Continuous-Flow Microreactors for Polymer Synthesis: Engineering Principles and Applications

Abstract

Polymerization is widely involved in the fabrication of high-performance materials. With its advantages, microreactors are typically applied to reaction processes which are limited by transport properties of conventional batch reactors. As demonstrated in this review, numerous polymerization processes are suitable to be conducted in microreactors with showing excellent polymerization performance (e.g., precisely controllable molecular weights and structures of polymer products). However, distinctive differences between polymerization processes and small-molecular reaction systems can be easily expected since fluid physical properties vary significantly during the polymerization. Herein, we firstly clearly describe the engineering principles such as mass transport phenomena and energy dissipation related to polymerization processes in microreactors, and then give a great deal of application examples (classified as homogeneous polymerization, heterogeneous polymerization, and photopolymerization) through which readers indeed can further understand these relevant principles. Finally, the remaining challenges associated with the application of microreactor technology for polymerization processes and remarking conclusions are presented.

This is a preview of subscription content, log in to check access.

Fig. 1

Reprinted with permission from [55]. Copyright (2018) American Chemical Society

Fig. 2

Reprinted with permission from [55]. Copyright (2018) American Chemical Society

Fig. 3

Reprinted with permission from [74]. Copyright (2018) Wiley–VCH, Weinheim

Fig. 4

Reprinted with permission from [95]. Copyright (2018) Elsevier

Fig. 5

Reprinted with permission from [55]. Copyright (2018) American Chemical Society

Fig. 6

Reprinted with permission from [107]. Copyright (2006) American Chemical Society

Fig. 7

Reprinted with permission from [116]. Copyright (2014) Wiley–VCH, Weinheim

Fig. 8

Reprinted with permission from [119]. Copyright (2012) Wiley–VCH, Weinheim

Fig. 9

Reprinted with permission from [127]. Copyright (2015) Royal Society of Chemistry

Fig. 10

Reprinted with permission from [133]. Copyright (2015) Wiley–VCH, Weinheim

Fig. 11

Reprinted with permission from [135]. Copyright (2006) American Chemical Society

Fig. 12

Reprinted with permission from [148]. Copyright (2017) Royal Society of Chemistry

Fig. 13

Reprinted with permission from [150]. Copyright (2011) American Chemical Society

Fig. 14

Reprinted with permission from [171]. Copyright (2015) Royal Society of Chemistry

Fig. 15

Reprinted with permission from [177]. Copyright (2016) American Chemical Society

Fig. 16

Reprinted with permission from [180]. Copyright (2018) American Chemical Society

References

  1. 1.

    Li X, Mastan E, Wang W-J, Li B-G, Zhu S (2016) React. Chem. Eng. 1:23

    CAS  Google Scholar 

  2. 2.

    Junkers T (2017) J. Flow. Chem. 7:106

    CAS  Google Scholar 

  3. 3.

    Alcock B, Peijs T (2013) Adv. Polym. Sci. 251:1

    CAS  Google Scholar 

  4. 4.

    Ebewele RO (2000) Polymer science and technology. CRC, Boca Raton

    Google Scholar 

  5. 5.

    Goto A, Fukuda T (2004) Prog. Polym. Sci. 29:329

    CAS  Google Scholar 

  6. 6.

    O’Shaughnessy B, Yu J (1994) Phys. Rev. Lett. 73:1723

    PubMed  Google Scholar 

  7. 7.

    Cabral JT, Hudson SD, Harrison C, Douglas JF (2004) Langmuir 20:10020

    CAS  PubMed  Google Scholar 

  8. 8.

    Junkers T, Wenn B (2016) React. Chem. Eng. 1:60

    CAS  Google Scholar 

  9. 9.

    Chen M, Zhong M, Johnson JA (2016) Chem. Rev. 116:10167

    CAS  PubMed  Google Scholar 

  10. 10.

    Odian GG (2004) Principles of polymerization. Wiley, New York

    Google Scholar 

  11. 11.

    Gemoets HP, Su Y, Shang M, Hessel V, Luque R, Noël T (2016) Chem. Soc. Rev. 45:83

    CAS  PubMed  Google Scholar 

  12. 12.

