Skip to main content
Log in

Task-Specific Properties and Prospects of Ionic Liquids in Cross-Coupling Reactions

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Ionic liquids (ILs) are considered as highly useful materials for potential diverse uses such as greener and more convenient alternatives to volatile organic solvents, reagents, additives, ligands and co-solvents. Thermal stability, negligible vapor pressure and high polarity with ionic environments have possibly conferred some unique physico-chemical properties and a wider electrochemical window on ILs. More importantly, these properties are tuneable, depending on variations in alkyl chains and counter-anions. On the other hand, various transition-metal-catalyzed cross-coupling reactions constitute an important backbone of contemporary organic synthesis. A vast number of C–C and C-heteroatom cross-coupling reactions are reported in the presence of ILs, often showing better performance. The influence of IL on the action of a given catalyst or on the course of a reaction can be relatively complex, and is not understood well enough to be able to draw succinct conclusions. However, there are a few reports in the literature that help understand the role of actual and active catalytic species stabilized in an IL environment. Stabilization, which can be either helpful or detrimental to catalysis depends on specific circumstances. This review article is aimed primarily at summarizing the various applications of ILs during the past decade, focusing as far as possible on the task-specific properties of ILs in transition-metal-catalyzed C–C and C-heteroatom cross-coupling reactions. Several successful achievements and noteworthy progress in this field of research leads to the sensible conclusion that future prospects in this field of research are not only bright but promise new horizons.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Fig. 3
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Fig. 4
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Fig. 5
Scheme 43
Scheme 44
Scheme 45
Fig. 6
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Scheme 58
Scheme 59
Scheme 60
Scheme 61
Scheme 62
Scheme 63
Scheme 64
Scheme 65
Scheme 66
Fig. 7

Similar content being viewed by others

Abbreviations

bbim:

1,3-Dibutylimidazolium

bdim:

1-Butyl-2,3-dimethylimidazolium

bmim:

1-Butyl-3-methylimidazolium

bmpy:

N,N-butylmethylpyrrolidinium

[C4-DABCO][dca]:

1-Butyl-1,4-diazabicyclo[2,2,2]octane dicyanamide

[C6-DABCO][BF4]:

1-Hexyl-4-aza-1-azaniabicyclo[2.2.2]octyl tetrafluoroborate

dba:

Dibenzylidineacetone

DIB:

Diacetoxyiodobenzene

DMAc:

Dimethylacetamide

DMAP:

N,N-Dimethylaminopyridine

dmdim:

3,3′-[1,7-(2,6-Dioxaheptane)]bis(1,2-dimethylimidazolium)

dmiop:

1,2-Dimethyl-3-propoxymethylimidazolium

dppe:

1,2-Bis(diphenylphosphino)ethane

dppf:

1,1′-Bis(diphenylphosphino)ferrocene

dppp:

1,3-Bis(diphenylphosphino)propane

emim:

1-Ethyl-3-methylimidazolium

HIPE:

High internal phase emulsion

ICP:

High internal phase emulsion

MCM:

Mobil company of matter

MW:

Microwave

MWCNT:

Multi-walled carbon nanotube

NHC:

N-Heterocyclic carbene

opic:

Octyl picolinium

PDVB:

Polydivinylbenzene

SBA:

Santa barbara amorphous type material (mesoporous silica)

SEM–EDX:

Scanning electron microscopy–energy dispersive X-ray

TBA:

Tributylamine

TBAA:

Tetrabutylammonium acetate

TEA:

Triethylamine

TEM:

Transmission electron microscopy

TGA:

Thermogravimetric analysis

THP-Cl:

Trihexyltetradecylphosphonium chloride

[tmba][NTf2]:

N-trimethyl-N-butylammonium bis(trifluroromethylsulfonyl)imide

[tmba][PF6]:

N-trimethyl-N-butylammonium hexafluorophosphate

[tpim]Cl:

1-(3-Triethoxysilylpropyl)-3-methylimidazolium chloride

US:

