A Low-Cost, Well-Designed Catalytic System Derived from Household Waste “Egg Shell”: Applications in Organic Transformations

Abstract

A waste feedstock-derived economical basic alternative catalyst is described in this review. Eggshell is one of the household wastes created in tons of weight daily. Therefore, in order to reduce the environmental pollution-related problems, its use in heterogeneous catalysis can be attributed as a great contribution for the chemical and material science society to carry out several known reactions and for the much-needed energy alternative biodiesel production as low-cost catalytic system. Keeping green chemistry in mind, industrial use of these catalysts may also reduce the use of other traditionally used high-cost chemical catalytic systems.

This is a preview of subscription content, log in to check access.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Fig. 2
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24

References

  1. 1.

    Mollersten K, Yan J, Westermark M (2003) Energy 28:691–710

    Google Scholar 

  2. 2.

    Roy I, Gupta MN (2005) Enzyme Microb Technol 36:896–899

    CAS  Google Scholar 

  3. 3.

    Sugihara T, Yamada M, Ban H, Yamaguchi M, Kaneko C (1997) Angew Chem Int Ed Engl 36:2801–2804

    CAS  Google Scholar 

  4. 4.

    Evans MG, Polany M (1936) Trans Faraday Soc 32:1333–1360

    CAS  Google Scholar 

  5. 5.

    Hepburn C (1992) Reaction rates, catalysis and surfactants. Elsevier Science Publishers Ltd, Amsterdam, pp 107–121

    Google Scholar 

  6. 6.

    Mizuno N, Misono M (1998) Chem Rev 98:199–217

    CAS  PubMed  Google Scholar 

  7. 7.

    Rodriguez-Reinoso F (1998) Carbon 36:159–175

    CAS  Google Scholar 

  8. 8.

    Hincke MT, Nys Y, Gautron J, Mann K, Rodriguez-Navarro AB, McKee MD (2012) Front Biosci 17:1266–1280

    CAS  Google Scholar 

  9. 9.

    Patil S, Jadhav SD, Shinde SK (2012) Org Chem Int. https://doi.org/10.1155/2012/153159

    Article  Google Scholar 

  10. 10.

    Tan YH, Abdullah MO, Nolasco-Hipolito C, Taufiq-Yap YH (2015) Appl Energy 160:58–70

    CAS  Google Scholar 

  11. 11.

    Sabbe MK, Reyniers MF, Reuter K (2012) Catal Sci Technol 2:2010–2024

    CAS  Google Scholar 

  12. 12.

    Sheldon RA, Dakka J (1994) Catal Today 19:15–246

    Google Scholar 

  13. 13.

    Irfan M, Glasnov TN, Kappe CO (2011) Chemsuschem 4:300–316

    CAS  PubMed  Google Scholar 

  14. 14.

    Hartman RL, McMullen JP, Jensen KF (2011) Angew Chem Int Ed 50:7502–7519

    CAS  Google Scholar 

  15. 15.

    Fache F, Schulz E, Tommasino ML, Lemaire M (2000) Chem Rev 100:2159–2232

    CAS  PubMed  Google Scholar 

  16. 16.

    Ziolek M (2004) Catal Today 90:145–150

    CAS  Google Scholar 

  17. 17.

    Corma A, Garcia H (2003) Chem Rev 103:4307–4365

    CAS  PubMed  Google Scholar 

  18. 18.

    Paggiola G, Hunt AJ, McElroy CR, Sherwood J, Clark JH (2014) Green Chem 16:2107–2110

    CAS  Google Scholar 

  19. 19.

    Mohan D, Pittman CU Jr, Steele PH (2006) Energy Fuels 20:848–889

    CAS  Google Scholar 

  20. 20.

    Li Z, Smith KH, Stevens GW (2016) Chin J Chem Eng 24:215–220

    CAS  Google Scholar 

  21. 21.

    Kokel A, Schafer C, Torok B (2017) Green Chem 19:3729–3751

    CAS  Google Scholar 

  22. 22.

    Kim JH, Kim JW, Shokouhimehr M, Lee YS (2005) J Org Chem 70:6714–6720

    CAS  PubMed  Google Scholar 

  23. 23.

    Hagiwara H, Shimizu Y, Hoshi T, Suzuki T, Ando M, Ohkubo K, Yokoyama C (2001) Tetrahedron Lett 42:4349–4351

    CAS  Google Scholar 

  24. 24.