    Wang K, Luo G (2017) Chem. Eng. Sci. 169:18

    CAS  Google Scholar 

  13. 13.

    Li G, Shang M, Song Y, Su Y (2018) AIChE J. 64:1106

    CAS  Google Scholar 

  14. 14.

    Jensen KF (1999) AIChE J. 45:2051

    CAS  Google Scholar 

  15. 15.

    Jähnisch K, Hessel V, Löwe H, Baerns M (2004) Angew. Chem. Int. Ed. 43:406

    Google Scholar 

  16. 16.

    Kirschning A, Solodenko W, Mennecke K (2006) Chem. Eur. J. 12:5972

    CAS  PubMed  Google Scholar 

  17. 17.

    Mason BP, Price KE, Steinbacher JL, Bogdan AR, McQuade DT (2007) Chem. Rev. 107:2300

    CAS  PubMed  Google Scholar 

  18. 18.

    Wiles C, Watts P (2008) Eur. J. Org. Chem. 2008:1655

    Google Scholar 

  19. 19.

    Frost CG, Mutton L (2010) Green Chem. 12:1687

    CAS  Google Scholar 

  20. 20.

    Webb D, Jamison TF (2010) Chem. Sci. 1:675

    CAS  Google Scholar 

  21. 21.

    Glasnov TN, Kappe CO (2011) J. Heterocycl. Chem. 48:11

    CAS  Google Scholar 

  22. 22.

    Hartman RL, McMullen JP, Jensen KF (2011) Angew. Chem. Int. Ed. 123:7642

    Google Scholar 

  23. 23.

    Noel T, Buchwald SL (2011) Chem. Soc. Rev. 40:5010

    CAS  PubMed  Google Scholar 

  24. 24.

    Wegner J, Ceylan S, Kirschning A (2011) Chem. Commun. 47:4583

    CAS  Google Scholar 

  25. 25.

    McQuade DT, Seeberger PH (2013) J. Org. Chem. 78:6384

    CAS  PubMed  Google Scholar 

  26. 26.

    Hessel V, Kralisch D, Kockmann N, Noël T, Wang Q (2013) Chemsuschem 6:746

    CAS  PubMed  Google Scholar 

  27. 27.

    Pastre JC, Browne DL, Ley SV (2013) Chem. Soc. Rev. 42:8849

    CAS  PubMed  Google Scholar 

  28. 28.

    Levesque F, Seeberger PH (2012) Angew. Chem. Int. Ed. 51:1706

    CAS  Google Scholar 

  29. 29.

    Maskill KG, Knowles JP, Elliott LD, Alder RW, Booker-Milburn KI (2013) Angew. Chem. Int. Ed. 52:1499

    CAS  Google Scholar 

  30. 30.

    Straathof NJW, Gemoets HPL, Wang X, Schouten JC, Hessel V, Noel T (2014) Chemsuschem 7:1612

    CAS  PubMed  Google Scholar 

  31. 31.

    Noël T, Su Y, Hessel V (2015) Top. Organomet. Chem. 57:1

    Google Scholar 

  32. 32.

    Yao C, Zhao Y, Chen G (2018) Chem. Eng. Sci. 189:340

    CAS  Google Scholar 

  33. 33.

    Knowles JP, Elliott LD, Booker-Milburn KI (2012) Beilstein J. Org. Chem. 8:2025

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Tonhauser C, Nataello A, Lowe H, Frey H (2012) Macromolecules 45:9551

    CAS  Google Scholar 

  35. 35.

    Su Y, Straathof NJ, Hessel V, Noël T (2014) Chem. Eur. J. 20:10562

    CAS  PubMed  Google Scholar 

  36. 36.

    Lobry E, Jasinski F, Penconi M, Chemtob A, Croutxe-Barghorn C, Oliveros E, Braun AM, Criqui A (2014) Rsc Adv. 4:43756

    CAS  Google Scholar 

  37. 37.

    Razzaq T, Kappe CO (2010) Chem-Asian J. 5:1274

    CAS  PubMed  Google Scholar 

  38. 38.

    Kockmann N, Gottsponer M, Roberge DM (2011) Chem. Eng. J. 167:718

    CAS  Google Scholar 

  39. 39.

