Synthesis and Applications of Polymers Made by Inverse Vulcanization

Abstract

Elemental sulfur is an abundant and inexpensive chemical feedstock, yet it is underused as a starting material in chemical synthesis. Recently, a process coined inverse vulcanization was introduced in which elemental sulfur is converted into polymers by ring-opening polymerization, followed by cross-linking with an unsaturated organic molecule such as a polyene. The resulting materials have high sulfur content (typically 50–90% sulfur by mass) and display a range of interesting properties such as dynamic S–S bonds, redox activity, high refractive indices, mid-wave IR transparency, and heavy metal affinity. These properties have led to a swell of applications of these polymers in repairable materials, energy generation and storage, optical devices, and environmental remediation. This article will discuss the synthesis of polymers by inverse vulcanization and review case studies on their diverse applications. An outlook is also presented to discuss future opportunities and challenges for further advancement of polymers made by inverse vulcanization.

This is a preview of subscription content, log in to check access.

Fig. 1

Image credit: Gord McKenna, this image was reproduced under a Creative Commons license: https://www.flickr.com/photos/gord99/5170487123/

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Images were reproduced under an ACS Editors’ Choice license [35]

Fig. 6

Adapted under an ACS Author Choice license [27]

Fig. 7

This image was reproduced under a Creative Commons license [61]

Fig. 8
Fig. 9
Fig. 10

Image reproduced under an ACS Author Choice license [27]

Fig. 11

Reproduced with permission from Ref. [69]

Fig. 12

Image was adapted under a Creative Commons license and with permission of the authors [28]

Fig. 13

Reproduced under a Creative Commons license [30]

Fig. 14

Image reproduced under a Creative Commons license [75]

Fig. 15

Image was reproduced under a Creative Commons license [75]

Fig. 16

Image reproduced with permission from Ref. [76]

Fig. 17

Image reproduced with permission from Ref. [76]

References

  1. 1.

    Kutney G (2013) Sulfur: history, technology, applications and industry. ChemTec, Toronto

    Google Scholar 

  2. 2.

    Apodaca LE (2017) Mineral commodity summaries 2016. US Department of the Interior, US Geological Survey, Reston, Virginia, p 162–163

  3. 3.

    Worthington MJH, Kucera RL, Chalker JM (2017) Green Chem 19:2748–2761

    CAS  Google Scholar 

  4. 4.

    Griebel JJ, Glass RS, Char K, Pyun J (2016) Prog Polym Sci 58:90–125

    CAS  Google Scholar 

  5. 5.

    Simpson RB (ed) (2002) Rubber basics. Rapra Technology, Shawbury, UK

  6. 6.

    Blight LB, Currell BR, Nash BJ, Scott TM, Stillo C (1980) Br Polym J 12:5–11

    CAS  Google Scholar 

  7. 7.

    Currell BR, Williams AJ, Mooney AJ, Nash BJ (1975) Plasticization of sulfur. In: West J (ed) New uses of sulfur, vol 140. American Chemical Society, Washington, DC, pp 1–17

    Google Scholar 

  8. 8.

    Kemp AR, Malm FS (1935) Ind Eng Chem 27:141–146

    CAS  Google Scholar 

  9. 9.

    McBee WC, Sullivan TA, Fike HL (1985) Sulfur construction materials. United States Department of the Interior, Bureau of Mines, Washington, DC, Bulletin 678, pp 1–31

    Google Scholar 

  10. 10.

    Chung WJ, Griebel JJ, Kim ET, Yoon H, Simmonds AG, Ji HJ, Dirlam PT, Glass RS, Wie JJ, Nguyen NA, Guralnick BW, Park J, Somogyi A, Theato P, Mackay ME, Sung Y-E, Char K, Pyun J (2013) Nat Chem 5:518–524

    CAS  PubMed  Google Scholar 

  11. 11.

    Meyer B (1976) Chem Rev 76:367–388

    CAS  Google Scholar 

  12. 12.

    Shankarayya Wadi VK, Jena KK, Khawaja SZ, Yannakopoulou K, Fardis M, Mitrikas G, Karagianni M, Papavassiliou G, Alhassan SM (2018) ACS Omega 3:3330–3339

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Zhang Y, Griebel JJ, Dirlam PT, Nguyen NA, Glass RS, Mackay ME, Char K, Pyun J (2017) J Polym Sci A: Polym Chem 55:107–116

    CAS  Google Scholar 

  14. 14.