    Chaminand J, Djakovitch L, Gallezot P, Marion P, Pinel C, Rosier C (2004) Green Chem 6:359–361

    CAS  Google Scholar 

  25. 25.

    Das B, Thirupathi P, Mahender I, Reddy VS, Rao YK (2006) J Mol Catal A Chem 247:233–239

    CAS  Google Scholar 

  26. 26.

    Rezayati S, Erfani Z, Hajinasiri R (2015) Chem Pap 69:536–543

    CAS  Google Scholar 

  27. 27.

    Chtchigrovsky M, Primo A, Gonzalez P, Molvinger K, Robitzer M, Quignard F, Taran F (2009) Angew Chem 121:6030–6034

    Google Scholar 

  28. 28.

    Baig RBN, Varma RS (2013) Green Chem 15:1839–1843

    CAS  Google Scholar 

  29. 29.

    Lipshutz BH, Taft BR (2006) Angew Chem 118:8415–8418

    Google Scholar 

  30. 30.

    Hudson R, Li CJ, Moores A (2012) Green Chem 14:622–624

    CAS  Google Scholar 

  31. 31.

    Hirasawa T, Omi N, Ezawa I (2001) J Bone Miner Metab 19:84–88

    CAS  PubMed  Google Scholar 

  32. 32.

    Ganesh V, Sudhir VS, Kundu T, Chandrasekaran S (2011) Chem Asian J 6:2670–2694

    CAS  PubMed  Google Scholar 

  33. 33.

    Brun LR, Lupo M, Delorenzi DA, Di Loreto VE, Rigalli A (2013) Int J Food Sci Nutr 64:740–743

    CAS  PubMed  Google Scholar 

  34. 34.

    Scheideler SE (1998) J Appl Poult Res 7:69–74

    CAS  Google Scholar 

  35. 35.

    Rao TR (1996) Chem Eng Technol 19:373–377

    CAS  Google Scholar 

  36. 36.

    Halikia I, Zoumpoulakis L, Christodoulou E, Prattis D (2001) Eur J Miner Process Environ Prot 1:89–102

    CAS  Google Scholar 

  37. 37.

    Mohamed M, Yusup S, Maitra S (2012) J Eng Sci Technol 7:1–10

    Google Scholar 

  38. 38.

    Galan I, Glasser FP, Andrade C (2013) J Therm Anal Calorim 111:1197–1202

    CAS  Google Scholar 

  39. 39.

    Rodriguez-Navarro C, Ruiz- Agudo E, Luque A, Rodriguez-Navarro AB, Ortega-Huertas M (2009) Am Mineral 94:578–593

    CAS  Google Scholar 

  40. 40.

    Konwar M, Boruah PR, Saikia PJ, Khupse ND, Sarma D (2017) ChemistrySelect 2:4983–4987

    CAS  Google Scholar 

  41. 41.

    Navalon S, Alvaro M, Garcia H (2010) Appl Catal B 99:1–26

    CAS  Google Scholar 

  42. 42.

    Climent MJ, Corma A, Iborra S (2012) RSC Adv 2:16–58

    CAS  Google Scholar 

  43. 43.

    Laszlo P (1987) Science 235:1473–1477

    CAS  PubMed  Google Scholar 

  44. 44.

    Laszlo P (1986) Acc Chem Res 19:121–127

    CAS  Google Scholar 

  45. 45.

    Varma RS, Dahiya R, Kumar S (1997) Tetrahedron Lett 38:2039–2042

    CAS  Google Scholar 

  46. 46.

    Chalais S, Cornelis A, Gerstmans A, Kolodziejski W, Laszlo P, Mathy A, Metra P (1985) Helv Chim Acta 68:1196–1203

    CAS  Google Scholar 

  47. 47.

    Nierop KGJ, van Bergen PF (2002) J Anal Appl Pyrolysis 63:197–208

    CAS  Google Scholar 

  48. 48.

    Roudier JF, Foucaud A (1984) Tetrahedron Lett 25:4315–4318

    Google Scholar 

  49. 49.

    Rittles JA, Chaudhuri AK, Besson SW (1964) J Polym Sci Part A Polym Chem 2:1221–1231

    Google Scholar 

  50. 50.

    Garrido-Ramírez EG, Theng BKG, Mora ML (2010) Appl Clay Sci 47:182–192

    Google Scholar 

  51. 51.

    Vaccari A (1999) Appl Clay Sci 14:161–198

    CAS  Google Scholar 

  52. 52.