    Elvira KS, i Solvas XC, Wootton RC, deMello AJ (2013) Nat Chem 5:905

    CAS  PubMed  Google Scholar 

  40. 40.

    Matsushita Y, Ichimura T, Ohba N, Kumada S, Sakeda K, Suzuki T, Tanibata H, Murata T (2007) Pure Appl. Chem. 79:1959

    CAS  Google Scholar 

  41. 41.

    Coyle EE, Oelgemöller M (2008) Photochem. Photobiol. Sci. 7:1313

    CAS  PubMed  Google Scholar 

  42. 42.

    Oelgemöller M, Shvydkiv O (2011) Molecules 16:7522

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Oelgemoeller M (2012) Chem. Eng. Technol. 35:1144

    Google Scholar 

  44. 44.

    Noel T, Wang X, Hessel V (2013) Chim. Oggi 31:10

    CAS  Google Scholar 

  45. 45.

    Schuster EM, Wipf P (2014) Isr. J. Chem. 54:361

    CAS  Google Scholar 

  46. 46.

    Garlets ZJ, Nguyen JD, Stephenson CR (2014) Isr. J. Chem. 54:351

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Buss BL, Miyake GM (2018) Chem. Mater. 30:3931

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Bourne JR (2003) Org. Process Res. Dev. 7:471

    CAS  Google Scholar 

  49. 49.

    Su Y, Chen G, Yuan Q (2012) AIChE J. 58:1660

    CAS  Google Scholar 

  50. 50.

    Su Y, Lautenschleger A, Chen G, Kenig EY (2014) Ind. Eng. Chem. Res. 53:390

    CAS  Google Scholar 

  51. 51.

    Engler M, Kockmann N, Kiefer T, Woias P (2004) Chem. Eng. J. 101:315

    CAS  Google Scholar 

  52. 52.

    Soleymani A, Kolehmainen E, Turunen I (2008) Chem. Eng. J. 135:S219

    CAS  Google Scholar 

  53. 53.

    Li G, Pu X, Shang M, Zha L, Su Y (2018) AIChE J. https://doi.org/10.1002/aic.16211

    Google Scholar 

  54. 54.

    Rosa P, Karayiannis TG, Collins MW (2009) Appl. Therm. Eng. 29:3447

    CAS  Google Scholar 

  55. 55.

    Song Y, Shang M, Zhang H, Xu W-H, Pu X, Lu Q, Su Y (2018) Ind. Eng. Chem. Res. 57:10922

    CAS  Google Scholar 

  56. 56.

    Metzner AB, Otto RE (1957) AIChE J. 3:3

    CAS  Google Scholar 

  57. 57.

    Su Y, Chen G, Yuan Q (2014) Chem. Eng. Technol. 37:427

    CAS  Google Scholar 

  58. 58.

    Plais C, Augier F (2016) Theor. Found. Chem. Eng. 50:969

    CAS  Google Scholar 

  59. 59.

    Pogrebnyak VG, Toryanik AI (1979) Polym. Sci. U.S.S.R 21:990

    Google Scholar 

  60. 60.

    Mehta KN, Sood S (1992) Int. J. Eng. Sci. 30:1083

    CAS  Google Scholar 

  61. 61.

    Song Y, Shang MJ, Li GX, Luo ZH, Su YH (2018) AIChE J. 64:1828

    CAS  Google Scholar 

  62. 62.

    Wilke CR, Chang P (1955) AIChE J. 1:264

    CAS  Google Scholar 

  63. 63.

    Masaro L, Zhu XX (1999) Prog. Polym. Sci. 24:731

    CAS  Google Scholar 

  64. 64.

    Phillies GDJ (1986) Macromolecules 19:2367

    CAS  Google Scholar 

  65. 65.

    Phillies GDJ (1987) Macromolecules 20:558

    CAS  Google Scholar 

  66. 66.

    Ober TJ, Foresti D, Lewis JA (2015) Proc. Natl. Acad. Sci. U.S.A. 112:12293

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Atencia J, Beebe DJ (2005) Nature 437:648

    CAS  PubMed  Google Scholar 

  68. 68.