    Griebel JJ, Li G, Glass RS, Char K, Pyun J (2015) J Polym Sci Part A 53:173–177

    CAS  Google Scholar 

  15. 15.

    Lundquist NA, Worthington MJH, Adamson N, Gibson CT, Johnston MR, Ellis AV, Chalker JM (2018) RSC Adv 8:1232–1236

    CAS  Google Scholar 

  16. 16.

    Abraham AM, Kumar SV, Alhassan SM (2018) Chem Eng J 332:1–7

    CAS  Google Scholar 

  17. 17.

    Wadi VS, Jena KK, Khawaja SZ, Ranagraj VM, Alhassan SM (2019) RSC Adv 9:4397–4403

    CAS  Google Scholar 

  18. 18.

    Zhang Y, Pavlopoulos NG, Kleine TS, Karayilan M, Glass RS, Char K, Pyun J (2019) J Polym Sci Part A 57:7–12

    CAS  Google Scholar 

  19. 19.

    Wu X, Smith JA, Petcher S, Zhang B, Parker DJ, Griffin JM, Hasell T (2019) Nat Commun 10:647

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Parker DJ, Jones HA, Petcher S, Cervini L, Griffin JM, Akhtar R, Hasell T (2017) J Mater Chem A 5:11682–11692

    CAS  Google Scholar 

  21. 21.

    Hoefling A, Lee YJ, Theato P (2017) Macromol Chem Phys 218:1600303

    Google Scholar 

  22. 22.

    Mark JE, Erman B, Roland CM (eds) (2013) The science and technology of rubber. Academic, Oxford

    Google Scholar 

  23. 23.

    Lim J, Pyun J, Char K (2015) Angew Chem Int Ed 54:3249–3258

    CAS  Google Scholar 

  24. 24.

    Boyd DA (2016) Angew Chem Int Ed 55:15486–15502

    CAS  Google Scholar 

  25. 25.

    Mutlu H, Ceper EB, Li X, Yang J, Dong W, Ozmen MM, Theato P (2019) Macromol Rapid Commun 40:1800650

    Google Scholar 

  26. 26.

    Griebel JJ, Nguyen NA, Astashkin AV, Glass RS, Mackay ME, Char K, Pyun J (2014) ACS Macro Lett 3:1258–1261

    CAS  Google Scholar 

  27. 27.

    Griebel JJ, Nguyen NA, Namnabat S, Anderson LE, Glass RS, Norwood RA, Mackay ME, Char K, Pyun J (2015) ACS Macro Lett 4:862–866

    CAS  Google Scholar 

  28. 28.

    Crockett MP, Evans AM, Worthington MJH, Albuquerque IS, Slattery AD, Gibson CT, Campbell JA, Lewis DA, Bernardes GJL, Chalker JM (2016) Angew Chem Int Ed 55:1714–1718

    CAS  Google Scholar 

  29. 29.

    Griebel JJ, Namnabat S, Kim ET, Himmelhuber R, Moronta DH, Chung WJ, Simmonds AG, Kim K-J, van der Laan J, Nguyen NA, Dereniak EL, Mackay ME, Char K, Glass RS, Norwood RA, Pyun J (2014) Adv Mater 26:3014–3018

    CAS  PubMed  Google Scholar 

  30. 30.

    Worthington MJH, Kucera RL, Albuquerque IS, Gibson CT, Sibley A, Slattery AD, Campbell JA, Alboaiji SFK, Muller KA, Young J, Adamson N, Gascooke JR, Jampaiah D, Sabri YM, Bhargava SK, Ippolito SJ, Lewis DA, Quinton JS, Ellis AV, Johs A, Bernardes GJL, Chalker JM (2017) Chem Eur J 23:16219–16230

    CAS  PubMed  Google Scholar 

  31. 31.

    Dirlam PT, Glass RS, Char K, Pyun J (2017) J Polym Sci. Part A: Polym Chem 55:1635–1668

    CAS  Google Scholar 

  32. 32.

    Zhao F, Li Y, Feng W (2018) Small Methods 2:1800156

    Google Scholar 

  33. 33.

    Fotouhi A, Auger DJ, Propp K, Longo S, Wild M (2016) Renew Sustain Energy Rev 56:1008–1021

    CAS  Google Scholar 

  34. 34.

    Oleshko VP, Kim J, Schaefer JL, Hudson SD, Soles CL, Simmonds AG, Griebel JJ, Glass RS, Char K, Pyun J (2015) MRS Commun 5:353–364

    CAS  Google Scholar 

  35. 35.