    Shaikh NS, Deshpande VH, Bedekar AV (2001) Tetrahedron 57:9045–9048

    CAS  Google Scholar 

  53. 53.

    Varma RS (2002) Tetrahedron 58:1235–1255

    CAS  Google Scholar 

  54. 54.

    Varma RS, Pitchumani K, Naicker KP (1999) Green Chem 1:95–97

    CAS  Google Scholar 

  55. 55.

    Varma RS (1999) Green Chem 1:43–55

    CAS  Google Scholar 

  56. 56.

    Jeganathan M, Dhakshinamoorthy A, Pitchumani K (2014) ACS Sustain Chem Eng 2:781–787

    CAS  Google Scholar 

  57. 57.

    Jeganathana M, Pitchumani K (2014) RSC Adv 4:38491–38497

    Google Scholar 

  58. 58.

    Nasrollahzadeh M, Bayat Y, Habibi D, Moshae S (2009) Tetrahedron Lett 50:4435–4438

    CAS  Google Scholar 

  59. 59.

    Bigdeli MA, Nemati F, Mahdavinia GH (2007) Tetrahedron Lett 48:6801–6804

    CAS  Google Scholar 

  60. 60.

    Chakraborti AK, Gulhane R (2003) Chem Commun 15:1896–1897

    Google Scholar 

  61. 61.

    Bigdeli MA, Heravi MM, Mahdavini GH (2007) J Mol Catal A Chem 275:25–29

    CAS  Google Scholar 

  62. 62.

    Zhou J, Li Y, Sun HB, Tang Z, Qi L, Liu L, Ai Y, Li S, Shao Z, Liang Q (2017) Green Chem 19:3400–3407

    CAS  Google Scholar 

  63. 63.

    Kaur M, Sharma S, Bedi PMS (2015) Chin J Catal 36:520–549

    CAS  Google Scholar 

  64. 64.

    Wang B, Hu J, Zhang F, Zheng H (2016) Heterocycles 92:103–113

    CAS  Google Scholar 

  65. 65.

    Ghodrati K, Farrokhi A, Karami C, Hamidi Z (2015) Synth React Inorg M 45:15–20

    CAS  Google Scholar 

  66. 66.

    Dintzner MR, Little AJ, Pacilli M, Pileggi DJ, Osner ZR, Lyons TW (2007) Tetrahedron Lett 48:1577–1579

    CAS  Google Scholar 

  67. 67.

    Avalos M, Babiano R, Bravo JL, Cintas P, Jimenez JL, Palacios JC (1998) Tetrahedron Lett 39:9301–9304

    CAS  Google Scholar 

  68. 68.

    Soriente A, Arienzo R, Rosa MD, Palombi L, Spinella A, Scettri A (1999) Green Chem 1:157–162

    CAS  Google Scholar 

  69. 69.

    Borah BJ, Borah SJ, Saikia K, Dutta DK (2014) Appl Catal A 469:350–356

    CAS  Google Scholar 

  70. 70.

    Gajare AS, Shaikh NS, Jnaneshwara GK, Deshpande VH, Ravindranathan T, Bedekar AV (2000) J Chem Soc Perkin Trans 1:999–1001

    Google Scholar 

  71. 71.

    Gajare AS, Shaikh NS, Bonde BK, Deshpande VH (2000) J Chem Soc Perkin Trans 1:639–640

    Google Scholar 

  72. 72.

    Saikia PK, Sarmah PP, Borah BJ, Saikia L, Dutta DK (2016) J Mol Catal A Chem 412:27–33

    CAS  Google Scholar 

  73. 73.

    Phukan A, Borah SJ, Bordoloi P, Sharma K, Borah BJ, Sarmah PP, Dutta DK (2017) Adv Powder Technol 28:1585–1592

    CAS  Google Scholar 

  74. 74.

    Choudhary VR, Dumbre DK, Patil SK (2012) RSC Adv 2:7061–7065

    CAS  Google Scholar 

  75. 75.

    Deville JP, Behar V (2001) J Org Chem 66:4097–4098

    CAS  PubMed  Google Scholar 

  76. 76.

    Bahulayan D, Das SK, Iqbal J (2003) J Org Chem 68:5735–5738

    CAS  PubMed  Google Scholar 

  77. 77.

    Marvi O, Fekri LZ, Takhti M (2014) Russ J Gen Chem 84:1837–1840

    CAS  Google Scholar 

  78. 78.

    Shanmugam P, Rajasingh P (2002) Chem Lett 31:1212–1213

    Google Scholar 

  79. 79.

