Catalytic Strategies Towards Lignin-Derived Chemicals


Lignin valorization represents a crucial, yet underexploited component in current lignocellulosic biorefineries. An alluring opportunity is the selective depolymerization of lignin towards chemicals. Although challenged by lignin’s recalcitrant nature, several successful (catalytic) strategies have emerged. This review provides an overview of different approaches to cope with detrimental lignin structural alterations at an early stage of the biorefinery process, thus enabling effective routes towards lignin-derived chemicals. A first general strategy is to isolate lignin with a better preserved native-like structure and therefore an increased amenability towards depolymerization in a subsequent step. Both mild process conditions as well as active stabilization methods will be discussed. An alternative is the simultaneous depolymerization-stabilization of native lignin towards stable lignin monomers. This approach requires a fast and efficient stabilization of reactive lignin intermediates in order to minimize lignin repolymerization and maximize the envisioned production of chemicals. Finally, the obtained lignin-derived compounds can serve as a platform towards a broad range of bio-based products. Their implementation will improve the sustainability of the chemical industry, but equally important will generate opportunities towards product innovations based on unique biobased chemical structures.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Adapted from Sels et al. [36]

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) Science 311:484–489

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Hoffert MI, Caldeira K, Benford G, Criswell DR, Green C, Herzog H, Jain AK, Kheshgi HS, Lackner KS, Lewis JS, Lightfoot HD, Manheimer W, Mankins JC, Mauel ME, Perkins LJ, Schlesinger ME, Volk T, Wigley TML (2002) Science 298:981–987

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    McCormick K, Kautto N (2013) Sustainability 5:2589

    Article  Google Scholar 

  4. 4.

    Dale BE, Kim S (2008) In Biorefineries-industrial processes and products. Wiley, 41–66

  5. 5.

    Kamm B, Gruber PR, Kamm M (eds) (2006) Biorefineries-industrial processes and products. Wiley-VCH, Weinheim

    Google Scholar 

  6. 6.

    Wyman CE (ed) (2013) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, Chichester

    Google Scholar 

  7. 7.

    Deneyer A, Renders T, Van Aelst J, Van den Bosch S, Gabriëls D, Sels BF (2015) Curr Opin Chem Biol 29:40–48

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Chu S, Majumdar A (2012) Nature 488:294–303

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Bozell JJ, Holladay JE, Johnson D, White JF (2007) Report PNNL 16983, vol 2, pp 1–79

  10. 10.

    Tuck CO, Pérez E, Horváth IT, Sheldon RA, Poliakoff M (2012) Science 337:695–699

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Science 344:709

    CAS  Article  Google Scholar 

  12. 12.

    Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF (2018) Chem Soc Rev 47:852–908

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Gosselink RJA, de Jong E, Guran B, Abacherli A (2004) Ind Crops Prod 20:121–129

    CAS  Article  Google Scholar 

  14. 14.

    Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PCA, Weckhuysen BM (2016) Angew Chem Int Ed 55:8164–8215

    CAS  Article  Google Scholar 

  15. 15.

    Upton BM, Kasko AM (2016) Chem Rev 116:2275–2306

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Esposito D, Antonietti M (2015) Chem Soc Rev 44:5821–5835

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Sen S, Patil S, Argyropoulos DS (2015) Green Chem 17:4862–4887

    CAS  Article  Google Scholar 

  18. 18.

    Alonso DM, Hakim SH, Zhou S, Won W, Hosseinaei O, Tao J, Garcia-Negron V, Motagamwala AH, Mellmer MA, Huang K, Houtman CJ, Labbé N, Harper DP, Maravelias C, Runge T, Dumesic JA (2017) Sci Adv 3:1–7

    Article  CAS  Google Scholar 

  19. 19.

    Huang Y, Duan Y, Qiu S, Wang M, Ju C, Cao H, Fang Y, Tan T (2017) Sustain Energy Fuels 2:637–647

    Article  Google Scholar 

  20. 20.

    Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044–4098

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Bidlack JE, Dashek WV (2016) Plant cells and their organelles. Wiley, Chichester, pp 209–238

    Google Scholar 

  22. 22.

    Clark JH, Deswarte FEI (2008) Introduction to chemicals from biomass. Wiley, Chichester, pp 1–20

    Google Scholar 

  23. 23.

    Kudakasseril Kurian J, Raveendran Nair G, Hussain A, Vijaya Raghavan GS (2013) Renew Sustain Energy Rev 25:205–219

    CAS  Article  Google Scholar 

  24. 24.

    Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Science 315:804–807

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    DeMartini JD, Pattathil S, Miller JS, Li H, Hahn MG, Wyman CE (2013) Energy Environ Sci 6:898–909

    CAS  Article  Google Scholar 

  26. 26.

    Davison BH, Parks J, Davis MF, Donohoe BS (2013) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, Chichester, pp 23–38

    Google Scholar 

  27. 27.

    Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Ind Eng Chem Res 48:3713–3729

    CAS  Article  Google Scholar 

  28. 28.

    Saini JK, Saini R, Tewari L (2015) 3 Biotech 5:337–353

    PubMed  Article  Google Scholar 

  29. 29.

    Zakzeski J, Jongerius AL, Bruijnincx PCA, Weckhuysen BM (2012) Chemsuschem 5:1602–1609

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Klemm D, Heublein B, Fink H-P, Bohn A (2005) Angew Chem Int Ed 44:3358–3393

    CAS  Article  Google Scholar 

  31. 31.

    Heinze T (2016) Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Rojas OJ (ed) Springer International Publishing, Cham, 2016, pp 1–52

  32. 32.

    Schädel C, Blöchl A, Richter A, Hoch G (2010) Plant Physiol Biochem 48:1–8

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Bioresour Technol 101:4775–4800

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Huang F (2014) Materials for biofuels, World Scientific, pp 1–26

    Google Scholar 

  35. 35.

    U.S Department of Energy Genome Programs image gallery, (18/4/2017)

  36. 36.

    Schutyser W, Renders T, Van den Bossche G, Van den Bosch S, Koelewijn S-F, Ennaert T, Sels BF (2017) Nanotechnology in catalysis. Wiley, Chichester, pp 537–584

    Google Scholar 

  37. 37.

    Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) Chem Rev 110:3552–3599

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Chundawat SPS, Beckham GT, Himmel ME, Dale BE (2011) Ann Rev Chem Biomol Eng 2:121–145

    CAS  Article  Google Scholar 

  39. 39.

    Yuan T-Q, Sun S-N, Xu F, Sun R-C (2011) J Agric Food Chem 59:10604–10614

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH, Boerjan W (2004) Phytochem Rev 3:29–60

    CAS  Article  Google Scholar 

  41. 41.

    Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Plant Physiol 153:895–905

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Laskar DD, Yang B, Wang H, Lee J (2013) Biofuels. Bioprod Biorefining 7:602–626

    CAS  Article  Google Scholar 

  43. 43.