    Simmonds AG, Griebel JJ, Park J, Kim KR, Chung WJ, Oleshko VP, Kim J, Kim ET, Glass RS, Soles CL, Sung Y-E, Char K, Pyun J (2014) ACS Macro Lett 3:229–232

    CAS  Google Scholar 

  36. 36.

    Hoefling A, Nguyen DT, Partovi-Azar P, Sebastiani D, Theato P, Song S-W, Lee YJ (2018) Chem Mater 30:2915–2923

    CAS  Google Scholar 

  37. 37.

    Dirlam PT, Simmonds AG, Kleine TS, Nguyen NA, Anderson LE, Klever AO, Florian A, Costanzo PJ, Theato P, Mackay ME, Glass RS, Char K, Pyun J (2015) RSC Adv 5:24718–24722

    CAS  Google Scholar 

  38. 38.

    Jiang Q, Li Y, Zhao X, Xiong P, Yu X, Xu Y, Chen L (2018) J Mater Chem A 6:17977–17981

    CAS  Google Scholar 

  39. 39.

    Chang A, Wu Q, Du X, Chen S, Shen J, Song Q, Xie J, Wu W (2016) Chem Commun 52:4525–4528

    CAS  Google Scholar 

  40. 40.

    Je SH, Hwang TH, Talapaneni SN, Buyukcakir O, Kim HJ, Yu J-S, Woo S-G, Jang MC, Son BK, Coskun A, Choi JW (2016) ACS Energy Lett 1:566–572

    CAS  Google Scholar 

  41. 41.

    Arslan M, Kiskan B, Yagci Y (2016) Macromolecules 49:767–773

    CAS  Google Scholar 

  42. 42.

    Fu C, Li G, Zhang J, Cornejo B, Piao SS, Bozhilov KN, Haddon RC, Guo J (2016) ACS Energy Lett 1:115–120

    CAS  Google Scholar 

  43. 43.

    Dirlam PT, Simmonds AG, Shallcross RC, Arrington KJ, Chung WJ, Griebel JJ, Hill LJ, Glass RS, Char K, Pyun J (2015) ACS Macro Lett 4:111–114

    CAS  Google Scholar 

  44. 44.

    Oschmann B, Park J, Kim C, Char K, Sung Y-E, Zentel R (2015) Chem Mater 27:7011–7017

    CAS  Google Scholar 

  45. 45.

    Zeng S, Li L, Xie L, Zhao D, Wang N, Chen S (2017) ChemSusChem 10:3378–3386

    CAS  PubMed  Google Scholar 

  46. 46.

    Choudhury S, Srimuk P, Raju K, Tolosa A, Fleischmann S, Zeiger M, Ozoemena KI, Borchardt L, Presser V (2018) Sustain Energy Fuels 2:133–146

    CAS  Google Scholar 

  47. 47.

    Hu G, Sun Z, Shi C, Fang R, Chen J, Hou P, Liu C, Cheng H-M, Li F (2017) Adv Mater 29:1603835

    Google Scholar 

  48. 48.

    Li B, Li S, Xu J, Yang S (2016) Energy Environ Sci 9:2025–2030

    CAS  Google Scholar 

  49. 49.

    Chang C-H, Manthiram A (2018) ACS Energy Lett 3:72–77

    CAS  Google Scholar 

  50. 50.

    Shen K, Mei H, Li B, Ding J, Yang S (2018) Adv Energy Mater 8:1701527

    Google Scholar 

  51. 51.

    Gomez I, Mantione D, Leonet O, Blazquez JA, Mecerreyes D (2018) ChemElectroChem 5:260–265

    CAS  Google Scholar 

  52. 52.

    Dong P, Han KS, Lee J-I, Zhang X, Cha Y, Song M-K (2018) ACS Appl Mater Interfaces 10:29565–29573

    CAS  PubMed  Google Scholar 

  53. 53.

    Gomez I, Mecerreyes D, Blazquez JA, Leonet O, Ben Youcef H, Li C, Gómez-Cámer JL, Bundarchuk O, Rodriguez-Martinez L (2016) J Power Sources 329:72–78

    CAS  Google Scholar 

  54. 54.

    Gomez I, Leonet O, Blazquez JA, Mecerreyes D (2016) ChemSusChem 9:3419–3425

    CAS  PubMed  Google Scholar 

  55. 55.

    Hoefling A, Nguyen DT, Lee YJ, Song S-W, Theato P (2017) Mater Chem Front 1:1818–1822

    CAS  Google Scholar 

  56. 56.

