Skip to main content

Recent Advances in First-Row Transition Metal/Chiral Phosphoric Acid Combined Catalysis

Abstract

Since the pioneering independent reports of Akiyama and Terada, the use of chiral phosphoric acids (CPAs) and derivatives as a versatile tool for asymmetric synthesis with good reactivity, regioselectivity, diastereoselectivity and enantioselectivity has emerged, forming an important part of the implementation of asymmetric counteranion-directed catalysis reported to date. In these achievements, the combination of metals with CPAs has enabled various catalytic modes beyond the scope of typical acid catalysis, such as relay catalysis, ion-pairing catalysis, and binary acid catalysis. The first-row transition metals (Sc–Zn) are considered to be sustainable transition metals and have received a great deal of attention. These naturally abundant metals display excellent Lewis acidity and function as powerful redox catalysts in synthesis involving both one and two-electron transfers. Hence, in this chapter, we summarize recent advances in the development of asymmetric reactions using a combination of first-row transition metals and CPAs. Furthermore, we provide a detailed discussion of the mechanisms involved in order to understand the interaction of the metal/phosphate and the origins of the asymmetric control of the transformations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2a–d
Fig. 3
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39

References

  1. Mlynarski J (ed) (2017) Chiral Lewis acids in organic synthesis. Wiley, Weinheim

    Google Scholar 

  2. Akiyama T (2007) Chem Rev 107:5744–5758

    CAS  PubMed  Google Scholar 

  3. Parmar D, Sugiono E, Raja S, Rueping M (2014) Chem Rev 114:9047–9153

    CAS  PubMed  Google Scholar 

  4. Parmar D, Sugiono E, Raja S, Rueping M (2017) Chem Rev 117:10608–10620

    CAS  PubMed  Google Scholar 

  5. Maji R, Mallojjala SC, Wheeler SE (2018) Chem Soc Rev 47:1142–1158

    CAS  PubMed  Google Scholar 

  6. Akiyama T, Itoh J, Yokota K, Fuchibe K (2004) Angew Chem Int Ed 43:1566–1568

    CAS  Google Scholar 

  7. Uraguchi D, Terada M (2004) J Am Chem Soc 126:5356–5357

    CAS  PubMed  Google Scholar 

  8. Terada M (2008) Chem Commun 35:4097–4112

    Google Scholar 

  9. Terada M (2010) Synthesis 12:1929–1982

    Google Scholar 

  10. Masahiro T (2010) Bull Chem Soc Jpn 83:101–119

    Google Scholar 

  11. Schenker S, Zamfir A, Freund M, Tsogoeva SB (2011) Eur J Org Chem 12:2209–2222

    Google Scholar 

  12. Stemper J, Isaac K, Duret V, Retailleau P, Voituriez A, Betzer J-F, Marinetti A (2013) Chem Commun 49:6084–6086

    CAS  Google Scholar 

  13. Stemper J, Isaac K, Ghosh N, Lauwick H, Le Duc G, Retailleau P, Voituriez A, Betzer J-F, Marinetti A (2017) Adv Synth Catal 359:519–526

    CAS  Google Scholar 

  14. Stemper J, Isaac K, Pastor J, Frison G, Retailleau P, Voituriez A, Betzer J-F, Marinetti A (2013) Adv Synth Catal 355:3613–3624

    CAS  Google Scholar 

  15. Zhu J-C, Cui D-X, Li Y-D, Jiang R, Chen W-P, Wang P-A (2018) ChemCatChem 10:907–919

    CAS  Google Scholar 

  16. Isaac K, Stemper J, Servajean V, Retailleau P, Pastor J, Frison G, Kaupmees K, Leito I, Betzer J-F, Marinetti A (2014) J Org Chem 79:9639–9646