    Yadav JS, Reddy BVS, Eeshwaraiah B, Srinivas M (2004) Tetrahedron 60:1767–1771

    CAS  Google Scholar 

  80. 80.

    Yadav JS, Reddy BVS, Kumar GM, Murthy CVSR (2001) Tetrahedron Lett 42:89–91

    CAS  Google Scholar 

  81. 81.

    Yadav JS, Reddy BVS, Sadasiv K, Reddy PSR (2002) Tetrahedron Lett 43:3853–3856

    CAS  Google Scholar 

  82. 82.

    Dintzner MR, Morse KM, McClelland KM, Coligado DM (2004) Tetrahedron Lett 45:79–81

    CAS  Google Scholar 

  83. 83.

    Yadav JS, Reddy BVS, Satheesh G (2004) Tetrahedron Lett 45:3673–3676

    CAS  Google Scholar 

  84. 84.

    Meshram HM, Sekhar KC, Ganesh YSS, Yadav JS (2000) Synlett 9:1273–1274

    Google Scholar 

  85. 85.

    Babu M, Pitchumani K, Ramesh P (2013) Helv Chim Acta 96:1269–1272

    CAS  Google Scholar 

  86. 86.

    Bizaia N, de Faria EH, Ricci GP, Calefi PS, Nassar EJ, Castro KADF, Nakagaki S, Ciuffi KJ, Trujillano R, Vicente MA, Gil A, Korili SA (2009) ACS Appl Mater Interfaces 1:2667–2678

    CAS  PubMed  Google Scholar 

  87. 87.

    Bandgar BP, Kasture SP (2000) Green Chem 2:154–156

    CAS  Google Scholar 

  88. 88.

    Yadav JS, Reddy BVS, Madan C (2001) Synlett 7:1131–1133

    Google Scholar 

  89. 89.

    Feng J, Hu X, Yue PL (2004) Environ Sci Technol 38:269–275

    CAS  PubMed  Google Scholar 

  90. 90.

    Yip AC, Lam FL, Hu X (2005) Ind Eng Chem Res 44:7983–7990

    CAS  Google Scholar 

  91. 91.

    Nasrollahzadeh M, Habibi D, Shahkarami Z, Bayat Y (2009) Tetrahedron 65:10715–10719

    CAS  Google Scholar 

  92. 92.

    Smith K, Almeer S, Black SJ (2000) Chem Commun 17:1571–1572

    Google Scholar 

  93. 93.

    Davis ME (1998) Microporous Mesoporous Mater 21:173–182

    CAS  Google Scholar 

  94. 94.

    Cejka J, Centi G, Pariente JP, Roth WJ (2012) Catal Today 179:2–15

    CAS  Google Scholar 

  95. 95.

    Tajbakhsh M, Heidary M, Hosseinzadeh R (2016) Res Chem Intermed 42:1425–1439

    CAS  Google Scholar 

  96. 96.

    Teimouri A, Chermahini AN (2011) Polyhedron 30:2606–2610

    CAS  Google Scholar 

  97. 97.

    Srivastava R, Srinivas D, Ratnasamy P (2005) Appl. Catal. A 289:128–134

    CAS  Google Scholar 

  98. 98.

    Bokade VV, Yadav GD (2012) Ind Eng Chem Res 51:1209–1217

    CAS  Google Scholar 

  99. 99.

    Tandiary MA, Masui Y, Onaka M (2015) RSC Adv 5:15736–15739

    CAS  Google Scholar 

  100. 100.

    Soni VK, Sharma RK (2016) ChemCatChem 8:1763–1768

    CAS  Google Scholar 

  101. 101.

    Mirsafaei R, Delzendeh S, Abdolazimi A (2016) Int J Environ Sci Technol 13:2219–2226

    CAS  Google Scholar 

  102. 102.

    Alkordi MH, Liu Y, Larsen RW, Eubank JF, Eddaoudi M (2008) J Am Chem Soc 130:12639–12641

    CAS  PubMed  Google Scholar 

  103. 103.

    Dhakshinamoorthy A, Asiric AM, Garcia H (2015) Chem Soc Rev 44:1922–1947

    CAS  PubMed  Google Scholar 

  104. 104.

    Wu CD, Hu A, Zhang L, Lin W (2005) J Am Chem Soc 127:8940–8941

    CAS  PubMed  Google Scholar 

  105. 105.