    Mottiar Y, Vanholme R, Boerjan W, Ralph J, Mansfield SD (2016) Curr Opin Biotechnol 37:190–200

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Liu E, Das L, Zhao B, Crocker M, Shi J (2017) BioEnergy Res

  45. 45.

    Brunow G (2008) Biorefineries-Industrial Processes and Products. Wiley, Chichester, pp 151–163

    Google Scholar 

  46. 46.

    Van den Bosch S, Schutyser W, Vanholme R, Driessen T, Koelewijn SF, Renders T, De Meester B, Huijgen WJJ, Dehaen W, Courtin CM, Lagrain B, Boerjan W, Sels BF (2015) Energy Environ Sci 8:1748–1763

    Article  CAS  Google Scholar 

  47. 47.

    del Rio JC, Rencoret J, Prinsen P, Martinez AT, Ralph J, Gutierrez A (2012) J Agric Food Chem 60:5922–5935

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Kamm B, Kamm M, Gruber PR, Kromus S (2008) Biorefineries-industrial processes and products. Wiley, Chichester, pp 1–40

    Google Scholar 

  49. 49.

    Mikkola J-P, Sklavounos E, King AWT, Virtanen P (2016) Ionic liquids in the biorefinery concept: challenges and perspectives. The Royal Society of Chemistry, pp 1–37

  50. 50.

    Balat M, Balat H (2009) Appl Energy 86:2273–2282

    CAS  Article  Google Scholar 

  51. 51.

    Sánchez ÓJ, Cardona CA (2008) Biores Technol 99:5270–5295

    Article  CAS  Google Scholar 

  52. 52.

    Li M, Pu Y, Ragauskas AJ (2016) Front Chem 4:45

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. 53.

    Zhao X, Zhang L, Liu D (2012) Biofuels. Bioprod Biorefining 6:465–482

    CAS  Article  Google Scholar 

  54. 54.

    Lora JH (2016) Quality living through chemurgy and green chemistry. Lau PCK, Springer, pp 221–261

  55. 55.

    Sjöström E (1993) Wood chemistry, 2nd edn. Academic Press, San Diego, pp 114–164

    Google Scholar 

  56. 56.

    Gierer J (1985) Wood Sci Technol 19:289–312

    CAS  Google Scholar 

  57. 57.

    Gierer J, Norén I, Wännström S (1987) Journal 41:79

    CAS  Google Scholar 

  58. 58.

    Gellerstedt G (2009) Pulping chemistry and technology, pp 91–120

  59. 59.

    Chakar FS, Ragauskas AJ (2004) Ind Crops Prod 20:131–141

    CAS  Article  Google Scholar 

  60. 60.

    Gellerstedt G (2015) Ind Crops Prod 77:845–854

    CAS  Article  Google Scholar 

  61. 61.

    Ragnar M, Henriksson G, Lindström ME, Wimby M, Blechschmidt J, Heinemann S (2014) Ullmann’s encyclopedia of industrial chemistry. Wiley, Chichester

    Google Scholar 

  62. 62.

    Calvo-Flores FG, Dobado JA, Isac-García J, Martín-MartíNez FJ (2015) Lignin and lignans as renewable raw materials. Wiley, Chichester, pp 113–144

    Google Scholar 

  63. 63.

    Azadi P, Inderwildi OR, Farnood R, King DA (2013) Renew Sustain Energy Rev 21:506–523

    CAS  Article  Google Scholar 

  64. 64.

    Sixta H (1998) Lenzinger Berichte, 18–27

  65. 65.

    Lora J (2008) Monomers, polymers and composites from renewable resources. Gandini MNB (ed) Elsevier, Amsterdam, pp 225–241

  66. 66.

    Aro T, Fatehi P (2017) Chemsuschem 10:1861–1877

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Gillet S, Aguedo M, Petitjean L, Morais ARC, da Costa Lopes AM, Lukasik RM, Anastas P (2017) Green Chem

  68. 68.

    Anderson S, Dimmel D, Izsak P (2003) J Wood Chem Technol 23:141–159

    Article  CAS  Google Scholar 

  69. 69.

    Vishtal AG, Kraslawski A (2011) BioResources 6:3547–3568

    Google Scholar 

  70. 70.

    Luterbacher JS, Martin Alonso D, Dumesic JA (2014) Green Chem 16:4816–4838

    CAS  Article  Google Scholar 

  71. 71.

    Katzen R, Schell DJ (2008) Biorefineries-industrial processes and products. Wiley, pp 129–138

  72. 72.

    Pu Y, Hu F, Huang F, Davison BH, Ragauskas AJ (2013) Biotechnol Biofuels 6:15

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Pu Y, Hu F, Huang F, Ragauskas AJ (2015) BioEnergy Res 8:992–1003

    CAS  Article  Google Scholar 

  74. 74.

    Sturgeon MR, Kim S, Lawrence K, Paton RS, Chmely SC, Nimlos M, Foust TD, Beckham GT (2013) ACS Sustain Chem Eng 2:472–485

    Article  CAS  Google Scholar 

  75. 75.

    Adler E (1977) Wood Sci Technol 11:169–218

    CAS  Article  Google Scholar 

  76. 76.

    Deuss PJ, Scott M, Tran F, Westwood NJ, de Vries JG, Barta K (2015) J Am Chem Soc 137:7456–7467

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Kulka M, Fisher HE, Baker SB, Hibbert H (1944) J Am Chem Soc 66:39–41

    CAS  Article  Google Scholar 

  78. 78.

    Shuai L, Saha B (2017) Green Chem 19:3752–3758

    CAS  Article  Google Scholar 

  79. 79.

    Shuai L, Amiri MT, Questell-Santiago YM, Héroguel F, Li Y, Kim H, Meilan R, Chapple C, Ralph J, Luterbacher JS (2016) Science 354:329–333

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Imai T, Yokoyama T, Matsumoto Y (2011) J Wood Sci 57:219–225

    CAS  Article  Google Scholar 

  81. 81.

    Saeman JF, Bubl JL, Harris EE (1945) Ind Eng Chem Anal Ed 17:35–37

    CAS  Article  Google Scholar 

  82. 82.

    Bergius F (1937) Ind Eng Chem 29:247–253

    CAS  Article  Google Scholar 

  83. 83.

    C. W. Dence, in Methods in Lignin Chemistry, eds. S. Lin and C. Dence, Springer Berlin Heidelberg, 1992, ch. 3, pp 33–61

  84. 84.

    Courtin CM, Van den Broeck H, Delcour JA (2000) J Chromatogr A 866:97–104

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Zheng Y, Zhao J, Xu F, Li Y (2014) Prog Energy Combust Sci 42:35–53

    Article  Google Scholar 

  86. 86.

    Saeman JF (1945) Ind Eng Chem 37:43–52

    CAS  Article  Google Scholar 

  87. 87.

    Hu F, Ragauskas A (2014) RSC Adv 4:4317–4323

    CAS  Article  Google Scholar 

  88. 88.