    Wu F, Chen S, Srot V, Huang Y, Sinha SK, van Aken PA, Maier J, Yu Y (2018) Adv Mater 30:1706643

    Google Scholar 

  57. 57.

    Shukla S, Ghosh A, Roy PK, Mitra S, Lochab B (2016) Polymer 99:349–357

    CAS  Google Scholar 

  58. 58.

    Ghosh A, Shukla S, Khosla GS, Lochab B, Mitra S (2016) Sci Rep 6:25207

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Arslan M, Kiskan B, Yagci Y (2017) Sci Rep 7:5207

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Lin H-K, Liu Y-L (2017) Macromol Rapid Commun 38:1700051

    Google Scholar 

  61. 61.

    Parker DJ, Chong ST, Hasell T (2018) RSC Adv 8:27892–27899

    CAS  Google Scholar 

  62. 62.

    Xin Y, Peng H, Xu J, Zhang J (2019) Adv Funct Mater 29:1808989

    Google Scholar 

  63. 63.

    Zhang Y, Konopka KM, Glass RS, Char K, Pyun J (2017) Polym Chem 8:5167–5173

    CAS  Google Scholar 

  64. 64.

    Westerman CR, Jenkins CL (2018) Macromolecules 51:7233–7238

    CAS  Google Scholar 

  65. 65.

    Kleine TS, Nguyen NA, Anderson LE, Namnabat S, LaVilla EA, Showghi SA, Dirlam PT, Arrington CB, Manchester MS, Schwiegerling J, Glass RS, Char K, Norwood RA, Mackay ME, Pyun J (2016) ACS Macro Lett 5:1152–1156

    CAS  Google Scholar 

  66. 66.

    Boyd DA, Baker CC, Myers JD, Nguyen VQ, Drake GA, McClain CC, Kung FH, Bowman SR, Kim W, Sanghera JS (2017) Chem Commun 53:259–262

    CAS  Google Scholar 

  67. 67.

    Anderson LE, Kleine TS, Zhang Y, Phan DD, Namnabat S, LaVilla EA, Konopka KM, Ruiz Diaz L, Manchester MS, Schwiegerling J, Glass RS, Mackay ME, Char K, Norwood RA, Pyun J (2017) ACS Macro Lett 6:500–504

    CAS  Google Scholar 

  68. 68.

    Kleine TS, Ruiz Diaz L, Konopka KM, Anderson LE, Pavlopolous NG, Lyons NP, Kim ET, Kim Y, Glass RS, Char K, Norwood RA, Pyun J (2018) ACS Macro Lett 7:875–880

    CAS  Google Scholar 

  69. 69.

    Boyd DA, Nguyen VQ, McClain CC, Kung FH, Baker CC, Myers JD, Hunt MP, Kim W, Sanghera JS (2019) ACS Macro Lett 8:113–116

    CAS  Google Scholar 

  70. 70.

    Hasell T, Parker DJ, Jones HA, McAllister T, Howdle SM (2016) Chem Commun 52:5383–5386

    CAS  Google Scholar 

  71. 71.

    Thielke MW, Bultema LA, Brauer DD, Richter B, Fischer M, Theato P (2016) Polymers 8:266

    PubMed Central  Google Scholar 

  72. 72.

    Akay S, Kayan B, Kalderis D, Arslan M, Yagci Y, Kiskan B (2017) J Appl Polym Sci 134:45306

    Google Scholar 

  73. 73.

    Worthington MJH, Chalker JM (2016) Mercury adsorbent material and uses thereof. WO 2017181217, priority application AU 2016-901470, April 20, 2016

  74. 74.

    Esdaile LJ, Chalker JM (2018) Chem Eur J 24:6905–6916

    CAS  PubMed  Google Scholar 

  75. 75.

    Worthington MJH, Shearer CJ, Esdaile LJ, Campbell JA, Gibson CT, Legg SK, Yin Y, Lundquist NA, Gascooke JR, Albuquerque IS, Shapter JG, Andersson GG, Lewis DA, Bernardes GJL, Chalker JM (2018) Adv Sustainable Syst 2:1800024

    Google Scholar 

  76. 76.

    Mann M, Kruger JE, Andari F, McErlean J, Gascooke JR, Smith JA, Worthington MJH, McKinley CCC, Campbell JA, Lewis DA, Hasell T, Perkins MV, Chalker JM (2019) Org Biomol Chem 17:1929–1936

    CAS  PubMed  Google Scholar 

  77. 77.