    Gao S, Zhao N, Shu M, Che S (2010) Appl Catal A 388:196–201

    CAS  Google Scholar 

  106. 106.

    Li Z, Meng F, Zhang J, Xie J, Dai B (2016) Org Biomol Chem 14:10861–10865

    CAS  PubMed  Google Scholar 

  107. 107.

    Krajewska B (2004) Enzyme Microb Technol 35:126–139

    CAS  Google Scholar 

  108. 108.

    Hardy JJE, Hubert S, Macquarrie DJ, Wilson AJ (2004) Green Chem 6:53–56

    CAS  Google Scholar 

  109. 109.

    Ahmed N, Siddiqui ZN (2015) ACS Sustain Chem Eng 3:1701–1707

    CAS  Google Scholar 

  110. 110.

    Guibal E (2005) Prog Polym Sci 30:71–109

    CAS  Google Scholar 

  111. 111.

    Leonhardt SES, Stolle A, Ondruschka B, Cravotto G, De Leo C, Jandt KD, Keller TF (2010) Appl Catal A 379:30–37

    CAS  Google Scholar 

  112. 112.

    Khalil KD, Al-Matar HM (2013) Molecules 2013(18):5288–5305

    Google Scholar 

  113. 113.

    Murugadoss A, Chattopadhyay A (2008) Nanotechnology 19(015603):1–9. https://doi.org/10.1088/0957-4484/19/01/015603

    CAS  Article  Google Scholar 

  114. 114.

    Qin Y, Zhao W, Yang L, Zhang X, Cui Y (2012) Chirality 24:640–645

    CAS  PubMed  Google Scholar 

  115. 115.

    Khan FA, Dash J, Satapathy R, Upadhyay SK (2004) Tetrahedron Lett 45:3055–3058

    CAS  Google Scholar 

  116. 116.

    Zhu H, Zhou M, Zeng Z, Xiao G, Xiao R (2014) Korean J Chem Eng 31:593–597

    CAS  Google Scholar 

  117. 117.

    Ramirez JP, Kapteijn F, Moulijn JA (1999) Catal Lett 60:133–138

    Google Scholar 

  118. 118.

    Ramani A, Chanda BM, Velu S, Sivasanker S (1999) Green Chem 1:163–165

    CAS  Google Scholar 

  119. 119.

    Choudary BM, Kantam ML, Reddy CV, Rao KK, Figueras F (1999) Green Chem 1:187–189

    CAS  Google Scholar 

  120. 120.

    Nishimura T, Kakiuchi N, Inoue M, Uemura S (2000) Chem Commun 14:1245–1246

    Google Scholar 

  121. 121.

    Abello S, Medina F, Tichit D, Perez-Ramirez J, Cesteros Y, Salagrea P, Sueiras JE (2005) Chem Commun 11:1453–1455

    Google Scholar 

  122. 122.

    Debecker DP, Gaigneaux EM, Busca G (2009) Chem Eur J 15:3920–3935

    CAS  PubMed  Google Scholar 

  123. 123.

    Ebitani K, Motokura K, Mizugaki T, Kaneda K (2005) Angew Chem 117:3489–3492

    Google Scholar 

  124. 124.

    Sels BF, De Vos DE, Jacobs PA (2001) Cat Rev Sci Eng 43:443–488

    CAS  Google Scholar 

  125. 125.

    Zhoua H, Zhuob GL, Jiang XZ (2006) J Mol Catal A Chem 248:26–31

    Google Scholar 

  126. 126.

    Kantam ML, Kumar KBS, Raja KP (2006) J Mol Catal A Chem 247:186–188

    CAS  Google Scholar 

  127. 127.

    Gao L, Teng G, Xiao G, Wei R (2010) Biomass Bioenergy 34:1283–1288

    CAS  Google Scholar 

  128. 128.

    Enache DI, Edwards JK, Landon P, Espriu BS, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight DW, Hutchings GJ (2006) Science 311:362–365

    CAS  PubMed  Google Scholar 

  129. 129.

    McTiernan CD, Leblanc X, Scaiano JC (2017) ACS Catal 7:2171–2175

    CAS  Google Scholar 

  130. 130.

    Bujdak J, Rode BM (1997) J Mol Evol 45:457–466

    CAS  Google Scholar 

  131. 131.

    Bujdak J, Rode BM (1999) Origins Life Evol Biosphere 290:451–461

    Google Scholar 

  132. 132.

    Ernst JB, Muratsugu S, Wang F, Tada M, Glorius F (2016) J Am Chem Soc 138:10718–10721

    CAS  PubMed  Google Scholar 

  133. 133.