    Hu F, Jung S (2012) Ragauskas, Bioresour Technol 117

  89. 89.

    van Zandvoort I, Koers EJ, Weingarth M, Bruijnincx PCA, Baldus M, Weckhuysen BM (2015) Green Chem 17:4383–4392

    Article  Google Scholar 

  90. 90.

    Nitsos CK, Matis KA, Triantafyllidis KS (2013) Chem Sus Chem 6:110–122

    CAS  Article  Google Scholar 

  91. 91.

    Nitsos CK, Choli-Papadopoulou T, Matis KA, Triantafyllidis KS (2016) ACS Sustain Chem Eng 4:4529–4544

    CAS  Article  Google Scholar 

  92. 92.

    Sannigrahi P, Ragauskas AJ (2013) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals, Wiley, pp 201–222

  93. 93.

    Zhao X, Cheng K, Liu D (2009) Appl Microbiol Biotechnol 82:815–827

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Li M-F, Yang S, Sun R-C (2016) Biores Technol 200:971–980

    CAS  Article  Google Scholar 

  95. 95.

    Zhang Z, Harrison MD, Rackemann DW, Doherty WOS, O’Hara IM (2016) Green Chem 18:360–381

    Article  CAS  Google Scholar 

  96. 96.

    Huijgen WJJ, Telysheva G, Arshanitsa A, Gosselink RJA, de Wild PJ (2014) Ind Crops Prod 59:85–95

    CAS  Article  Google Scholar 

  97. 97.

    Wildschut J, Smit AT, Reith JH, Huijgen WJJ (2013) Biores Technol 135:58–66

    CAS  Article  Google Scholar 

  98. 98.

    Hallac BB, Sannigrahi P, Pu Y, Ray M, Murphy RJ, Ragauskas AJ (2010) Ind Eng Chem Res 24:2723–2732

    CAS  Google Scholar 

  99. 99.

    Snelders J, Dornez E, Benjelloun-Mlayah B, Huijgen WJJ, de Wild PJ, Gosselink RJA, Gerritsma J, Courtin CM (2014) Biores Technol 156:275–282

    CAS  Article  Google Scholar 

  100. 100.

    Abdelkafi F, Ammar H, Rousseau B, Tessier M, El Gharbi R, Fradet A (2011) Biomacromol 12:3895–3902

    CAS  Article  Google Scholar 

  101. 101.

    Grande PM, Viell J, Theyssen N, Marquardt W, Dominguez de Maria P, Leitner W (2015) Green Chem 17:3533–3539

    CAS  Article  Google Scholar 

  102. 102.

    Quesada-Medina J, López-Cremades FJ, Olivares-Carrillo P (2010) Biores Technol 101:8252–8260

    CAS  Article  Google Scholar 

  103. 103.

    Alriols MG, Tejado A, Blanco M, Mondragon I, Labidi J (2009) Chem Eng J 148:106–114

    CAS  Article  Google Scholar 

  104. 104.

    Katahira R, Mittal A, McKinney K, Ciesielski PN, Donohoe BS, Black SK, Johnson DK, Biddy MJ, Beckham GT (2014) ACS Sustain Chem Eng 2:1364–1376

    CAS  Article  Google Scholar 

  105. 105.

    Huijgen WJJ, Reith JH, den Uil H (2010) Ind Eng Chem Res 49:10132–10140

    CAS  Article  Google Scholar 

  106. 106.

    Deuss PJ, Lancefield CS, Narani A, de Vries JG, Westwood NJ, Barta K (2017) Green Chem 19:2774–2782

    CAS  Article  Google Scholar 

  107. 107.

    Van den Bosch S, Renders T, Kennis S, Koelewijn SF, Van den Bossche G, Vangeel T, Deneyer A, Depuydt D, Courtin CM, Thevelein JM, Schutyser W, Sels BF (2017) Green Chem 19:3313–3326

    Article  Google Scholar 

  108. 108.

    Minami E, Saka S (2003) J Wood Sci 49:0073–0078

    CAS  Article  Google Scholar 

  109. 109.

    Minami E, Saka S (2005) J Wood Sci 51:395–400

    CAS  Article  Google Scholar 

  110. 110.

    Minami E, Kawamoto H, Saka S (2003) J Wood Sci 49:158–165

    CAS  Article  Google Scholar 

  111. 111.

    Bouxin FP, McVeigh A, Tran F, Westwood NJ, Jarvis MC, Jackson SD (2015) Green Chem 17:1235–1242

    CAS  Article  Google Scholar 

  112. 112.

    Lancefield CS, Rashid GMM, Bouxin F, Wasak A, Tu W-C, Hallett J, Zein S, Rodríguez J, Jackson SD, Westwood NJ, Bugg TDH (2016) ACS Sustain Chem Eng 4:6921–6930

    CAS  Article  Google Scholar 

  113. 113.

    Si X, Lu F, Chen J, Lu R, Huang Q, Jiang H, Taarning E, Xu J (2017) Green Chem

  114. 114.

    Ralph SR, Ralph J, Landucci LL. NMR database of lignin and cell wall model compounds.

  115. 115.

    Ralph J, Landucci LL (2011) Lignin and lignans: advances in chemistry. Heitner C, Dimmel DR, Schmidt JA. CRC Press, pp 137–244

  116. 116.

    Rolando C, Monties B, Lapierre C (1992) Methods in Lignin Chemistry. Lin SY, Dence CW (eds) Springer, Berlin, pp 334–349

  117. 117.

    Galkin M, Di Francesco D, Edlund U, Samec JSM (2017) Faraday discussions

  118. 118.

    Lancefield CS, Panovic I, Deuss PJ, Barta K, Westwood NJ (2017) Green Chem 19:202–214

    CAS  Article  Google Scholar 

  119. 119.

    Zaheer M, Hermannsdörfer J, Kretschmer WP, Motz G, Kempe R (2014) Chemcatchem 6:91–95

    CAS  Article  Google Scholar 

  120. 120.

    Galkin MV, Sawadjoon S, Rohde V, Dawange M, Samec JSM (2014) ChemCatChem 6:179–184

    CAS  Article  Google Scholar 

  121. 121.

    Parsell TH, Owen BC, Klein I, Jarrell TM, Marcum CL, Haupert LJ, Amundson LM, Kenttamaa HI, Ribeiro F, Miller JT, Abu-Omar MM (2013) Chem Sci 4:806–813

    CAS  Article  Google Scholar 

  122. 122.

    Feghali E, Carrot G, Thuery P, Genre C, Cantat T (2015) Energy Environ Sci 8:2734–2743

    CAS  Article  Google Scholar 

  123. 123.

    Luterbacher JS, Azarpira A, Motagamwala AH, Lu F, Ralph J, Dumesic JA (2015) Energy Environ Sci 8:2657–2663

    CAS  Article  Google Scholar 

  124. 124.

    Kloekhorst A, Shen Y, Yie Y, Fang M, Heeres HJ (2015) Biomass Bioenerg 80:147–161

    CAS  Article  Google Scholar 

  125. 125.

    Kumar CR, Anand N, Kloekhorst A, Cannilla C, Bonura G, Frusteri F, Barta K, Heeres HJ (2015) Green Chem 17:4921–4930

    CAS  Article  Google Scholar 

  126. 126.