Ultrasound

References

  1. Contugno P, Casiello M, Nacci A, Mastrorilli P, Dell’Anna MM, Monopoli A (2014) J Organomet Chem 752:1–5

    Google Scholar 

  2. Palacio M, Bhusan B (2010) Tribol Lett 40:247–268

    CAS  Google Scholar 

  3. Khare V, Ruby C, Sonkaria S, Taubert A (2012) Int J Precis Eng Manuf 13:1207–1213

    Google Scholar 

  4. Dyson JP, Geldbach TJ (2005) Metal catalyzed reactions in ionic liquids. Springer, The Netherlands

    Google Scholar 

  5. Favier I, Madec D, Gómez M (2013) Metallic nanoparticles in ionic liquids—Applications in catalysis. In: Serp P, Philippo K (eds) Nanomaterials in catalysis. Wiley, Weinheim

    Google Scholar 

  6. Walden P (1914) Bull Acad Imper Sci 8:405–422

  7. Earle MJ, Seddon KP (2000) Pure Appl Chem 72:1391–1398

    CAS  Google Scholar 

  8. Newington I, Perez-Arlandis JM, Welton T (2007) Org Lett 19:5247–5250

    Google Scholar 

  9. Welton T (1999) Chem Rev 99:2071–2084

    CAS  PubMed  Google Scholar 

  10. Kunz W, Häckl K (2016) Chem Phy Lett 661:6–12

    CAS  Google Scholar 

  11. Vekariya RJ (2017) J Mol Liq 227:44–60

    CAS  Google Scholar 

  12. Calò V, Nacci A, Monopoli A, Fornaro A, Sabbatini L, Cioffi N, Ditaranto N (2004) Organometallics 23:5154–5158

    Google Scholar 

  13. Calò V, Nacci A, Monopoli A, Leva E, Cioffi N (2005) Org Lett 7:617–620

    PubMed  Google Scholar 

  14. Cotugno P, Casiello M, Nacci A, Mastrorilli P, Dell’Anna MM, Monopoli A (2014) J Organomet Chem 752:1–5

    CAS  Google Scholar 

  15. Pérez FRF, Schlegel I, Julve M, Anmentano D, Munno GD, Stiriba SE (2013) J Organomet Chem 743:102–108

    Google Scholar 

  16. Wilkes JS, Levisky JA, Wilson RA, Hussey CL (1982) Inorg Chem 21:1263–1264

    CAS  Google Scholar 

  17. Wilkes JS, Zaworotko MJ (1992) J Chem Soc Chem Commun 13:965–967

    Google Scholar 

  18. Davis JH (2004) Chem Lett 33:1072–1077

    CAS  Google Scholar 

  19. Wang L, Li H, Li P (2009) Tetrahedron 65:364–368

    CAS  Google Scholar 

  20. Premi C, Jain N (2013) Eur J Org Chem 24:5493–5499

    Google Scholar 

  21. Boruah PR, Koiri MJ, Bora U, Sarma D (2014) Tetrahedron Lett 55:2423–2425

    CAS  Google Scholar 

  22. Mathews CJ, Smith PJ, Welton T (2000) Chem Commun 50:1249–1250

    Google Scholar 

  23. Revell JD, Ganesan A (2002) Org Lett 4:3071–3073

    CAS  PubMed  Google Scholar 

  24. Handy SC (2006) Synlett 18:3176–3178

    Google Scholar 

  25. Hierso J-C, Boudon J, Picquet M, Meunier P (2007) Eur J Org Chem 4:583–587

    Google Scholar 

  26. Hierso J-C, Picquet M, Cattey H, Meunier P (2006) Synlett 18:3005–3008

    Google Scholar 

  27. Saleh S, Picqet M, Meunier P, Hierso J-C (2009) Tetrahedron 65:7146–7150

    CAS  Google Scholar 

  28. Xie X, Chen B, Lu J, Han J, She X, Pan X (2004) Tetrahedron Lett 45:6235–6237