    Gniewek A, Ziolkowski JJ, Trzeciak AM, Zawadzki M, Grabowska H, Wrzyszcz J (2008) J Catal 254:121–130

    CAS  Google Scholar 

  134. 134.

    Pocostales P, Alvarez P, Beltran FJ (2011) Chem Eng J 168:1289–1295

    CAS  Google Scholar 

  135. 135.

    Kumbhar A, Jadhav S, Kamble S, Rashinkar G, Salunkhe R (2013) Tetrahedron Lett 54:1331–1337

    CAS  Google Scholar 

  136. 136.

    Jamwal N, Sodhi RK, Gupta P, Paul S (2011) Int J Biol Macromol 49:930–935

    CAS  PubMed  Google Scholar 

  137. 137.

    Wanga X, Hua P, Xuea F, Wei Y (2014) Carbohydr Polym 114:476–483

    Google Scholar 

  138. 138.

    Reddy KR, Kumar NS, Reddy PS, Sreedhar B, Kantam ML (2006) J Mol Catal A Chem 252:12–16

    CAS  Google Scholar 

  139. 139.

    Azambre B, Heintz O, Krzton A, Zawadzki J, Weber JV (2000) J Anal Appl Pyrolysis 55:105–117

    CAS  Google Scholar 

  140. 140.

    Shaabani A, Maleki A (2007) Appl Catal A 331:149–151

    CAS  Google Scholar 

  141. 141.

    Shaabani A, Rahmati A, Badri Z (2008) Catal Commun 9:13–16

    CAS  Google Scholar 

  142. 142.

    Lipshutz BH, Tasler S, Chrisman W, Spliethoff B, Tesche B (2003) J Org Chem 68:1177–1189

    CAS  PubMed  Google Scholar 

  143. 143.

    Lipshutz BH, Taft BR (2006) Angew Chem 118:8415–8418

    Google Scholar 

  144. 144.

    Lipshutz BH, Nihan DM, Vinogradova E, Taft BR, Boskovic ZV (2008) Org Lett 10:4279–4282

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Maegawa T, Fujiwara Y, Inagaki Y, Esaki H, Monguchi Y, Sajiki H (2008) Angew Chem 120:5474–5477

    Google Scholar 

  146. 146.

    Sharghi H, Khalifeh R, Doroodmand MM (2009) Adv Synth Catal 351:207–218

    CAS  Google Scholar 

  147. 147.

    Garcia-Suarez EJ, Tristany M, Garcia AB, Colliere V, Philippot K (2012) Microporous Mesoporous Mater 153:155–162

    CAS  Google Scholar 

  148. 148.

    Liao M, Hu Q, Zheng J, Li Y, Zhou H, Zhong CJ, Chen BH (2013) Electrochim Acta 111:504–509

    CAS  Google Scholar 

  149. 149.

    Patil NM, Bhanage BM (2015) Catal Today 247:182–189

    CAS  Google Scholar 

  150. 150.

    Tang W, Li J, Jin X, Sun J, Huang J, Li R (2014) Catal Commun 43:75–78

    CAS  Google Scholar 

  151. 151.

    Wang MS, Pinnavaia TJ (1994) Chem Mater 6:468–474

    CAS  Google Scholar 

  152. 152.

    Razmi H, Abdollahi V, Mohammad-Rezaei R (2016) Environ Chem Lett 14:521–526

    CAS  Google Scholar 

  153. 153.

    Ganga VSR, Choudhary MK, Tak R, Kumari P, Abdi SHR, Kureshy RI, Khan NH (2017) Catal Commun 94:5–8

    CAS  Google Scholar 

  154. 154.

    He J, Li B, Chen F, Xu Z, Yin G (2009) J Mol Catal A Chem 304:135–138

    CAS  Google Scholar 

  155. 155.

    Kumar P, Pandey RK (2000) Green Chem 2:29–32

    CAS  Google Scholar 

  156. 156.

    Dapurkar SE, Sakthivel A, Selvam P (2003) New J Chem 27:1184–1190

    CAS  Google Scholar 

  157. 157.

    Huang J, Jiang T, Gao H, Han B, Liu Z, Wu W, Chang Y, Zhao G (2004) Angew Chem 116:1421–1423

    Google Scholar 

  158. 158.

    Mehnert CP, Weaver DW, Ying JY (1998) J Am Chem Soc 120:12289–12296

    CAS  Google Scholar 

  159. 159.