    Oasmaa A, Alén R, Meier D (1993) Biores Technol 45:189–194

    CAS  Article  Google Scholar 

  127. 127.

    Huang X, Korányi TI, Boot MD, Hensen EJM (2014) Chemsuschem 7:2276–2288

    CAS  PubMed  Article  Google Scholar 

  128. 128.

    Huang X, Koranyi TI, Boot MD, Hensen EJM (2015) Green Chem 17:4941–4950

    CAS  Article  Google Scholar 

  129. 129.

    Torr KM, van de Pas DJ, Cazeils E, Suckling ID (2011) Biores Technol 102:7608–7611

    CAS  Article  Google Scholar 

  130. 130.

    Barta K, Warner GR, Beach ES, Anastas PT (2014) Green Chem 16:191–196

    CAS  Article  Google Scholar 

  131. 131.

    Molinari V, Clavel G, Graglia M, Antonietti M, Esposito D (2016) ACS Catal 6:1663–1670

    CAS  Article  Google Scholar 

  132. 132.

    Ratcliff MA, Johnson DK, Posey FL, Chum HL (1988) Appl Biochem Biotechnol 17:151–160

    CAS  Article  Google Scholar 

  133. 133.

    Kloekhorst A, Heeres HJ (2015) ACS Sustain Chem Eng 3:1905–1914

    CAS  Article  Google Scholar 

  134. 134.

    Kloekhorst A, Heeres HJ (2016) Catal Sci Technol 6:7053–7067

    CAS  Article  Google Scholar 

  135. 135.

    Kasakov S, Shi H, Camaioni DM, Zhao C, Barath E, Jentys A, Lercher JA (2015) Green Chem 17:5079–5090

    CAS  Article  Google Scholar 

  136. 136.

    Wang H, Ruan H, Feng M, Qin Y, Job H, Luo L, Wang C, Engelhard MH, Kuhn E, Chen X, Tucker MP, Yang B (2017) Chemsuschem 10:1846–1856

    CAS  PubMed  Article  Google Scholar 

  137. 137.

    Zhang J, Teo J, Chen X, Asakura H, Tanaka T, Teramura K, Yan N (2014) ACS Catal 4:1574–1583

    CAS  Article  Google Scholar 

  138. 138.

    Ma R, Hao W, Ma X, Tian Y, Li Y (2014) Angew Chem Int Ed 53:7310–7315

    CAS  Article  Google Scholar 

  139. 139.

    Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Chem Rev 115:11559–11624

    CAS  Article  PubMed  Google Scholar 

  140. 140.

    Ma R, Xu Y, Zhang X (2015) Chemsuschem 8:24–51

    CAS  PubMed  Article  Google Scholar 

  141. 141.

    Ma R, Guo M, Zhang X (2017) Catal Today

  142. 142.

    Gierer J (1986) Wood Sci Technol 20:1–33

    CAS  Article  Google Scholar 

  143. 143.

    Demesa AG, Laari A, Turunen I, Sillanpää M (2015) Chem Eng Technol 38:2270–2278

    CAS  Article  Google Scholar 

  144. 144.

    Fache M, Boutevin B, Caillol S (2016) ACS Sustain Chem Eng 4:35–46

    CAS  Article  Google Scholar 

  145. 145.

    Rodrigues Pinto PC, Borges da Silva EA, Rodrigues AE (2012) Biomass conversion: the interface of biotechnology, chemistry and materials science. Baskar C, Baskar S, Dhillon RS (eds) Springer Berlin, pp 381–420

  146. 146.

    Kagawa S, Rokugawa M (1971) Jpn Tappi J 25:506–511

    CAS  Article  Google Scholar 

  147. 147.

    Partenheimer W (2009) Adv Synth Catal 351:456–466

    CAS  Article  Google Scholar 

  148. 148.

    Voitl T, Rudolf von Rohr P (2008) ChemSusChem 1:763–769

    CAS  PubMed  Article  Google Scholar 

  149. 149.

    Voitl T, Rohr PRV (2010) Ind Eng Chem Res 49:520–525

    CAS  Article  Google Scholar 

  150. 150.

    Deng W, Zhang H, Wu X, Li R, Zhang Q, Wang Y (2015) Green Chem 17:5009–5018

    CAS  Article  Google Scholar 

  151. 151.

    Tarabanko VE, Hendogina YV, Petuhov DV, Pervishina EP (2000) React Kinet Catal Lett 69:361–368

    CAS  Article  Google Scholar 

  152. 152.

    Tarabanko VE, Petukhov DV (2003) Chem Sustain Dev 11:655–667

    Google Scholar 

  153. 153.

    Lange H, Decina S, Crestini C (2013) Eur Polymer J 49:1151–1173

    CAS  Article  Google Scholar 

  154. 154.

    Das L, Kolar P, Sharma-Shivappa R (2012) Biofuels 3:155–166

    CAS  Article  Google Scholar 

  155. 155.

    Werhan H, Assmann N, Rudolf von Rohr P (2013) Chem Eng Process 73:29–37

    CAS  Article  Google Scholar 

  156. 156.

    Xiang Q, Lee YY (2000) Appl Biochem Biotechnol 84:153–162

    PubMed  Article  Google Scholar 

  157. 157.

    Ma R, Guo M, Zhang X (2014) Chemsuschem 7:412–415

    CAS  PubMed  Article  Google Scholar 

  158. 158.

    Hasegawa I, Inoue Y, Muranaka Y, Yasukawa T, Mae K (2011) Energy Fuels 25:791–796

    CAS  Article  Google Scholar 

  159. 159.

    Long J, Zhang Q, Wang T, Zhang X, Xu Y, Ma L (2014) Biores Technol 154:10–17

    CAS  Article  Google Scholar 

  160. 160.

    Güvenatam B, Heeres EHJ, Pidko EA, Hensen EJM (2016) Catal Today 259:460–466

    Article  CAS  Google Scholar 

  161. 161.

    Hepditch MM, Thring RW (2000) Can J Chem Eng 78:226–231

    CAS  Article  Google Scholar 

  162. 162.

    Katahira R, Mittal A, McKinney K, Chen X, Tucker MP, Johnson DK, Beckham GT (2016) ACS Sustain Chem Eng 4:1474–1486

    CAS  Article  Google Scholar 

  163. 163.

    Beauchet R, Monteil-Rivera F, Lavoie JM (2012) Biores Technol 121:328–334

    CAS  Article  Google Scholar 

  164. 164.

    Zhang X, Zhang Q, Long J, Xu Y, Wang T, Ma L, Li Y (2014) BioResources 9:3347–3360

    CAS  Google Scholar 

  165. 165.

    Deepa AK, Dhepe PL (2014) RSC Adv 4:12625–12629

    CAS  Article  Google Scholar 

  166. 166.

    Lee H-S, Jae J, Ha J-M, Suh DJ (2016) Biores Technol 203:142–149

    CAS  Article  Google Scholar 

  167. 167.