    CAS  PubMed  Google Scholar 

  17. Yang C, Xue X-S, Jin J-L, Li X, Cheng J-P (2013) J Org Chem 78:7076–7085

    CAS  PubMed  Google Scholar 

  18. Rueping M, Kuenkel A, Atodiresei I (2011) Chem Soc Rev 40:4539–4549

    CAS  PubMed  Google Scholar 

  19. Chen D-F, Han Z-Y, Zhou X-L, Gong L-Z (2014) Acc Chem Res 47:2365–2377

    CAS  PubMed  Google Scholar 

  20. Allen AE, MacMillan DWC (2012) Chem Sci 3:633–658

    CAS  Google Scholar 

  21. Du Z, Shao Z (2013) Chem Soc Rev 42:1337–1378

    CAS  PubMed  Google Scholar 

  22. Shao Z, Zhang H (2009) Chem Soc Rev 38:2745–2755

    CAS  PubMed  Google Scholar 

  23. Zhong C, Shi X (2010) Eur J Org Chem 16:2999–3025

    Google Scholar 

  24. Inamdar SM, Shinde VS, Patil NT (2015) Org Biomol Chem 13:8116–8162

    CAS  PubMed  Google Scholar 

  25. Yang Z-P, Zhang W, You S-L (2014) J Org Chem 79:7785–7798

    CAS  PubMed  Google Scholar 

  26. Rueping M, Koenigs RM, Atodiresei I (2010) Chem Eur J 16:9350–9365

    CAS  PubMed  Google Scholar 

  27. Phipps RJ, Hamilton GL, Toste FD (2012) Nat Chem 4:603–614

    CAS  PubMed  Google Scholar 

  28. Brak K, Jacobsen EN (2013) Angew Chem Int Ed 52:534–561

    CAS  Google Scholar 

  29. Mayer S, List B (2006) Angew Chem Int Ed 45:4193–4195

    CAS  Google Scholar 

  30. Parra A, Reboredo S, Martín Castro AM, Alemán J (2012) Org Biomol Chem 10:5001–5020

    CAS  PubMed  Google Scholar 

  31. Mahlau M, List B (2013) Angew Chem Int Ed 52:518–533

    CAS  Google Scholar 

  32. Lv J, Luo S (2013) Chem Commun 49:847–858

    CAS  Google Scholar 

  33. Mukherjee S, List B (2007) J Am Chem Soc 129:11336–11337

    CAS  PubMed  Google Scholar 

  34. Yan S-Y, Han Y-Q, Yao Q-J, Nie X-L, Liu L, Shi B-F (2018) Angew Chem Int Ed 57:9093–9097

    CAS  Google Scholar 

  35. Lin H-C, Wang P-S, Tao Z-L, Chen Y-G, Han Z-Y, Gong L-Z (2016) J Am Chem Soc 138:14354–14361

    CAS  PubMed  Google Scholar 

  36. Rueping M, Antonchick AP, Brinkmann C (2007) Angew Chem Int Ed 46:6903–6906

    CAS  Google Scholar 

  37. Terada M, Li F, Toda Y (2014) Angew Chem Int Ed 53:235–239

    CAS  Google Scholar 

  38. Hu W, Xu X, Zhou J, Liu W-J, Huang H, Hu J, Yang L, Gong L-Z (2008) J Am Chem Soc 130:7782–7783

    CAS  PubMed  Google Scholar 

  39. Jiang J, Xu H-D, Xi J-B, Ren B-Y, Lv F-P, Guo X, Jiang L-Q, Zhang Z-Y, Hu W-H (2011) J Am Chem Soc 133:8428–8431

    CAS  PubMed  Google Scholar 

  40. Alamsetti SK, Spanka M, Schneider C (2016) Angew Chem Int Ed 55:2392–2396

    CAS  Google Scholar 

  41. Li C, Wang C, Villa-Marcos B, Xiao J (2008) J Am Chem Soc 130:14450–14451

    CAS  PubMed  Google Scholar 

  42. Miura T, Nishida Y, Morimoto M, Murakami M (2013) J Am Chem Soc 135:11497–11500

    CAS  PubMed  Google Scholar 

  43. Rong Z-Q, Zhang Y, Chua RHB, Pan H-J, Zhao Y (2015) J Am Chem Soc 137:4944–4947