    Son YC, Makwana VD, Howell AR, Suib SL (2001) Angew Chem 113:4410–4413

    Google Scholar 

  160. 160.

    Santoro S, Kozhushkov SI, Ackermann L, Vaccaro L (2016) Green Chem 18:3471–3493

    CAS  Google Scholar 

  161. 161.

    Yin L, Liebscher J (2007) Chem Rev 107:133–173

    CAS  PubMed  Google Scholar 

  162. 162.

    Chetia M, Ali AA, Bhuyan D, Saikia L, Sarma D (2015) New J Chem 39:5902–5907

    CAS  Google Scholar 

  163. 163.

    Chetia M, Ali AA, Bordoloi A, Sarma D (2017) J Chem Sci 129:1211–1217

    CAS  Google Scholar 

  164. 164.

    Boro J, Deka D, Thakur AJ (2012) Renew Sustain Energy Rev 16:904–910

    CAS  Google Scholar 

  165. 165.

    Buasri A, Chaiyut N, Loryuenyong V, Wongweang C, Khamsrisuk S (2013) Sustain Energy 1:7–13

    Google Scholar 

  166. 166.

    Wei Z, Xu C, Li B (2009) Bioresour Technol 100:2883–2885

    CAS  PubMed  Google Scholar 

  167. 167.

    Cho YB, Seo G (2010) Bioresour Technol 101:8515–8519

    CAS  PubMed  Google Scholar 

  168. 168.

    Jazie AA, Pramanik H, Sinha ASK (2012) Egg Shell Waste-Catalyzed Transesterification of Mustard Oil: Optimization Using Response Surface Methodology (RSM), 2012 2nd International conference on power and energy systems (ICPES 2012) 56, https://doi.org/10.7763/ipcsit.2012.v56.10

  169. 169.

    Chakraborty R, Bepari S, Banerjee A (2010) Chem Eng J 165:798–805

    CAS  Google Scholar 

  170. 170.

    Niju S, Meera KM, Begum S, Anantharaman N (2014) RSC Adv 4:54109–54114

    CAS  Google Scholar 

  171. 171.

    Patil S, Jadhav SD, Deshmukh MB (2013) J Chem Sci 125:851–857

    CAS  Google Scholar 

  172. 172.

    Khazaei A, Khazaei M, Nasrollahzadeh M (2017) Tetrahedron 73:5624–5633

    CAS  Google Scholar 

  173. 173.

    Waghadhare SS, Naravane VM, Pathare SV (2014) Novel egg shell based magnetically separable nano catalyst for Knoevenagel condensation reaction, Vidnyan Sanshodhan Puraskar Contest, Marathi Vidnyan Parishad

  174. 174.

    Morbale ST, Shinde SS, Jadhav SD, Deshmukh MB, Patil SS (2015) Der Pharmacia Lettre 7:169–182

    CAS  Google Scholar 

  175. 175.

    Riadi Y, Slimani R, Haboub A, Antri SE, Safi M, Lazar S (2013) Mor J Chem 1:24–28

    Google Scholar 

  176. 176.

    Taleb MA, Mamouni R, Benomar MA, Bakka A, Mouna A, Taha ML, Benlhachemi A, Bakiz B, Villain S (2017) J Environ Chem Eng 5:1341–1348

    Google Scholar 

  177. 177.

    Gao Y, Xu C (2012) Catal Today 190:107–111

    CAS  Google Scholar 

  178. 178.

    Khazaei M, Khazaei A, Nasrollahzadeh M, Tahsili MR (2017) Tetrahedron 73:5613–5623

    CAS  Google Scholar 

  179. 179.

    Montilla A, del Castillo MD, Sanz ML, Olano A (2005) Food Chem 90:883–890

    CAS  Google Scholar 

  180. 180.

    Youseftabar-Miri L, Akbari F, Ghraghsahar F (2014) Iran J Catal 4:85–89

    CAS  Google Scholar 

  181. 181.

    Mallampati R, Valiyaveettil S (2014) ACS Sustain Chem Eng 2:855–859

    CAS  Google Scholar 

  182. 182.

    Konwar M, Ali AA, Sarma D (2016) Tetrahedron Lett 57:2283–2285

    CAS  Google Scholar 

  183. 183.

    Konwar M, Ali AA, Chetia M, Saikia PJ, Khupse ND, Sarma D (2016) ChemistrySelect 1:6016–6019

    CAS  Google Scholar 

  184. 184.