    Ye Y, Zhang Y, Fan J, Chang J (2012) Ind Eng Chem Res 51:103–110

    CAS  Article  Google Scholar 

  168. 168.

    Ye Y, Fan J, Chang J (2012) J Anal Appl Pyrol 94:190–195

    CAS  Article  Google Scholar 

  169. 169.

    Onwudili JA, Williams PT (2014) Green Chem 16:4740–4748

    CAS  Article  Google Scholar 

  170. 170.

    Jiang Z, He T, Li J, Hu C (2014) Green Chem 16:4257–4265

    CAS  Article  Google Scholar 

  171. 171.

    Bridgwater AV (2012) Biomass Bioenerg 38:68–94

    CAS  Article  Google Scholar 

  172. 172.

    Liu C, Wang H, Karim AM, Sun J, Wang Y (2014) Chem Soc Rev 43:7594–7623

    CAS  PubMed  Article  Google Scholar 

  173. 173.

    Mu W, Ben H, Ragauskas A, Deng Y (2013) BioEnergy Res 6:1183–1204

    CAS  Article  Google Scholar 

  174. 174.

    Yu Y, Li X, Su L, Zhang Y, Wang Y, Zhang H (2012) Appl Catal A 447:115–123

    Article  CAS  Google Scholar 

  175. 175.

    Mihalcik DJ, Mullen CA, Boateng AA (2011) J Anal Appl Pyrol 92:224–232

    CAS  Article  Google Scholar 

  176. 176.

    Ma Z, Troussard E, van Bokhoven JA (2012) Appl Catal A 423:130–136

    Article  CAS  Google Scholar 

  177. 177.

    Bond JQ, Upadhye AA, Olcay H, Tompsett GA, Jae J, Xing R, Alonso DM, Wang D, Zhang T, Kumar R, Foster A, Sen SM, Maravelias CT, Malina R, Barrett SRH, Lobo R, Wyman CE, Dumesic JA, Huber GW (2014) Energy Environ Sci 7:1500–1523

    CAS  Article  Google Scholar 

  178. 178.

    Zhou G, Jensen PA, Le DM, Knudsen NO, Jensen AD (2016) Green Chem 18:1965–1975

    CAS  Article  Google Scholar 

  179. 179.

    Thilakaratne R, Tessonnier J-P, Brown RC (2016) Green Chem 18:2231–2239

    CAS  Article  Google Scholar 

  180. 180.

    Lazaridis PA, Fotopoulos AP, Karakoulia SA, Triantafyllidis KS (2018) Front Chem 6:1–21

    Article  Google Scholar 

  181. 181.

    Zhao Y, Deng L, Liao B, Fu Y, Guo Q-X (2010) Energy Fuels 24:5735–5740

    CAS  Article  Google Scholar 

  182. 182.

    Jackson MA, Compton DL, Boateng AA (2009) J Anal Appl Pyrol 85:226–230

    CAS  Article  Google Scholar 

  183. 183.

    Ma Z, Custodis V, van Bokhoven JA (2014) Catal Sci Technol 4:766–772

    CAS  Article  Google Scholar 

  184. 184.

    Ennaert T, Van Aelst J, Dijkmans J, De Clercq R, Schutyser W, Dusselier M, Verboekend D, Sels BF (2016) Chem Soc Rev 45:584–611

    CAS  PubMed  Article  Google Scholar 

  185. 185.

    Zhang M, Resende FLP, Moutsoglou A (2014) Fuel 116:358–369

    CAS  Article  Google Scholar 

  186. 186.

    Renders T, Van den Bosch S, Koelewijn SF, Schutyser W, Sels BF (2017) Energy Environ Sci 10:1551–1557

    CAS  Article  Google Scholar 

  187. 187.

    Barry AJ, Peterson FC, King AJ (1936) J Am Chem Soc 58:333–337

    CAS  Article  Google Scholar 

  188. 188.

    Yan MM, Purves CB (1956) Can J Chem 34:1582–1590

    CAS  Article  Google Scholar 

  189. 189.

    Bouxin FP, David Jackson S, Jarvis MC (2014) Biores Technol 162:236–242

    CAS  Article  Google Scholar 

  190. 190.

    Singh S, Cheng G, Sathitsuksanoh N, Wu D, Varanasi P, George A, Balan V, Gao X, Kumar R, Dale BE, Wyman CE, Simmons BA (2015) Front Energy Res 2

  191. 191.

    da Costa Sousa L, Foston M, Bokade V, Azarpira A, Lu F, Ragauskas AJ, Ralph J, Dale B, Balan V (2016) Green Chem 18:4205–4215

    Article  CAS  Google Scholar 

  192. 192.

    Mittal A, Katahira R, Donohoe BS, Pattathil S, Kandemkavil S, Reed ML, Biddy MJ, Beckham GT (2017) ACS Sustain Chem Eng 5:2544–2561

    CAS  Article  Google Scholar 

  193. 193.

    Balan V, Bals B, Chundawat SP, Marshall D, Dale BE (2009) Methods Mol Biol 581:61–77

    CAS  PubMed  Article  Google Scholar 

  194. 194.

    Chundawat SPS, Donohoe BS, da Costa Sousa L, Elder T, Agarwal UP, Lu F, Ralph J, Himmel ME, Balan V, Dale BE (2011) Energy Environ Sci 4:973–984

    CAS  Article  Google Scholar 

  195. 195.

    Kim JS, Lee YY, Kim TH (2016) Bioresour Technol 199:42–48

    CAS  PubMed  Article  Google Scholar 

  196. 196.

    Chundawat SPS, Bals B, Campbell T, Sousa L, Gao D, Jin M, Eranki P, Garlock R, Teymouri F, Balan V, Dale BE (2013) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, Chichester, pp 169–200

    Google Scholar 

  197. 197.

    da Costa Sousa L, Jin M, Chundawat SPS, Bokade V, Tang X, Azarpira A, Lu F, Avci U, Humpula J, Uppugundla N, Gunawan C, Pattathil S, Cheh AM, Kothari N, Kumar R, Ralph J, Hahn MG, Wyman CE, Singh S, Simmons BA, Dale BE, Balan V (2016) Energy Environ Sci 9:1215–1223

    Article  Google Scholar 

  198. 198.

    Chundawat SPS, Bellesia G, Uppugundla N, da Costa Sousa L, Gao D, Cheh AM, Agarwal UP, Bianchetti CM, Phillips GN, Langan P, Balan V, Gnanakaran S, Dale BE (2011) J Am Chem Soc 133:11163–11174

    CAS  PubMed  Article  Google Scholar 

  199. 199.

    Kim TH, Lee YY (2005) Biores Technol 96:2007–2013

    CAS  Article  Google Scholar 

  200. 200.

    Kim TH, Kim JS, Sunwoo C, Lee YY (2003) Biores Technol 90:39–47

    CAS  Article  Google Scholar 

  201. 201.

    Yang B, Wyman CE (2008) Biofuels Bioprod Biorefining-Biofpr 2:26–40

    CAS  Article  Google Scholar 

  202. 202.

