Skip to main content
Log in

Synthesis and Applications of Porous Organosulfonate-Based Metal–Organic Frameworks

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs) are an emerging class of porous crystalline materials attracting attention for their vast array of topologies as well as potential applications in gas storage, heterogeneous catalysis, and molecular sensing. In most cases, organocarboxylates (or corresponding carboxylic acids) are the most common building block, achieving well-defined metal-carboxylate coordination motifs in MOF structures. However, organosulfonates (or corresponding sulfonic acids) have been less well studied in MOF chemistry, probably owing to the weak coordination tendency of the sulfonate oxygens toward metal centers. This review summarizes the research on organosulfonate-based porous crystalline MOFs in recent years. The construction of most porous organosulfonate MOFs relies on using either a second N-donor ligand or carboxylate–sulfonate bifunctional ligands. Despite occupying more confined porosity than the carboxylate counterpart, the permanent porosity in organosulfonate MOFs is often highly polar and hydrophilic. Thus, organosulfonate MOFs often exhibit improved proton/Li+ conductivity as well as CO2 affinity compared with their carboxylate-based counterparts. In addition, the application of organosulfonate MOFs in molecular sensing, molecular sieving, catalysis, and anion exchange are discussed in this review as well.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2018, Royal Society of Chemistry

Fig. 2

Copyright 2017, American Chemical Society

Fig. 3

Copyright 2011, American Chemical Society

Fig. 4

Copyright 2009, Springer Nature

Fig. 5

Copyright 2016, American Chemical Society

Fig. 6

Copyright 2017, American Chemical Society

Similar content being viewed by others

References

  1. Yaghi OM, Li H (1995) J Am Chem Soc 117:10401

    Article  CAS  Google Scholar 

  2. Ding M, Flaig RW, Jiang H-L, Yaghi OM (2019) Coord Chem Rev 48:2783

    CAS  Google Scholar 

  3. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Nature 402:276

    Article  CAS  Google Scholar 

  4. Farha OK, Hupp JT (2010) Acc Chem Res 43:1166

    Article  CAS  PubMed  Google Scholar 

  5. Wu M-X, Yang Y-W (2017) Adv Mater 29:1606134

    Article  CAS  Google Scholar 

  6. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Science 295:469

    Article  CAS  PubMed  Google Scholar 

  7. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Science 300:1127

    Article  CAS  PubMed  Google Scholar 

  8. Duren T, Sarkisov L, Yaghi OM, Snurr RQ (2004) Langmuir 20:2683

    Article  PubMed  CAS  Google Scholar 

  9. Millward AR, Yaghi OM (2005) J Am Chem Soc 123:17998

    Article  CAS  Google Scholar 

  10. Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Magiolaki I (2005) Science 309:2040

    Article  CAS  PubMed  Google Scholar 

  11. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) J Am Chem Soc 130:13850

    Article  PubMed  CAS  Google Scholar 

  12. Yang S, Lin X, Lewis W, Suyetin M, Bichoutskaia E, Parker JE, Tang CC, Allan DR, Rizkallah PJ, Hubberstey P, Champness NR, Thomas KM, Blake AJ, Schröder M (2012) Nat Mater 11:710

    Article  CAS  PubMed  Google Scholar 

  13. Mauritz KA, Moore RB (2004) Chem Rev 104:4535

    Article  CAS  PubMed  Google Scholar 

  14. Heidekum A, Harmer M, Hölderich WF (1997) Catal Lett 47:243

    Article  CAS  Google Scholar 

  15. Kidwai M, Chauhan R, Bhatnagar S (2015) Currr Org Chem 19:72

    Article  CAS  Google Scholar 

  16. Côté AP, Shimizu KH (2003) Coord Chem Rev 245:49

    Article  CAS  Google Scholar 

  17. De Zorzi R, Guidolin N, Randaccio L, Purrello R, Geremia S (2009) J Am Chem Soc 131:2487

    Article  PubMed  CAS  Google Scholar 

  18. Dalrymple SA, Shimizu GKH (2002) Chem Commun 2224

  19. Mavrandonakis A, Klontzas E, Tylianakis E, Froudakis GE (2009) J Am Chem Soc 131:13410

    Article  CAS  PubMed  Google Scholar 

  20. Ru C, Li Z, Zhao C, Duan Y, Zhuang Z, Bu F, Na H (2018) ACS Appl Mater Interfaces 10:7963

    Article  CAS  PubMed  Google Scholar 

  21. Colombo V, Montoro C, Maspero A, Palmisano G, Masciocchi N, Gali S, Barea E, Navarro JAR (2012) J Am Chem Soc 134:12830