    Kuhn M, Lucas M, Claus P (2015) Ind Eng Chem Res 54:6683–6691

    CAS  Google Scholar 

  185. 185.

    Shao Z, Li C, Chen X, Pang M, Wang X, Liang C (2010) ChemCatChem 2:1555–1558

    CAS  Google Scholar 

  186. 186.

    Wen X, Li R, Yang Y, Chen J, Zhang F (2013) Appl Catal A 468:204–215

    CAS  Google Scholar 

  187. 187.

    Badano JM, Betti C, Rintoul I, Berlanga JV, Cagnola E, Torres G, Vera C, Yori J, Quiroga M (2010) Appl Catal A 390:166–174

    CAS  Google Scholar 

  188. 188.

    Khajavi H, Stil HA, Kuipers HPCE, Gascon J, Kapteijn F (2013) ACS Catal 3:2617–2626

    CAS  Google Scholar 

  189. 189.

    Gao J, Zhu Q, Wen L, Chen J (2010) Particuology 8:251–256

    CAS  Google Scholar 

  190. 190.

    Richter M, Trunschke A, Bentrup U, Brzezinka KW, Schreier E, Schneider M, Pohl MM, Fricke R (2002) J Catal 206:98–113

    CAS  Google Scholar 

  191. 191.

    Silva H, Nielsen MG, Fiordaliso EM, Damsgaard CD, Gundlach C, Kasama T, Chorkendorff I, Chakraborty D (2015) Appl Catal A 505:548–556

    CAS  Google Scholar 

  192. 192.

    Yang M, Sun Y, Xu AH, Lu XY, Du HZ, Sun CL, Li C (2007) Bull Environ Contam Toxicol 79:66–70

    CAS  PubMed  Google Scholar 

  193. 193.

    Khandelwal H, Prakash S (2016) J Miner Mater Charact Eng 4:119–126

    CAS  Google Scholar 

  194. 194.

    Yin X, Duan X, You Q, Dai C, Tan Z, Zhu X (2016) Energy Convers Manage 112:199–207

    CAS  Google Scholar 

  195. 195.

    Navajas A, Issariyakul T, Arzamendi G, Gandia LM, Dalai AK (2013) Asia-Pac J Chem Eng 6:7. https://doi.org/10.1002/apj.1715

    CAS  Article  Google Scholar 

  196. 196.

    Jazie AA, Pramanik H, Sinha ASK, Jazie AA (2013) Int J Sustain Dev Green Econ 2:2315–4721

    Google Scholar 

  197. 197.

    Boro J, Konwar LJ, Deka D (2014) Fuel Process Technol 122:72–78

    CAS  Google Scholar 

  198. 198.

    Chen G, Shan R, Shi J, Yan B (2014) Bioresour Technol 171:428–432

    CAS  PubMed  Google Scholar 

  199. 199.

    Viriya-empikul N, Krasae P, Puttasawat B, Yoosuk B, Chollacoop N, Faungnawakij K (2010) Bioresour Technol 101:3765–3767

    CAS  PubMed  Google Scholar 

  200. 200.

    Niju S, Begum KMMS, Anantharaman N (2014) RSC Adv 4:54109–54114

    CAS  Google Scholar 

  201. 201.

    Niju S, Begum KMMS, Anantharaman N (2014) Environ Prog Sustain Energy 6:1–7. https://doi.org/10.1002/ep.11939

    CAS  Article  Google Scholar 

  202. 202.

    Niju S, Begum KMMS, Anantharaman N (2014) J Saudi Chem Soc 18:702–706

    Google Scholar 

Download references

Acknowledgements

MK is thankful to UGC, New Delhi for UGC-BSR fellowship. D.S. is thankful to DST, New Delhi, India, for a research grant (no. EMR/2016/002345). The authors acknowledge the Department of Science and Technology for financial assistance under DST-FIST program and UGC, New Delhi for Special Assistance Programme (UGC-SAP) to the Department of Chemistry, Dibrugarh University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Diganta Sarma.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Konwar, M., Chetia, M. & Sarma, D. A Low-Cost, Well-Designed Catalytic System Derived from Household Waste “Egg Shell”: Applications in Organic Transformations. Top Curr Chem (Z) 377, 6 (2019). https://doi.org/10.1007/s41061-018-0230-3

Download citation

Keywords

  • Egg shell powder
  • Heterogeneous catalysis
  • Green chemistry
  • Transesterification
  • Waste-derived catalyst