    Kockmann N, Kiefer T, Engler M, Woias P (2006) Sens. Actuators B Chem. 117:495

    CAS  Google Scholar 

  69. 69.

    Kockmann N, Gottsponer M, Zimmermann B, Roberge DM (2008) Chem. Eur. J. 14:7470

    CAS  PubMed  Google Scholar 

  70. 70.

    Edmondson S, Gilbert M (2017) Brydson’s plastics materials. Butterworth-Heinemann, Oxford

    Google Scholar 

  71. 71.

    Hartman RL, McMullen JP, Jensen KF (2011) Angew. Chem. Int. Ed. 50:7502

    CAS  Google Scholar 

  72. 72.

    Taylor G (1953) Proc. R. Soc. A Math. Phys. 219:186

    CAS  Google Scholar 

  73. 73.

    Aris R (1956) Proc. R. Soc. A Math. Phys. 235:67

    Google Scholar 

  74. 74.

    Zha L, Pu X, Shang M, Li G, Xu W, Lu Q, Su Y (2018) AIChE J. 64:3479

    CAS  Google Scholar 

  75. 75.

    Dean WR (1928) Proc. R. Soc. Lond. A 121:402

    Google Scholar 

  76. 76.

    Mishra P, Gupta SN (1979) Ind. Eng. Chem. Process Des. Dev. 18:130

    CAS  Google Scholar 

  77. 77.

    Mishra P, Gupta SN (1979) Ind. Eng. Chem. Process Des. Dev. 18:137

    CAS  Google Scholar 

  78. 78.

    Saxena AK, Nigam KDP (1983) Chem. Eng. Commun. 23:277

    CAS  Google Scholar 

  79. 79.

    Saxena AK, Nigam KDP (1984) AIChE J. 30:363

    CAS  Google Scholar 

  80. 80.

    Herranz-Blanco B, Arriaga LR, Makila E, Correia A, Shrestha N, Mirza S, Weitz DA, Salonen J, Hirvonen J, Santos HA (2014) Lab Chip 14:1083

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Dong PF, Xu JH, Zhao H, Luo GS (2013) Chem. Eng. J. 214:106

    CAS  Google Scholar 

  82. 82.

    Wang W, Zhang MJ, Chu LY (2014) Acc. Chem. Res. 47:373

    CAS  PubMed  Google Scholar 

  83. 83.

    Wang K, Li L, Xie P, Luo G (2017) React. Chem. Eng. 2:611

    CAS  Google Scholar 

  84. 84.

    Jensen KF (2017) AIChE J. 63:858

    CAS  Google Scholar 

  85. 85.

    Su Y (2017) Photochemical processes in continuous-flow reactors: from engineering principles to chemical application. World Scientific, Hackensack

    Google Scholar 

  86. 86.

    Kashid MN, Renken A, Kiwi-Minsker L (2011) Chem. Eng. Sci. 66:3876

    CAS  Google Scholar 

  87. 87.

    Su Y, Zhao Y, Chen G, Yuan Q (2010) Chem. Eng. Sci. 65:3947

    CAS  Google Scholar 

  88. 88.

    Yao C, Dong Z, Zhao Y, Chen G (2014) Chem. Eng. Sci. 112:15

    CAS  Google Scholar 

  89. 89.

    Woitalka A, Kuhn S, Jensen KF (2014) Chem. Eng. Sci. 116:1

    CAS  Google Scholar 

  90. 90.

    Bercˇicˇ G, Pintar A (1997) Chem. Eng. Sci. 52:3709

    Google Scholar 

  91. 91.

    van Baten JM, Krishna R (2004) Chem. Eng. Sci. 59:2535

    Google Scholar 

  92. 92.

    Song H, Tice JD, Ismagilov RF (2003) Angew. Chem. Int. Ed. 42:792

    Google Scholar 

  93. 93.

    Sattari-Najafabadi M, Nasr Esfahany M, Wu Z, Sunden B (2018) Chem. Eng. Process. 127:213

    CAS  Google Scholar 

  94. 94.

    Winkelman JGM, Schuur B, Heeres HJ, Yue J (2016) Ind Eng Chem Res 55:4691

    Google Scholar 

  95. 95.