    CAS  Google Scholar 

  29. Baslé O, Borduas N, Dubois P, Chapuzet JM, Chan TH, Lessard J, Li CJ (2010) Chem Eur J 16:8162–8166

    PubMed  Google Scholar 

  30. Kabalka GW, Dong G, Venkataiah B (2004) Tetrahedron Lett 45:2775–2777

    CAS  Google Scholar 

  31. Hao W, Xi Z, Cai M (2012) Synth Commun 42:2396–2406

    CAS  Google Scholar 

  32. Kalkhambkar RG, Laali KK (2011) Tetrahedron Lett 52:5525–5529

    CAS  Google Scholar 

  33. Okoturo OO, VanderNoot TJ (2004) J Electroanal Chem 568:167–181

    CAS  Google Scholar 

  34. Zhao DB, Fei ZF, Scopelliti R, Dyson P (2004) J Inorg Chem 43:2197–2205

    CAS  Google Scholar 

  35. Zhou Z, Matsumoto H, Tatsumi K (2004) Chem Eur J 10:6581–6591

    CAS  PubMed  Google Scholar 

  36. Khupse ND, Kumar A (2010) Indian J Chem Sect A 49:635–648

    Google Scholar 

  37. Wang M, Yuan X, Li H, Ren L, Sun Z, Hou Y, Chu W (2015) Catal Commun 58:154–157

    CAS  Google Scholar 

  38. Song H, Yan N, Fei ZZ, Kilpin KJ, Scopelliti R, Li X, Dyson PJ (2012) Catal Today 183:172–177

    CAS  Google Scholar 

  39. Conte V, Fiorani G, Floris B, Galloni M, Woodward S (2010) Appl Catal A 381:161–168

    CAS  Google Scholar 

  40. Liu X, Mao Y, Lu M (2012) Appl Organomet Chem 26:305–309

    Google Scholar 

  41. Zhao H, Hao W, Xi Z, Cai M (2011) New J Chem 35:2661–2665

    CAS  Google Scholar 

  42. Schwab RS, Singh D, Alberto EE, Piquini P, Rodrigues OE, Braga AL (2011) Catal Sci Technol 1:569–573

    CAS  Google Scholar 

  43. Kalkhambkar RG, Laali KK (2012) Tetrahedron Lett 53:4212–4215

    CAS  Google Scholar 

  44. Pandurangachar M, Swamy BEK, Chandrashekar BN, Gilbert O, Sherigara BSJ (2011) Mol Liq 158:13–17

    CAS  Google Scholar 

  45. Meindersma GW, Hansmeier AR, de Haan AB (2010) Ind Eng Chem Res 49:7530–7540

    CAS  Google Scholar 

  46. Ortiz A, Galán LM, Gorri D, de Haan AB, Ortiz I (2010) Ind Eng Chem Res 49:7227–7233

    CAS  Google Scholar 

  47. Castro KLS, Lima PG, Miranda LSM, Souza ROA (2011) Tetrahedron Lett 52:4168–4173

    Google Scholar 

  48. Harjani JR, Abraham TJ, Gomez AT, Garcia MT, Singer RD, Scammells PJ (2010) Green Chem 12:650–655

    CAS  Google Scholar 

  49. Papageni A, Trombini C, Lombardo M, Bergantin S, Chams A, Chiarucci M, Miozzo L, Parraviucini M (2011) Organometallics 30:4325–4329

    Google Scholar 

  50. Fukuyama T, Rahaman MT, Maetani S, Ryu I (2011) Chem Lett 40:1027–1029

    CAS  Google Scholar 

  51. Keβler MT, Robke S, Sahler S, Prechtl MHG (2014) Catal Sci Technol 4:102–108

    Google Scholar 

  52. Taskin M, Cognigni A, Zirbs R, Reimhult E, Bica K (2017) RSC Adv 7:41144–41151

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hassine F, Pacheault M, Vaultier M (2011) C R Chim 14:671–679