    Yoon HH, Wu ZW, Lee YY (1995) Appl Biochem Biotechnol 51:5–19

    Article  Google Scholar 

  203. 203.

    Brandt A, Grasvik J, Hallett JP, Welton T (2013) Green Chem 15:550–583

    CAS  Article  Google Scholar 

  204. 204.

    George A, Tran K, Morgan TJ, Benke PI, Berrueco C, Lorente E, Wu BC, Keasling JD, Simmons BA, Holmes BM (2011) Green Chem 13:3375–3385

    CAS  Article  Google Scholar 

  205. 205.

    Badgujar KC, Bhanage BM (2015) Biores Technol 178:2–18

    CAS  Article  Google Scholar 

  206. 206.

    Brandt-Talbot A, Gschwend FJV, Fennell PS, Lammens TM, Tan B, Weale J, Hallett JP (2017) Green Chem 19:3078–3102

    CAS  Article  Google Scholar 

  207. 207.

    Weigand L, Mostame S, Brandt-Talbot A, Welton T, Hallett JP (2017) Faraday Discuss 18

  208. 208.

    Zhang Q, De Oliveira Vigier K, Royer S, Jerome F (2012) Chem Soc Rev 41:7108–7146

    CAS  PubMed  Article  Google Scholar 

  209. 209.

    Petkovic M, Seddon KR, Rebelo LPN, Silva C (2011) Pereira. Chem Soc Rev 40:1383–1403

    CAS  PubMed  Article  Google Scholar 

  210. 210.

    Yan L, Zhang L, Yang B (2014) Biotechnol Biofuels 7:76

    PubMed  PubMed Central  Article  Google Scholar 

  211. 211.

    Wang H, Ben H, Ruan H, Zhang L, Pu Y, Feng M, Ragauskas AJ, Yang B (2017) ACS Sustain Chem Eng 5:1824–1830

    CAS  Article  Google Scholar 

  212. 212.

    Liu C, Wyman CE (2003) Ind Eng Chem Res 42:5409–5416

    CAS  Article  Google Scholar 

  213. 213.

    Bhagia S, Li H, Gao X, Kumar R, Wyman CE (2016) Biotechnol Biofuels 9:245

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  214. 214.

    Luterbacher JS, Rand JM, Alonso DM, Han J, Youngquist JT, Maravelias CT, Pfleger BF, Dumesic JA (2014) Science 343:277–280

    CAS  PubMed  Article  Google Scholar 

  215. 215.

    Alonso DM, Wettstein SG, Mellmer MA, Gurbuz EI, Dumesic JA (2013) Energy Environ Sci 6:76–80

    CAS  Article  Google Scholar 

  216. 216.

    Mellmer MA, Sener C, Gallo JMR, Luterbacher JS, Alonso DM, Dumesic JA (2014) Angew Chem Int Ed 53:11872–11875

    CAS  Article  Google Scholar 

  217. 217.

    Shuai L, Luterbacher J (2016) Chemsuschem 9:133–155

    CAS  PubMed  Article  Google Scholar 

  218. 218.

    Shuai L, Questell-Santiago YM, Luterbacher JS (2016) Green Chem 18:937–943

    CAS  Article  Google Scholar 

  219. 219.

    Barakat A, Mayer-Laigle C, Solhy A, Arancon RAD, de Vries H, Luque R (2014) RSC Advances 4:48109–48127

    CAS  Article  Google Scholar 

  220. 220.

    Rencoret J, Marques G, Gutiérrez A, Nieto L, Jiménez-Barbero J, Martínez ÁT, del Río JC (2009) Ind Crops Prod 30:137–143

    CAS  Article  Google Scholar 

  221. 221.

    El Hage R, Brosse N, Chrusciel L, Sanchez C, Sannigrahi P, Ragauskas A (2009) Polym Degrad Stab 94:1632–1638

    Article  CAS  Google Scholar 

  222. 222.

    Guerra A, Mendonça R, Ferraz A, Lu F, Ralph J (2004) Appl Environ Microbiol 70:4073–4078

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  223. 223.

    Tolbert A, Akinosho H, Khunsupat R, Naskar AK, Ragauskas AJ (2014) Biofuels Bioprod Biorefining 8:836–856

    CAS  Article  Google Scholar 

  224. 224.

    Hu Z, Yeh T-F, Chang HM, Matsumoto Y, Kadla John F (2006) Journal 60:389

  225. 225.

    Chang HM, Cowling Ellis B, Brown W (1975) Journal 29:153

  226. 226.

    Guerra A, Filpponen I, Lucia LA, Argyropoulos DS (2006) J Agric Food Chem 54:9696–9705

    CAS  PubMed  Article  Google Scholar 

  227. 227.

    Guerra A, Filpponen I, Lucia LA, Saquing C, Baumberger S, Argyropoulos DS (2006) J Agric Food Chem 54:5939–5947

    CAS  PubMed  Article  Google Scholar 

  228. 228.

    van der Klashorst GH (1989) Lignin. American Chemical Society, vol. 397, ch. 26, pp 346–360

  229. 229.

    Wu L, Talebi AM (2018) Angewandte Chemie International Edition 57:1356–1360

    CAS  PubMed  Article  Google Scholar 

  230. 230.

    Bower JR, Cooke LM, Hibbert H (1943) J Am Chem Soc 65:1192–1195

    CAS  Article  Google Scholar 

  231. 231.

    Brewer CP, Cooke LM, Hibbert H (1948) J Am Chem Soc 70:57–59

    CAS  PubMed  Article  Google Scholar 

  232. 232.

    Pepper JM, Brounstein CJ, Shearer DA (1951) J Am Chem Soc 73:3316–3319

    CAS  Article  Google Scholar 

  233. 233.

    Pepper JM, Supathna P (1978) Can J Chem 56:899–902

    CAS  Article  Google Scholar 

  234. 234.

    Song Q, Wang F, Cai JY, Wang YH, Zhang JJ, Yu WQ, Xu J (2013) Energy Environ Sci 6:994–1007

    CAS  Article  Google Scholar 

  235. 235.

    Anderson EM, Stone ML, Katahira R, Reed M, Beckham GT, Román-Leshkov Y (2017) Joule 1:613–622

    CAS  Article  Google Scholar 

  236. 236.

    Kumaniaev I, Subbotina E, Savmarker J, Larhed M, Galkin MV, Samec JSM (2017) Green Chem 19:5767–5771

    CAS  Article  Google Scholar 

  237. 237.

    Anderson EM, Katahira R, Reed M, Resch MG, Karp EM, Beckham GT, Román-Leshkov Y (2016) ACS Sustain Chem Eng

  238. 238.

    Renders T, Schutyser W, Van den Bosch S, Koelewijn S-F, Vangeel T, Courtin CM, Sels BF (2016) Acs Catal 6:2055–2066

    CAS  Article  Google Scholar 

  239. 239.