    Song Y, Song J, Shang M, Xu W, Liu S, Wang B, Lu Q, Su Y (2018) Chem. Eng. J. 353:769

    CAS  Google Scholar 

  96. 96.

    Huang J, Kaner RB (2006) Chem. Commun. (Camb) 4:367

    Google Scholar 

  97. 97.

    Singh P, Singh RA (2012) Syn. Met. 162:2193

    CAS  Google Scholar 

  98. 98.

    Li T, Qin Z, Liang B, Tian F, Zhao J, Liu N, Zhu M (2015) Electrochim. Acta 177:343

    CAS  Google Scholar 

  99. 99.

    Huang J, Kaner RB (2004) J. Am. Chem. Soc. 126:851

    CAS  PubMed  Google Scholar 

  100. 100.

    Haber J, Kashid MN, Renken A, Kiwi-Minsker L (2011) Ind. Eng. Chem. Res. 51:1474

    Google Scholar 

  101. 101.

    Bergman TL, Incropera FP (2011) Fundamentals of heat and mass transfer. Wiley, Hoboken

    Google Scholar 

  102. 102.

    Deen WM (1998) Analysis of transport phenomena. Oxford University Press, New York

    Google Scholar 

  103. 103.

    Su Y, Hessel V, Noël T (2015) AIChE J. 61:2215

    CAS  Google Scholar 

  104. 104.

    Bally F, Serra CA, Hessel V, Hadziioannou G (2010) Macromol. React. Eng. 4:543

    CAS  Google Scholar 

  105. 105.

    Iwasaki T, Yoshida J (2005) Macromolecules 38:1159

    CAS  Google Scholar 

  106. 106.

    Méndez-Portillo LS, Dubois C, Tanguy PA (2014) Chem. Eng. J. 256:212

    Google Scholar 

  107. 107.

    Iwasaki T, Kawano N, Yoshida J (2006) Org. Process. Res. Dev. 10:1126

    CAS  Google Scholar 

  108. 108.

    Szwarc M, Levy M, Milkovich R (1956) J. Am. Chem. Soc. 78:192

    Google Scholar 

  109. 109.

    Cunningham MF (2008) Prog. Polym. Sci. 33:365

    CAS  Google Scholar 

  110. 110.

    Qiu J, Charleux B, Matyjaszewski K (2001) Prog. Polym. Sci. 26:2083

    CAS  Google Scholar 

  111. 111.

    Grubbs RB, Grubbs RH (2017) Macromolecules 50:6979

    CAS  Google Scholar 

  112. 112.

    Nagaki A, Takumi M, Tani Y, Yoshida J-i (2015) Tetrahedron 71:5973

    CAS  Google Scholar 

  113. 113.

    Nagaki A, Tomida Y, Miyazaki A, Yoshida J-i (2009) Macromolecules 42:4384

    CAS  Google Scholar 

  114. 114.

    Nagaki A, Nakahara Y, Furusawa M, Sawaki T, Yamamoto T, Toukairin H, Tadokoro S, Shimazaki T, Ito T, Otake M, Arai H, Toda N, Ohtsuka K, Takahashi Y, Moriwaki Y, Tsuchihashi Y, Hirose K, Yoshida J-i (2016) Org Process Res Dev 20:1377

    CAS  Google Scholar 

  115. 115.

    Matyjaszewski K (2012) Macromolecules 45:4015

    CAS  Google Scholar 

  116. 116.

    Parida D, Serra CA, Garg DK, Hoarau Y, Muller R, Bouquey M (2014) Macromol. React. Eng. 8:597

    CAS  Google Scholar 

  117. 117.

    Parida D, Serra CA, Bally F, Garg DK, Hoarau A (2012) Green Process Synth. 1:525

    CAS  Google Scholar 

  118. 118.

    Hornung CH, Guerrero-Sanchez C, Brasholz M, Saubern S, Chiefari J, Moad G, Rizzardo E, Thang SH (2011) Org. Process Res. Dev. 15:593

    CAS  Google Scholar 

  119. 119.