    CAS  PubMed  Google Scholar 

  44. Han Z-Y, Xiao H, Chen X-H, Gong L-Z (2009) J Am Chem Soc 131:9182–9183

    CAS  PubMed  Google Scholar 

  45. Liu X-Y, Che C-M (2009) Org Lett 11:4204–4207

    CAS  PubMed  Google Scholar 

  46. Muratore ME, Holloway CA, Pilling AW, Storer RI, Trevitt G, Dixon DJ (2009) J Am Chem Soc 131:10796–10797

    CAS  PubMed  Google Scholar 

  47. Hamilton GL, Kang EJ, Mba M, Toste FD (2007) Science 317:496

    CAS  PubMed  Google Scholar 

  48. Zbieg JR, Yamaguchi E, McInturff EL, Krische MJ (2012) Science 336:324–327

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Cai Q, Zhao Z-A, You S-L (2009) Angew Chem Int Ed 48:7428–7431

    CAS  Google Scholar 

  50. Sorimachi K, Terada M (2008) J Am Chem Soc 130:14452–14453

    CAS  PubMed  Google Scholar 

  51. Komanduri V, Krische MJ (2006) J Am Chem Soc 128:16448–16449

    CAS  PubMed  Google Scholar 

  52. Pellissier H (2019) Coord Chem Rev 386:1–31

    CAS  Google Scholar 

  53. Yu P, Lin J-S, Li L, Zheng S-C, Xiong Y-P, Zhao L-J, Tan B, Liu X-Y (2014) Angew Chem Int Ed 53:11890–11894

    CAS  Google Scholar 

  54. Rauniyar V, Wang ZJ, Burks HE, Toste FD (2011) J Am Chem Soc 133:8486–8489

    CAS  PubMed  Google Scholar 

  55. Ren L, Lei T, Ye J-X, Gong L-Z (2012) Angew Chem Int Ed 51:771–774

    CAS  Google Scholar 

  56. Chen L, Zhang L, Lv J, Cheng J-P, Luo S (2012) Chem Eur J 18:8891–8895

    CAS  PubMed  Google Scholar 

  57. Mori K, Isogai R, Kamei Y, Yamanaka M, Akiyama T (2018) J Am Chem Soc 140:6203–6207

    CAS  PubMed  Google Scholar 

  58. Hatano M, Moriyama K, Maki T, Ishihara K (2010) Angew Chem Int Ed 49:3823–3826

    CAS  Google Scholar 

  59. Alix A, Lalli C, Retailleau P, Masson G (2012) J Am Chem Soc 134:10389–10392

    CAS  PubMed  Google Scholar 

  60. Domżalska A, Ulikowski A, Furman B (2017) Alkaline earth metal based chiral lewis acids. In: Mlynarski J (ed) Chiral Lewis acids in organic synthesis. Wiley-VCH, Weinheim, pp 1–23 https://doi.org/10.1002/9783527802142.ch1

    Google Scholar 

  61. Lv J, Zhang L, Luo S, Cheng J-P (2013) Angew Chem Int Ed 52:9786–9790

    CAS  Google Scholar 

  62. Wang L, Lv J, Zhang L, Luo S (2017) Angew Chem Int Ed 56:10867–10871

    CAS  Google Scholar 

  63. Chirik P, Morris R (eds) (2015) Special Issue: Earth abundant metals in homogeneous catalysis. Acc Chem Res 48:(whole issue)

  64. Egorova KS, Ananikov VP (2016) Angew Chem Int Ed 55:12150–12162

    CAS  Google Scholar 

  65. Alig L, Fritz M, Schneider S (2019) Chem Rev 119:2681–2751

    CAS  PubMed  Google Scholar 

  66. Crossley SWM, Obradors C, Martinez RM, Shenvi RA (2016) Chem Rev 116:8912–9000

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Pellissier H, Clavier H (2014) Chem Rev 114:2775–2823