    Valle SF, Giroto AS, Klaic R, Guimarães GGF, Ribeiro C (2019) Polym Degrad Stab 162:102–105

    CAS  Google Scholar 

  78. 78.

    Bear JC, McGettrick JD, Parkin IP, Dunnill CW, Hasell T (2016) Microporous Mesoporous Mater 232:189–195

    CAS  Google Scholar 

  79. 79.

    Lee J-SM, Parker DJ, Cooper AI, Hasell T (2017) J Mater Chem A 5:18603–18609

    CAS  Google Scholar 

  80. 80.

    Je SH, Buyukcakir O, Kim D, Coskun A (2016) Chem 1:482–493

    CAS  Google Scholar 

  81. 81.

    Martin TR, Mazzio KA, Hillhouse HW, Luscombe CK (2015) Chem Commun 51:11244–11247

    CAS  Google Scholar 

  82. 82.

    McNaughter PD, Bear JC, Mayes AG, Parkin IP, O’Brien P (2017) R Soc Open Sci 4:170383

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Zhang C, Yan C, Xue Z, Yu W, Xie Y, Wang T (2016) Small 12:5320–5328

    CAS  PubMed  Google Scholar 

  84. 84.

    Bear JC, Peveler WJ, McNaughter PD, Parkin IP, O’Brien P, Dunnill CW (2015) Chem Commun 51:10467–10470

    CAS  Google Scholar 

  85. 85.

    Kim ET, Chung WJ, Lim J, Johe P, Glass RS, Pyun J, Char K (2014) Polym Chem 5:3617–3623

    CAS  Google Scholar 

  86. 86.

    Deng Z, Hoefling A, Theato P, Lienkamp K (2018) Macromol Chem Phys 219:1700497

    Google Scholar 

  87. 87.

    Zhuo SF, Huang Y, Liu C, Wang H, Zhang B (2014) Chem Commun 50:11208–11210

    CAS  Google Scholar 

  88. 88.

    Liu P, Gardner JM, Kloo L (2015) Chem Commun 51:14660–14662

    CAS  Google Scholar 

  89. 89.

    Liu P, Kloo L, Gardner JM (2017) ChemPhotoChem 1:363–368

    CAS  Google Scholar 

  90. 90.

    Yu S, Kwon H, Noh HR, Park B-I, Park NK, Choi H-J, Choi S-C, Kim GD (2015) RSC Adv 5:36030–36035

    CAS  Google Scholar 

  91. 91.

    Gupta V, Ghosh S, Phapale V (2018) Phosphorus Sulfur Silicon Relat Elem 193:752–758

    CAS  Google Scholar 

  92. 92.

    Oishi S, Oi K, Kuwabara J, Omoda R, Aihara Y, Fukuda T, Takahashi T, Choi J-C, Watanabe M, Kanbara T (2019) ACS Appl Polym Mater 1:1195–1202

    CAS  Google Scholar 

  93. 93.

    Diez S, Hoefling A, Theato P, Pauer W (2017) Polymers 9:59

    PubMed Central  Google Scholar 

  94. 94.

    Smith JA, Wu X, Berry NG, Hasell T (2018) J Polym Sci A 56:1777–1781

    CAS  Google Scholar 

  95. 95.

    Zhang Y, Kleine TS, Carothers KJ, Phan DD, Glass RS, Mackay ME, Char K, Pyun J (2018) Polym Chem 9:2290–2294

    CAS  Google Scholar 

  96. 96.

    Gomez I, De Anastro AF, Leonet O, Blazquez JA, Grande H-J, Pyun J, Mecerreyes D (2018) Macromol Rapid Commun 39:1800529

    Google Scholar 

Download references

Acknowledgements

The authors thank Flinders University, The Australian Government Department of the Environment and Energy, AMP’s Tomorrow Fund, the South Australian Defence Innovation Partnership, and the Royal Society International Exchange Programme for financial support of their research program in the synthesis and applications of polymers made from sulfur. The authors also thank Dr Tom Hasell for helpful discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Justin M. Chalker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Sulfur Chemistry” edited by Xuefeng Jiang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chalker, J.M., Worthington, M.J.H., Lundquist, N.A. et al. Synthesis and Applications of Polymers Made by Inverse Vulcanization. Top Curr Chem (Z) 377, 16 (2019). https://doi.org/10.1007/s41061-019-0242-7

Download citation

Keywords

  • Inverse vulcanization
  • Polymer
  • Polysulfide
  • Sulfur
  • Sulfur polymer