    Hornung CH, Postma A, Saubern S, Chiefari J (2012) Macromol. React. Eng. 6:246

    CAS  Google Scholar 

  120. 120.

    Hornung CH, Nguyen X, Dumsday G, Saubern S (2012) Macromol. React. Eng. 6:458

    CAS  Google Scholar 

  121. 121.

    Diehl C, Laurino P, Azzouz N, Seeberger PH (2010) Macromolecules 43:10311

    CAS  Google Scholar 

  122. 122.

    Derboven P, Van Steenberge PH, Vandenbergh J, Reyniers MF, Junkers T, D’Hooge DR, Marin GB (2015) Macromol. Rapid Commun. 36:2149

    CAS  PubMed  Google Scholar 

  123. 123.

    Xiang L, Wang WJ, Li BG, Zhu SP (2017) Macromol. React. Eng. 11:170023

    Google Scholar 

  124. 124.

    Studer A, Ryu I, Fukuyama T, Kajihara Y (2012) Synthesis 44:2555

    Google Scholar 

  125. 125.

    Rosenfeld C, Serra C, Brochon C, Hadziioannou G (2007) Chem. Eng. Sci. 62:5245

    CAS  Google Scholar 

  126. 126.

    Yokozawa T, Yokoyama A (2009) Chem. Rev. 109:5595

    CAS  PubMed  Google Scholar 

  127. 127.

    Wang P, Wang K, Zhang J, Luo G (2015) Rsc Adv. 5:64055

    CAS  Google Scholar 

  128. 128.

    Kessler D, Löwe H, Theato P (2009) Macromol. Chem. Phys. 210:807

    CAS  Google Scholar 

  129. 129.

    Zhang J, Wang K, Teixeira AR, Jensen KF, Luo G (2017) Annu. Rev. Chem. Biomol. Eng. 8:285

    PubMed  Google Scholar 

  130. 130.

    Okubo Y, Maki T, Nakanishi F, Hayashi T, Mae K (2010) Chem. Eng. Sci. 65:386

    CAS  Google Scholar 

  131. 131.

    Liu Z, Lu Y, Yang B, Luo G (2011) Ind. Eng. Chem. Res. 50:11853

    CAS  Google Scholar 

  132. 132.

    Liu YLY, Guangsheng L (2013) Chin. J. Catal. 34:1635

    CAS  Google Scholar 

  133. 133.

    Wang W, Zhang MJ, Xie R, Ju XJ, Yang C, Mou CL, Weitz DA, Chu LY (2013) Angew. Chem. Int. Ed. 52:8084

    CAS  Google Scholar 

  134. 134.

    Nie Z, Xu S, Seo M, Lewis PC, Kumacheva E (2005) J. Am. Chem. Soc. 127:8058

    CAS  PubMed  Google Scholar 

  135. 135.

    Nie Z, Li W, Seo M, Shengqing XuA, Kumacheva E (2006) J. Am. Chem. Soc. 128:9408

    CAS  PubMed  Google Scholar 

  136. 136.

    Yang B, Lu Y, Luo G (2012) Ind. Eng. Chem. Res. 51:9016

    CAS  Google Scholar 

  137. 137.

    Yang B, Lu Y, Ren T, Luo G (2013) React. Funct. Polym. 73:122

    CAS  Google Scholar 

  138. 138.

    Shen Y, Zhu S, Pelton R (2000) Macromol. Rapid Commun. 21:956

    CAS  Google Scholar 

  139. 139.

    Shen Y, Zhu S (2002) AIChE J. 48:2609

    CAS  Google Scholar 

  140. 140.

    Konkolewicz D, Wang Y, Krys P, Zhong M, Isse AA, Gennaro A, Matyjaszewski K (2014) Polym. Chem. 5:4409

    CAS  Google Scholar 

  141. 141.

    Matyjaszewski K, Qiu J, Tsarevsky NV, Charleux B (2000) J. Polym. Sci. Pol. Chem. 38:4724

    CAS  Google Scholar 

  142. 142.

    Chen H, Zhang M, Yu M, Jiang H (2011) J. Polym. Sci. Pol. Chem. 49:4721

    CAS  Google Scholar 

  143. 143.