    Ferrini P, Rezende CA, Rinaldi R (2016) Chemsuschem 9:3171–3180

    CAS  PubMed  Article  Google Scholar 

  240. 240.

    Yan N, Zhao C, Dyson PJ, Wang C, Liu LT, Kou Y (2008) Chemsuschem 1:626–629

    CAS  PubMed  Article  Google Scholar 

  241. 241.

    Galkin MV, Samec JSM (2016) Chemsuschem 9:1544–1558

    CAS  PubMed  Article  Google Scholar 

  242. 242.

    Galkin MV, Samec JSM (2014) Chemsuschem 7:2154–2158

    CAS  PubMed  Article  Google Scholar 

  243. 243.

    Parsell T, Yohe S, Degenstein J, Jarrell T, Klein I, Gencer E, Hewetson B, Hurt M, Kim JI, Choudhari H, Saha B, Meilan R, Mosier N, Ribeiro F, Delgass WN, Chapple C, Kenttamaa HI, Agrawal R, Abu-Omar MM (2015) Green Chem 17:1492–1499

    CAS  Article  Google Scholar 

  244. 244.

    Ferrini P, Rinaldi R (2014) Angewandte Chemie-International Edition 53:8634–8639

    CAS  PubMed  Article  Google Scholar 

  245. 245.

    Luo H, Klein IM, Jiang Y, Zhu H, Liu B, Kenttämaa HI, Abu-Omar MM (2016) ACS Sustain Chem Eng 4:2316–2322

    CAS  Article  Google Scholar 

  246. 246.

    Schutyser W, Van den Bosch S, Renders T, De Boe T, Koelewijn SF, Dewaele A, Ennaert T, Verkinderen O, Goderis B, Courtin CM, Sels BF (2015) Green Chem 17:5035–5045

    CAS  Article  Google Scholar 

  247. 247.

    Renders T, Van den Bosch S, Vangeel T, Ennaert T, Koelewijn S-F, Van den Bossche G, Courtin CM, Schutyser W, Sels BF (2016) ACS Sustain Chem Eng 4:6894–6904

    CAS  Article  Google Scholar 

  248. 248.

    Huang X, Morales Gonzalez OM, Zhu J, Koranyi TI, Boot MD, Hensen EJM (2017) Green Chem 19:175–187

    CAS  Article  Google Scholar 

  249. 249.

    Huang X, Zhu J, Korányi TI, Boot MD, Hensen EJM (2016) Chemsuschem

  250. 250.

    Galkin MV, Smit AT, Subbotina E, Artemenko KA, Bergquist J, Huijgen WJJ, Samec JSM (2016) Chemsuschem 9:3280–3287

    CAS  PubMed  Article  Google Scholar 

  251. 251.

    Anderson EM, Stone ML, Hülsey MJ, Beckham GT, Román-Leshkov Y (2018) ACS Sustain Chem Eng 6:7951–7959

    CAS  Article  Google Scholar 

  252. 252.

    Van den Bosch S, Schutyser W, Koelewijn S-F, Renders T, Courtin CM, Sels BF (2015) Chem Commun

  253. 253.

    Pepper JM, Lee YW (1969) Can J Chem 47:723–727

    CAS  Article  Google Scholar 

  254. 254.

    Li C, Zheng M, Wang A, Zhang T (2012) Energy Environ Sci 5:6383–6390

    CAS  Article  Google Scholar 

  255. 255.

    Matson TD, Barta K, Iretskii AV, Ford PC (2011) J Am Chem Soc 133:14090–14097

    CAS  PubMed  Article  Google Scholar 

  256. 256.

    Barta K, Ford PC (2014) Acc Chem Res 47:1503–1512

    CAS  PubMed  Article  Google Scholar 

  257. 257.

    Op de Beeck B, Dusselier M, Geboers J, Holsbeek J, Morre E, Oswald S, Giebeler L, Sels BF (2015) Energy Environ Sci 8:230–240

    CAS  Article  Google Scholar 

  258. 258.

    Deneyer A, Ennaert T, Cavents G, Dijkmans J, Vanneste J, Courtin CM, Dusselier M, Sels BF (2016) Green Chem 18:5594–5606

    CAS  Article  Google Scholar 

  259. 259.

    Xia Q, Chen Z, Shao Y, Gong X, Wang H, Liu X, Parker SF, Han X, Yang S, Wang Y (2016) 7:11162

  260. 260.

    Chen C-L (1992) Methods in lignin chemistry. Lin SY, Dence CW (eds) Springer, Berlin, pp 301–321

  261. 261.

    Pepper JM, Casselman BW, Karapally JC (1967) Can J Chem 45:3009–3012

    CAS  Article  Google Scholar 

  262. 262.

    Koropachinskaya N, Tarabanko V, Chernyak M (2003) Chem Plant Raw Mater (Russia), 9–14

  263. 263.

    Kuznetsov BN, Kuznetsova SA, Danilov VG, Tarabanko VE (2005) Chem Sustain Dev 13:531–539

    CAS  Google Scholar 

  264. 264.

    Behling R, Valange S, Chatel G (2016) Green Chem 18:1839–1854

    CAS  Article  Google Scholar 

  265. 265.

    Evans RJ, Milne TA, Soltys MN (1986) J Anal Appl Pyrol 9:207–236

    CAS  Article  Google Scholar 

  266. 266.

    Kuroda K-I, Inoue Y, Sakai K (1990) J Anal Appl Pyrol 18:59–69

    CAS  Article  Google Scholar 

  267. 267.

    Kotake T, Kawamoto H, Saka S (2015) J Anal Appl Pyrol 113:57–64

    CAS  Article  Google Scholar 

  268. 268.

    Karp EM, Nimlos CT, Deutch S, Salvachua D, Cywar RM, Beckham GT (2016) Green Chem 18:4750–4760

    CAS  Article  Google Scholar 

  269. 269.

    Karp EM, Resch MG, Donohoe BS, Ciesielski PN, O’Brien MH, Nill JE, Mittal A, Biddy MJ, Beckham GT (2015) ACS Sustain Chem Eng 3:1479–1491

    CAS  Article  Google Scholar 

  270. 270.

    Linger JG, Vardon DR, Guarnieri MT, Karp EM, Hunsinger GB, Franden MA, Johnson CW, Chupka G, Strathmann TJ, Pienkos PT, Beckham GT (2014) Proc Natl Acad Sci 111:12013–12018

    CAS  PubMed  Article  Google Scholar 

  271. 271.

    Kaiho A, Kogo M, Sakai R, Saito K, Watanabe T (2015) Green Chem 17:2780–2783

    CAS  Article  Google Scholar 

  272. 272.

    Jastrzebski R, Constant S, Lancefield CS, Westwood NJ, Weckhuysen BM, Bruijnincx PCA (2016) Chemsuschem 9:2074–2079

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  273. 273.

    Koelewijn S-F, Van den Bosch S, Renders T, Schutyser W, Lagrain B, Smet M, Thomas J, Dehaen W, Van Puyvelde P, Witters H, Sels BF (2017) Green Chem 19:2561–2570

    CAS  Article  Google Scholar 

  274. 274.