    CAS  PubMed  Google Scholar 

  68. Bauer I, Knölker H-J (2015) Chem Rev 115:3170–3387

    CAS  PubMed  Google Scholar 

  69. Tzouras NV, Stamatopoulos IK, Papastavrou AT, Liori AA, Vougioukalakis GC (2017) Coord Chem Rev 343:25–138

    CAS  Google Scholar 

  70. Chirik P, Morris R (2015) Acc Chem Res 48:2495

    CAS  PubMed  Google Scholar 

  71. Choi J, Fu GC (2017) Science 356:7230–7239

    Google Scholar 

  72. Wang F, Chen P, Liu G (2018) Acc Chem Res 51:2036–2046

    CAS  PubMed  Google Scholar 

  73. Kainz QM, Matier CD, Bartoszewicz A, Zultanski SL, Peters JC, Fu GC (2016) Science 351:681

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Fischer C, Fu GC (2005) J Am Chem Soc 127:4594–4595

    CAS  PubMed  Google Scholar 

  75. Son S, Fu GC (2008) J Am Chem Soc 130:2756–2757

    CAS  PubMed  Google Scholar 

  76. Schley ND, Fu GC (2014) J Am Chem Soc 136:16588–16593

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Tasker SZ, Standley EA, Jamison TF (2014) Nature 509:299

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Liao S, List B (2010) Angew Chem Int Ed 49:628–631