    Burns JA, Houben C, Anastasaki A, Waldron C, Lapkin AA, Haddleton DM (2013) Polym. Chem. 4:4809

    CAS  Google Scholar 

  144. 144.

    Russum JP, Jones CW, Schork FJ (2005) Ind. Eng. Chem. Res. 44:2484

    CAS  Google Scholar 

  145. 145.

    Müller M, Cunningham MF, Hutchinson RA (2008) Macromol. React. Eng. 2:31

    Google Scholar 

  146. 146.

    Li Z, Chen W, Zhang Z, Zhang L, Cheng Z, Zhu X (2015) Polym. Chem. 6:1937

    CAS  Google Scholar 

  147. 147.

    Li Z, Chen W, Zhang L, Cheng Z, Zhu X (2015) Polym. Chem. 6:5030

    CAS  Google Scholar 

  148. 148.

    Peng J, Tian C, Zhang L, Cheng Z, Zhu X (2017) Polym. Chem. 8:1495

    CAS  Google Scholar 

  149. 149.

    Corrigan N, Manahan R, Lew ZT, Yeow J, Xu J, Boyer C (2018) Macromolecules 51:4553

    CAS  Google Scholar 

  150. 150.

    Kundu S, Bhangale AS, Wallace WE, Flynn KM, Guttman CM, Gross RA, Beers KL (2011) J. Am. Chem. Soc. 133:6006

    CAS  PubMed  Google Scholar 

  151. 151.

    Zhu N, Huang W, Hu X, Liu Y, Fang Z, Guo K (2018) Macromol. Rapid Commun. 39:1700807

    Google Scholar 

  152. 152.

    Zhu N, Huang W, Hu X, Liu Y, Fang Z, Guo K (2018) Chem. Eng. J. 333:43

    CAS  Google Scholar 

  153. 153.

    Vos DED, Dams M, And BFS, Jacobs PA (2002) Chem. Rev. 102:3615

    PubMed  Google Scholar 

  154. 154.

    Coperet C, Basset JM (2007) Adv. Synth. Catal. 349:78

    CAS  Google Scholar 

  155. 155.

    Van Berlo B, Houthoofd K, Sels BF, Jacobs PA (2008) Adv. Synth. Catal. 350:1949

    Google Scholar 

  156. 156.

    Skowerski K, Czarnocki SJ, Knapkiewicz P (2014) Chemsuschem 7:536

    CAS  PubMed  Google Scholar 

  157. 157.

    Song J, Zhang S, Wang K, Wang Y (2018) J. Taiwan Inst. Chem. E. https://doi.org/10.1016/j.jtice.2018.05.008

    CAS  Google Scholar 

  158. 158.

    Daniloska V, Tomovska R, Asua JM (2013) Chem. Eng. J. 222:136

    CAS  Google Scholar 

  159. 159.

    Chemtob A, Rannée A, Chalan L, Fischer D, Bistac S (2016) Eur. Polym. J. 80:247

    CAS  Google Scholar 

  160. 160.

    Braun AM, Peschl GH, Oliveros E (2012) CRC handbook of organic photochemistry and photobiology. CRC, Boca Raton

    Google Scholar 

  161. 161.

    Braun AM, Jakob L, Oliveros E, Nascimento CAOd (1993) Adv. Collodid Interface 18:235

    CAS  Google Scholar 

  162. 162.

    Aillet T, Loubiere K, Dechy-Cabaret O, Prat L (2014) Int. J. Chem. React. Eng. 12:1

    CAS  Google Scholar 

  163. 163.

    Jamali A, Vanraes R, Hanselaer P, Van Gerven T (2013) Chem. Eng. Process. 71:43

    CAS  Google Scholar 

  164. 164.

    Xu W, Su Y, Song Y, Shang M, Zha L, Lu Q (2018) Ind. Eng. Chem. Res. 57:2476

    CAS  Google Scholar 

  165. 165.

    Cambie D, Bottecchia C, Straathof NJ, Hessel V, Noel T (2016) Chem. Rev. 116:10276

    CAS  PubMed  Google Scholar 

  166. 166.