    Koelewijn SF, Cooreman C, Renders T, Andecochea Saiz C, Van den Bosch S, Schutyser W, De Leger W, Smet M, Van Puyvelde P, Witters H, Van der Bruggen B, Sels BF (2018) Green Chem 20:1050–1058

    CAS  Article  Google Scholar 

  275. 275.

    Zhao C, Kou Y, Lemonidou AA, Li X, Lercher JA (2009) Angewandte Chemie-International Edition 48:3987–3990

    CAS  PubMed  Article  Google Scholar 

  276. 276.

    Yan N, Yuan Y, Dykeman R, Kou Y, Dyson PJ (2010) Angew Chem Int Ed 49:5549–5553

    CAS  Article  Google Scholar 

  277. 277.

    Zhang W, Chen J, Liu R, Wang S, Chen L, Li K (2014) ACS Sustain Chem Eng 2:683–691

    CAS  Article  Google Scholar 

  278. 278.

    Luska KL, Migowski P, El-Sayed S, Leitner W (2015) Angew Chem Int Ed 54:15750–15755

    CAS  Article  Google Scholar 

  279. 279.

    Wang H, Wang H, Kuhn E, Tucker MP, Yang B (2017) ChemSusChem

  280. 280.

    Yohe SL, Choudhari HJ, Mehta DD, Dietrich PJ, Detwiler MD, Akatay CM, Stach EA, Miller JT, Delgass WN, Agrawal R, Ribeiro FH (2016) J Catal 344:535–552

    CAS  Article  Google Scholar 

  281. 281.

    Prasomsri T, Shetty M, Murugappan K, Roman-Leshkov Y (2014) Energy Environ Sci 7:2660–2669

    CAS  Article  Google Scholar 

  282. 282.

    Wang H, Male J, Wang Y (2013) ACS Catal 3:1047–1070

    CAS  Article  Google Scholar 

  283. 283.

    Sun J, Karim AM, Zhang H, Kovarik L, Li XS, Hensley AJ, McEwen J-S, Wang Y (2013) J Catal 306:47–57

    CAS  Article  Google Scholar 

  284. 284.

    Cao Z, Engelhardt J, Dierks M, Clough MT, Wang G-H, Heracleous E, Lappas A, Rinaldi R, Schüth F (2017) Angew Chem Int Ed 56:2334–2339

    CAS  Article  Google Scholar 

  285. 285.

    Joshi N, Lawal A (2013) Ind Eng Chem Res 52:4049–4058

    CAS  Article  Google Scholar 

  286. 286.

    Verboekend D, Liao Y, Schutyser W, Sels BF (2016) Green Chem 18:297–306

    Article  Google Scholar 

  287. 287.

    Bai Z, Phuan WC, Ding J, Heng TH, Luo J, Zhu Y (2016) ACS Catal 6:6141–6145

    CAS  Article  Google Scholar 

  288. 288.

    Schutyser W, Van den Bossche G, Raaffels A, Van den Bosch S, Koelewijn S-F, Renders T, Sels BF (2016) ACS Sustain Chem Eng 4:5336–5346

    CAS  Article  Google Scholar 

  289. 289.

    Schutyser W, Van den Bosch S, Dijkmans J, Turner S, Meledina M, Van Tendeloo G, Debecker DP, Sels BF (2015) Chemsuschem 8:1805–1818

    CAS  PubMed  Article  Google Scholar 

  290. 290.

    Wang XY, Rinaldi R (2012) Energy Environ Sci 5:8244–8260

    CAS  Article  Google Scholar 

  291. 291.

    Nakagawa Y, Ishikawa M, Tamura M, Tomishige K (2014) Green Chem 16:2197–2203

    CAS  Article  Google Scholar 

  292. 292.

    Ishikawa M, Tamura M, Nakagawa Y, Tomishige K (2016) Appl Catal B 182:193–203

    CAS  Article  Google Scholar 

  293. 293.

    Dijkmans J, Schutyser W, Dusselier M, Sels BF (2016) Chem Commun 52:6712–6715

    CAS  Article  Google Scholar 

  294. 294.

    Jiménez JI, Miñambres B, García JL, Díaz E (2002) Environ Microbiol 4:824–841

    PubMed  Article  Google Scholar 

  295. 295.

    Barbe V, Vallenet D, Fonknechten N, Kreimeyer A, Oztas S, Labarre L, Cruveiller S, Robert C, Duprat S, Wincker P, Ornston LN, Weissenbach J, Marliere P, Cohen GN, Medigue C (2004) Nucleic Acids Res 32:5766–5779

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  296. 296.

    Masai E, Kamimura N, Kasai D, Oguchi A, Ankai A, Fukui S, Takahashi M, Yashiro I, Sasaki H, Harada T, Nakamura S, Katano Y, Narita-Yamada S, Nakazawa H, Hara H, Katayama Y, Fukuda M, Yamazaki S, Fujita N (2012) J Bacteriol 194:534–535

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  297. 297.

    Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R (2011) Nat Prod Rep 28:1883–1896

    CAS  PubMed  Article  Google Scholar 

  298. 298.

    Masai E, Katayama Y, Fukuda M (2007) Biosci Biotechnol Biochem 71:1–15

    CAS  PubMed  Article  Google Scholar 

  299. 299.

    Chen GQ (2009) Chem Soc Rev 38:2434–2446

    CAS  PubMed  Article  Google Scholar 

  300. 300.

    Vardon DR, Franden MA, Johnson CW, Karp EM, Guarnieri MT, Linger JG, Salm MJ, Strathmann TJ, Beckham GT (2015) Energy Environ Sci 8:617–628

    CAS  Article  Google Scholar 

  301. 301.

    Xie N-Z, Liang H, Huang R-B, Xu P (2014) Biotechnol Adv 32:615–622

    CAS  PubMed  Article  Google Scholar 

  302. 302.

    Kosa M, Ragauskas AJ (2013) Green Chem 15:2070–2074

    CAS  Article  Google Scholar 

Download references


This work was performed in the framework of SBO projects ARBOREF & BIOWOOD, EOS project BIOFACT, and Interreg project BIO-HArT. S.V.d.B., T.R., T.V., and W.S. acknowledge the Research Foundation—Flanders (FWO Vlaanderen) for a (post)doctoral fellowship. S.-F.K. acknowledges funding through IWT-SBO project ARBOREF. G.V.d.B acknowledges funding through FISCH-ICON project MAIA.

Author information



Corresponding authors

Correspondence to S. Van den Bosch or B. F. Sels.

Additional information

This article is part of the Topical Collection “Lignin Chemistry”; edited by Luis Serrano, Rafael Luque, Bert Sels.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Van den Bosch, S., Koelewijn, S., Renders, T. et al. Catalytic Strategies Towards Lignin-Derived Chemicals. Top Curr Chem (Z) 376, 36 (2018).

Download citation


  • Biorefinery
  • Lignin
  • Lignocellulose
  • Catalysis
  • Biobased chemicals