    CAS  Google Scholar 

  54. Faye D, Vybornyi M, Boeda F, Legoupy S (2013) Tetrahedron 69:5421–5425

    CAS  Google Scholar 

  55. Gade LH, Bellemin-Laponnaz S (2007) Coord Chem Rev 251:718–725

    CAS  Google Scholar 

  56. Worm-Leonhard K, Meldal M (2008) Eur J Org Chem 31:5244–5253

    Google Scholar 

  57. Herrmann WA, Reisinger C, Spiegler M (1998) J Organomet Chem 557:93–96

    CAS  Google Scholar 

  58. Gründemann S, Kovacevic A, Albrecht M, Faller JW, Crabtree RH (2001) Chem Commun 2001:2274–2275

  59. Arnold PL, Pearson S (2007) Coord Chem Rev 251:596–609

    CAS  Google Scholar 

  60. Wang AE, Xie JH, Wang LX, Zhou QL (2005) Tetrahedron 61:259–266

    CAS  Google Scholar 

  61. Ke H, Chen X, Zou G (2014) Appl Organomet Chem 28:54–60

    CAS  Google Scholar 

  62. Shi JC, Yu H, Jiang D, Yu M, Huang Y, Nong L, Zhang Q, Jin Z (2014) Catal Lett 144:158–164

    CAS  Google Scholar 

  63. Zhong R, Pothing A, Feng Y, Riener K, Herrmann WA, Kuhn FE (2014) Green Chem 16:4955–4962

    CAS  Google Scholar 

  64. Otsuka S, Fujino D, Murakami K, Yorimitsu H, Osuka A (2014) Chem Eur J 20:13146–13149

    CAS  PubMed  Google Scholar 

  65. Sutar RL, Kumar V, Shingare RD, Thorat S, Gonnade R, Reddy DS (2014) Eur J Org Chem 21:4482–4486

    Google Scholar 

  66. Chua YY, Duong HA (2014) Chem Commun 50:8424–8427

    CAS  Google Scholar 

  67. Demir S, Özdemir İ, Çetinkaya B, Arslan H, Van Derveer D (2011) Polyhedron 30:195–200

    CAS  Google Scholar 

  68. Gooßen LJ, Paetzold J, Briel O, Rivas-Nass A, Karch R, Kayser B (2005) Synlett 2:275–278

    Google Scholar 

  69. Iglesias M, Prieto A, Nicasio MC (2010) Adv Synth Catal 352:1949–1954

    CAS  Google Scholar 

  70. Xu X, Xu B, Li Y, Hong SH (2010) Organometallics 29:6343–6346

    CAS  Google Scholar 

  71. Wang Z, Yu Y, Zhang YX, Li SZ, Quian H, Lin ZY (2015) Green Chem 17:413–420

    CAS  Google Scholar 

  72. Ke H, Chen X, Zhou G (2014) J Org Chem 79:7132–7140

    CAS  PubMed  Google Scholar 

  73. Lamblin M, Nassar-Hardy L, Hierso JC, Fouquet E, Felpinb FX (2010) Adv Synth Catal 352:33

    CAS  Google Scholar 

  74. Liu R, Wu C, Wang Q, Ming J, Hao Y, Yu Y, Zhao F (2009) Green Chem 11:979–985

    CAS  Google Scholar 

  75. Dupont J, Scholten JD (2010) Chem Soc Rev 39:1780–1804

    CAS  PubMed  Google Scholar 

  76. Ornelas C, Salmon L, Aranzaes JR, Astruc D (2007) Chem Commun 46:4946–4948

    Google Scholar 

  77. Hendricks TR, Dams EE, Wensing ST, Lee I (2007) Langmuir 23:7404–7410

    CAS  PubMed  Google Scholar 

  78. Rossi LM, Nangoi IM, Costa NJS (2009) Inorg Chem 48:4640–4642

    CAS  PubMed  Google Scholar 

  79. Park JN, Forman AJ, Tang W, Cheng J, Hu YS, Lin H, McFarland EW (2008) Small 4:1694–1697

    CAS  PubMed  Google Scholar 

  80. Prechtl MHG, Scholten JD, Dupont J (2010) Molecules 15:3441–3461

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang J, Xu B, Sun H, Song G (2013) Tetrahedron Lett 54:238–241

    Google Scholar 

  82. Durand J, Teuma E, Gόmez M (2008) Eur J Inorg Chem 23:3577–3586

    Google Scholar 

  83. Durand J, Teuma E, Malbosc F, Kihn Y, Gόmez M (2008) Catal Commun 9:273–275

    CAS  Google Scholar 

  84. Raluy E, Favier I, Lόpez-Vinasco AM, Pradel C, Martin E, Madec D, Teuma E, Gόmez M (2011) Phys Chem Chem Phys 13:13579–13584