    CAS  Google Scholar 

  79. McGarrigle EM, Gilheany DG (2005) Chem Rev 105:1563–1602

    CAS  PubMed  Google Scholar 

  80. Merten C, Pollok CH, Liao S, List B (2015) Angew Chem Int Ed 54:8841–8845

    CAS  Google Scholar 

  81. Gebauer K, Reuß F, Spanka M, Schneider C (2017) Org Lett 19:4588–4591

    CAS  PubMed  Google Scholar 

  82. El-Sepelgy O, Haseloff S, Alamsetti SK, Schneider C (2014) Angew Chem Int Ed 53:7923–7927

    CAS  Google Scholar 

  83. Chen X, Jiang H, Hou B, Gong W, Liu Y, Cui Y (2017) J Am Chem Soc 139:13476–13482

    CAS  PubMed  Google Scholar 

  84. Liao S, List B (2012) Adv Synth Catal 354:2363–2367

    CAS  Google Scholar 

  85. Narute S, Parnes R, Toste FD, Pappo D (2016) J Am Chem Soc 138:16553–16560

    CAS  PubMed  Google Scholar 

  86. Narute S, Pappo D (2017) Org Lett 19:2917–2920

    CAS  PubMed  Google Scholar 

  87. Morris RH (2016) Chem Rev 116:8588–8654

    CAS  PubMed  Google Scholar 

  88. Zhang Z, Butt NA, Zhou M, Liu D, Zhang W (2018) Chin J Chem 36:443–454

    CAS  Google Scholar 

  89. Quintard A, Rodriguez J (2014) Angew Chem Int Ed 53:4044–4055

    CAS  Google Scholar 

  90. Zhou S, Fleischer S, Junge K, Beller M (2011) Angew Chem Int Ed 50:5120–5124

    CAS  Google Scholar 

  91. Zhou S, Fleischer S, Jiao H, Junge K, Beller M (2014) Adv Synth Catal 356:3451–3455

    CAS  Google Scholar 

  92. Fleischer S, Werkmeister S, Zhou S, Junge K, Beller M (2012) Chem Eur J 18:9005–9010

    CAS  PubMed  Google Scholar 

  93. Fleischer S, Zhou S, Werkmeister S, Junge K, Beller M (2013) Chem Eur J 19:4997–5003

    CAS  PubMed  Google Scholar 

  94. Hopmann KH (2015) Chem Eur J 21:10020–10030

    CAS  PubMed  Google Scholar 

  95. Lu L-Q, Li Y, Junge K, Beller M (2015) J Am Chem Soc 137:2763–2768

    CAS  PubMed  Google Scholar 

  96. Yang L, Zhu Q, Guo S, Qian B, Xia C, Huang H (2010) Chem Eur J 16:1638–1645

    CAS  PubMed  Google Scholar 

  97. Lv J, Zhong X, Luo S (2014) Chem Eur J 20:8293–8296

    CAS  PubMed  Google Scholar 

  98. Zhang L, Zhang J, Ma J, Cheng D-J, Tan B (2017) J Am Chem Soc 139:1714–1717

    CAS  PubMed  Google Scholar 

  99. Lalli C, van de Weghe P (2014) Chem Commun 50:7495–7498

    CAS  Google Scholar 

  100. Breugst M, Grée R, Houk KN (2013) J Org Chem 78:9892–9897

    CAS  PubMed  Google Scholar 

  101. Tsui GC, Liu L, List B (2015) Angew Chem Int Ed 54:7703–7706

    CAS  Google Scholar 

  102. Saito K, Kajiwara Y, Akiyama T (2013) Angew Chem Int Ed 52:13284–13288

    CAS  Google Scholar 

  103. Yazaki R, Kumagai N, Shibasaki M (2010) J Am Chem Soc 132:10275–10277

    CAS  PubMed  Google Scholar 

  104. Yazaki R, Kumagai N, Shibasaki M (2011) Chem Asian J 6:1778–1790

    CAS  PubMed  Google Scholar 

  105. Yazaki R, Kumagai N, Shibasaki M (2011) Org Lett 13:952–955

    CAS  PubMed  Google Scholar 

  106. Zhu Y, Cornwall RG, Du H, Zhao B, Shi Y (2014) Acc Chem Res 47:3665–3678

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhao B, Du H, Shi Y (2009) J Org Chem 74:8392–8395

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhao B, Peng X, Cui S, Shi Y (2010) J Am Chem Soc 132:11009–11011

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhao B, Peng X, Zhu Y, Ramirez TA, Cornwall RG, Shi Y (2011) J Am Chem Soc 133:20890–20900

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Plesniak MP, Huang H-M, Procter DJ (2017) Nat Rev Chem 1:77–92

    Google Scholar 

  111. Miyabe H, Kawashima A, Yoshioka E, Kohtani S (2017) Chem Eur J 23:6225–6236

    CAS  PubMed  Google Scholar 

  112. Sibi MP, Manyem S, Zimmerman J (2003) Chem Rev 103:3263–3296

    CAS  PubMed  Google Scholar 

  113. Tian Y, Chen S, Gu Q-S, Lin J-S, Liu X-Y (2018) Tetrahedron Lett 59:203–215

    CAS  Google Scholar 

  114. Li T, Yu P, Du Y-M, Lin J-S, Zhi Y, Liu X-Y (2017) J Fluor Chem 203:210–214

    CAS  Google Scholar 

  115. Lin J-S, Dong X-Y, Li T-T, Jiang N-C, Tan B, Liu X-Y (2016) J Am Chem Soc 138:9357–9360

    CAS  PubMed  Google Scholar 

  116. Lin J-S, Wang F-L, Dong X-Y, He W-W, Yuan Y, Chen S, Liu X-Y (2017) Nat Commun 8:14841–14851

    PubMed  PubMed Central  Google Scholar 

  117. Wang F-L, Dong X-Y, Lin J-S, Zeng Y, Jiao G-Y, Gu Q-S, Guo X-Q, Ma C-L, Liu X-Y (2017) Chem 3:979–990

    CAS  Google Scholar 

  118. Li X-F, Lin J-S, Wang J, Li Z-L, Gu Q-S, Liu X-Y (2018) Acta Chim Sin 76:878–882

    CAS  Google Scholar 

  119. Zeng Y, Liu X-D, Guo X-Q, Gu Q-S, Li Z-L, Chang X-Y, Liu X-Y (2019) Sci China Chem. https://doi.org/10.1007/s11426-019-9528-2