    Article  CAS  PubMed  Google Scholar 

  22. Yang F, Xu G, Dou Y, Wang B, Zhang H, Wu H, Zhou W, Li J-R, Chen B (2017) Nat Energy 2:877

    Article  CAS  Google Scholar 

  23. Phang WJ, Jo H, Lee WR, Song JH, Yoo K, Kim B, Hong CS (2015) Angew Chem Int Ed 54:5142

    Article  CAS  Google Scholar 

  24. Shimizu GKH, Vaidhyanathan R, Taylor JM (2009) Chem Soc Rev 38:1430

    Article  CAS  PubMed  Google Scholar 

  25. Maity DK, Otake K, Ghosh S, Kitagawa H, Ghoshal D (2017) Inorg Chem 56:1581

    Article  CAS  PubMed  Google Scholar 

  26. Liu Q-Y, Xiahou Z-J, Wang Y-L, Li L-Q, Chen L-L, Fu Y (2013) Cryst Eng Commun 15:4930

    Article  CAS  Google Scholar 

  27. Sun D, Cao R, Sun Y, Bi W, Yuan D, Shi Q, Li X (2003) Chem Commun 1528

  28. Dong X-Y, Wang R, Li J-B, Zang S-Q, Hou H-W, Mac TCW (2013) Chem Commun 49:10590

    Article  CAS  Google Scholar 

  29. Xing W-H, Li H-Y, Dong X-Y, Zang S-Q (2018) J Mater Chem A 6:7724

    Article  CAS  Google Scholar 

  30. Dong X-Y, Wang R, Wang J-Z, Zang S-Q, Mak TCW (2015) J Mater Chem A 3:641

    Article  CAS  Google Scholar 

  31. Wang H-H, Zhou L-J, Wang Y-L, Liu Q-Y (2016) Inorg Chem Commun 73:94

    Article  CAS  Google Scholar 

  32. Joarder B, Lin J-B, Romero Z, Shimizu GKH (2017) J Am Chem Soc 13:7176

    Article  CAS  Google Scholar 

  33. Côté AP, Shimizu GKH (2003) Chem Eur J 9:5361

    Article  PubMed  CAS  Google Scholar 

  34. Dalrymple SA, Shimizu GKH (2002) Chem Eur J 8:3011

    Article  Google Scholar 

  35. Platero-Prats AE, Iglesias M, Snejko N, Monge MÁ, Gutiérrez-Puebla E (2011) Cryst Growth Des 11:1750

    Article  CAS  Google Scholar 

  36. Perles J, Snejko N, Iglesias M, Monge MÁ (2009) J Mater Chem 19:6504

    Article  CAS  Google Scholar 

  37. Chandler BD, Cramb DT, Shimizu GKH (2006) J Am Chem Soc 128:10403

    Article  CAS  PubMed  Google Scholar 

  38. Chandler BD, Yu JO, Cramb DT, Shimizu GKH (2007) Chem Mater 19:4467

    Article  CAS  Google Scholar 

  39. Hurd JA, Vaidhyanathan R, Thangadurai V, Ratcliffe CI, Moudrakovski IL, Shimizu GKH (2009) Nat Chem 1:705

    Article  CAS  PubMed  Google Scholar 

  40. Zhang G, Wei G, Liu Z, Oliver SRJ, Fei H (2016) Chem Mater 28:6276

    Article  CAS  Google Scholar 

  41. Zhang G, Fei H (2017) Chem Commun 53:4156

    Article  CAS  Google Scholar 

  42. Zhang G, Yang H, Fei H (2018) ACS Catal 8:2519

    Article  CAS  Google Scholar 

  43. Li P, Regati S, Huang H-C, Arman HD, Chen B-L, Zhao JC-G (2015) Chin Chem Lett 26:6

    Article  CAS  Google Scholar 

  44. Desai AV, Joarder B, Roy A, Appl ACS (2018) ACS Appl Mater Interfaces 10:39049

    Article  CAS  PubMed  Google Scholar 

  45. Panda DK, Maity K, Paluposhka A (2019) ACS Sustain Chem Eng 7:4619

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (51772217, 21971197), the Recruitment of Global Youth Experts of China, the Fundamental Research Funds for the Central Universities, and the Science & Technology Commission of Shanghai Municipality (14DZ226110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghan Fei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Metal-Organic Framework: From Design to Applications”; edited by Xian-He Bu, Michael J. Zaworotko, and Zhenjie Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Fei, H. Synthesis and Applications of Porous Organosulfonate-Based Metal–Organic Frameworks. Top Curr Chem (Z) 377, 32 (2019). https://doi.org/10.1007/s41061-019-0259-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-019-0259-y

Keywords

Navigation