    Gemoets HPL, Laudadio G, Verstraete K, Hessel V, Noel T (2017) Angew. Chem. Int. Ed. 56:7161

    CAS  Google Scholar 

  167. 167.

    Wenn B, Conradi M, Carreiras AD, Haddleton DM, Junkers T (2014) Polym. Chem. 5:3053

    CAS  Google Scholar 

  168. 168.

    Chuang Y-M, Wenn B, Gielen S, Ethirajan A, Junkers T (2015) Polym. Chem. 6:6488

    CAS  Google Scholar 

  169. 169.

    Rubens M, Latsrisaeng P, Junkers T (2017) Polym. Chem. 8:6496

    CAS  Google Scholar 

  170. 170.

    Kermagoret A, Wenn B, Debuigne A, Jérôme C, Junkers T, Detrembleur C (2015) Polym. Chem. 6:3847

    CAS  Google Scholar 

  171. 171.

    Chen M, Johnson JA (2015) Chem. Commun. 51:6742

    CAS  Google Scholar 

  172. 172.

    Melker A, Fors BP, Hawker CJ, Poelma JE (2015) J. Polym. Sci. Pol. Chem. 53:2693

    CAS  Google Scholar 

  173. 173.

    Eckardt O, Wenn B, Biehl P, Junkers T, Schacher FH (2017) React. Chem. Eng. 2:479

    CAS  Google Scholar 

  174. 174.

    Gong H, Zhao Y, Shen X, Lin J, Chen M (2018) Angew. Chem. Int. Ed. 57:333

    CAS  Google Scholar 

  175. 175.

    Xu J, Shanmugam S, Duong HT, Boyer C (2015) Polym. Chem. 6:5615

    CAS  Google Scholar 

  176. 176.

    Gardiner J, Hornung CH, Tsanaktsidis J, Guthrie D (2016) Eur. Polym. J. 80:200

    CAS  Google Scholar 

  177. 177.

    Corrigan N, Rosli D, Jones JWJ, Xu J, Boyer C (2016) Macromolecules 49:6779

    CAS  Google Scholar 

  178. 178.

    Wenn B, Junkers T (2016) Macromolecules 49:6888

    CAS  Google Scholar 

  179. 179.

    Corrigan N, Almasri A, Taillades W, Xu J, Boyer C (2017) Macromolecules 50:8438

    CAS  Google Scholar 

  180. 180.

    Ramsey BL, Pearson RM, Beck LR, Miyake GM (2017) Macromolecules 50:2668

    CAS  PubMed  PubMed Central  Google Scholar 

  181. 181.

    Wojcik F, O’Brien AG, Gotze S, Seeberger PH, Hartmann L (2013) Chemistry 19:3090

    CAS  PubMed  Google Scholar 

  182. 182.

    Xu JH, Luo GS, Chen GG, Tan B (2005) J. Memb. Sci. 249:75

    CAS  Google Scholar 

  183. 183.

    McMullen JP, Jensen KF (2010) Annu. Rev. Anal. Chem. 3:19

    CAS  Google Scholar 

  184. 184.

    Yue J, Schouten JC, Nijhuis TA (2012) Ind. Eng. Chem. Res. 51:14583

    CAS  Google Scholar 

  185. 185.

    Kenig EY, Su Y, Lautenschleger A, Chasanis P, Grünewald M (2013) Sep. Purif. Technol. 120:245

    CAS  Google Scholar 

Download references

Acknowledgements

Y. S. would like to acknowledge financial support from the National Natural Science Foundation of China (no. 21676164) and the Recruitment Program for Young Professionals initiated by Government of China. We also thank Mr. Wenhua Xu for his help in collecting some relevant references.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuanhai Su.

Additional information

This article is part of the Topical Collection “Sustainable Flow Chemistry”; edited by Timothy Noel and Rafael Luque.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Song, Y. & Xiang, L. Continuous-Flow Microreactors for Polymer Synthesis: Engineering Principles and Applications. Top Curr Chem (Z) 376, 44 (2018). https://doi.org/10.1007/s41061-018-0224-1

Download citation

Keywords

  • Microreactors
  • Flow chemistry
  • Photochemistry
  • Mass transfer
  • Polymers
  • Polymerization