    CAS  PubMed  Google Scholar 

  85. López-Vinasco AM, Guerrero-Ríos I, Favier I, Pradel C, Teuma E, Gómez M, Martin E (2015) Catal Commun 63:56–61

    Google Scholar 

  86. Huang Y, Wei Q, Wang Y, Dai L (2018) Carbon 136:150–159

    CAS  Google Scholar 

  87. Li L, Wang J, Wu T, Wang R (2018) Chem Eur J 18:7842–7845

    Google Scholar 

  88. Rodríguez-Pérez L, Coppel Y, Favier I, Teuma E, Serp P, Gόmez M (2010) Dalton Trans 39:7565–7568

    PubMed  Google Scholar 

  89. Gruttadauria M, Liotta LF, Salvo AMP, Giacalone F, Parola VL, Aprile C, Noto R (2011) Adv Synth Catal 353:2119–2130

    CAS  Google Scholar 

  90. Zhang J, Zhao GF, Popovic Z, Lu Y, Li Y (2010) Mater Res Bull 45:1648–1653

    Google Scholar 

  91. Rostamnia S, Hossieni HG, Doustkhah E (2015) J Organomet Chem 791:18–23

    CAS  Google Scholar 

  92. Brun N, Hesemann P, Laurent G, Sanchez C, Birot M, Deleuze H, Backov R (2013) New J Chem 37:157–168

    CAS  Google Scholar 

  93. Vu H, Gonçalves F, Philippe R, Lamouroux E, Corrias M, Kihn Y, Plee D, Kalck P, Serp P (2006) J Catal 240:18–22

    CAS  Google Scholar 

  94. Serp P, Castillejos E (2010) ChemCatChem 2:41–47

    CAS  Google Scholar 

  95. Serp P, Corrias M, Kalck P (2003) Appl Catal A 253:337–358

    CAS  Google Scholar 

  96. Rodríguez-Pérez L, Pradel C, Serp P, Gόmez M, Teuma E (2011) ChemCatChem 3:749–754

    Google Scholar 

  97. Jagadale M, Kale D, Salunkhe R, Rajmane M, Rashinkar G (2018) J Mol Liq 265:525–535

    CAS  Google Scholar 

  98. More S, Jadhav S, Salunkhe R, Kumbhar A (2017) Mol Catal 442:126–132

    CAS  Google Scholar 

  99. Alam MN, Sarkar SM (2011) React Kinet Mech Catal 103:493

    CAS  Google Scholar 

  100. Debono N, Labande A, Manoury E, Daran JC, Poli R (2010) Organometallics 29:1879–1882

    CAS  Google Scholar 

  101. Liu G, Hou M, Sang J, Jiang T, Fan H, Zhang Z, Han B (2010) Green Chem 12:65–69

    CAS  Google Scholar 

  102. Silarska E, Trzeciaka AM, Pernakb J, Skrzypczak A (2013) Appl Catal A 466:216–223

    CAS  Google Scholar 

  103. Prasad V, Kale RR, Mishra BB, Kumar D, Tiwari VK (2012) Org Lett 14:2936–2939

    CAS  PubMed  Google Scholar 

  104. Gao H, Zhou Y, Sheng X, Zhao S, Zhang C, Fang J, Wang B (2018) Appl Catal A Gen 552:138–146

    CAS  Google Scholar 

  105. Wilson M, Kore R, Ritchie AW, Fraser RC, Beaumont SK, Srivastava R, Badyal JPS (2018) Colloids Surf A 545:78–85

    CAS  Google Scholar 

  106. Welton T (2018) Biophys Rev 10:691–706

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basudeb Basu.

Ethics declarations

Conflict of Interest

Authors declare that there are no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, B., Ghosh, S. & Basu, B. Task-Specific Properties and Prospects of Ionic Liquids in Cross-Coupling Reactions. Top Curr Chem (Z) 377, 30 (2019). https://doi.org/10.1007/s41061-019-0255-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-019-0255-2

Keywords

Navigation