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-020-00306-6

Keywords

Navigation