    Article  Google Scholar 

  120. Cheng Y-F, Dong X-Y, Gu Q-S, Yu Z-L, Liu X-Y (2017) Angew Chem Int Ed 56:8883–8886

    CAS  Google Scholar 

  121. Lin J-S, Li T-T, Liu J-R, Jiao G-Y, Gu Q-S, Cheng J-T, Guo Y-L, Hong X, Liu X-Y (2019) J Am Chem Soc 141:1074–1083

    CAS  PubMed  Google Scholar 

  122. Incerti-Pradillos CA, Hudson D, Malkov AV (2015) Asymmetric Catal 2:45–50

    CAS  Google Scholar 

  123. Lacasse M-C, Poulard C, Charette AB (2005) J Am Chem Soc 127:12440–12441

    CAS  PubMed  Google Scholar 

  124. Cornwall RG, Wong OA, Du H, Ramirez TA, Shi Y (2012) Org Biomol Chem 10:5498–5513

    CAS  PubMed  Google Scholar 

  125. Zheng Y, Zhang J (2010) Adv Synth Catal 352:1810–1817

    CAS  Google Scholar 

  126. Voituriez A, Charette AB (2006) Adv Synth Catal 348:2363–2370

    CAS  Google Scholar 

  127. Voituriez A, Zimmer LE, Charette AB (2010) J Org Chem 75:1244–1250

    CAS  PubMed  Google Scholar 

  128. Fuchs M, Schober M, Orthaber A, Faber K (2013) Adv Synth Catal 355:2499–2505

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang G-P, Chen M-Q, Zhu S-F, Zhou Q-L (2017) Chem Sci 8:7197–7202

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Furuno H, Hanamoto T, Sugimoto Y, Inanaga J (2000) Org Lett 2:49–52

    CAS  PubMed  Google Scholar 

  131. Furuno H, Kambara T, Tanaka Y, Hanamoto T, Kagawa T, Inanaga J (2003) Tetrahedron Lett 44:6129–6132

    CAS  Google Scholar 

  132. Furuno H, Hayano T, Kambara T, Sugimoto Y, Hanamoto T, Tanaka Y, Jin YZ, Kagawa T, Inanaga J (2003) Tetrahedron 59:10509–10523

    CAS  Google Scholar 

  133. Jin XL, Sugihara H, Daikai K, Tateishi H, Jin YZ, Furuno H, Inanaga J (2002) Tetrahedron 58:8321–8329

    CAS  Google Scholar 

  134. Jin XL, Sugihara H, Daikai K, Tateishi H, Jin YZ, Furuno H, Inanaga J (2003) Tetrahedron 59:877

    CAS  Google Scholar 

  135. Sugihara H, Daikai K, Jin XL, Furuno H, Inanaga J (2002) Tetrahedron Lett 43:2735–2739

    CAS  Google Scholar 

  136. Suzuki S, Furuno H, Yokoyama Y, Inanaga J (2006) Tetrahedron Asymmetry 17:504–507

    CAS  Google Scholar 

  137. Liu C, Lv J, Luo S, Cheng J-P (2014) Org Lett 16:5458–5461

    CAS  PubMed  Google Scholar 

  138. Jeong HJ, Kim DY (2018) Org Lett 20:2944–2947

    CAS  PubMed  Google Scholar 

  139. Gualandi A, Rodeghiero G, Cozzi PG (2018) Asian J Org Chem 7:1957–1981

    CAS  Google Scholar 

  140. Terada M, Ota Y, Li F, Toda Y, Kondoh A (2016) J Am Chem Soc 138:11038–11043

    CAS  PubMed  Google Scholar 

  141. Ota Y, Kondoh A, Terada M (2018) Angew Chem Int Ed 57:13917–13921

    CAS  Google Scholar 

  142. Terada M, Toda Y (2009) J Am Chem Soc 131:6354–6355

    CAS  PubMed  Google Scholar 

  143. Terada M, Komuro T, Toda Y, Korenaga T (2014) J Am Chem Soc 136:7044–7057

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (Nos 21722203, 21831002, and 21801116) and Shenzhen Nobel Prize Scientists Laboratory Project (C17783101) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Yuan Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Asymmetric Organocatalysis Combined with Metal Catalysis”, edited by Bruce A. Arndtsen, Liu-Zhu Gong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fang, GC., Cheng, YF., Yu, ZL. et al. Recent Advances in First-Row Transition Metal/Chiral Phosphoric Acid Combined Catalysis. Top Curr Chem (Z) 377, 23 (2019). https://doi.org/10.1007/s41061-019-0249-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-019-0249-0

Keywords

  • Asymmetric catalysis
  • First-row transition metals
  • Chiral phosphoric acids
  • Relay catalysis
  • Binary-acid catalysis
  • Enantioselectivity