Advertisement

Perspective on Lignin Oxidation: Advances, Challenges, and Future Directions

  • Thijs Vangeel
  • Wouter Schutyser
  • Tom Renders
  • Bert F. SelsEmail author
Review
Part of the following topical collections:
  1. Lignin Chemistry

Abstract

Lignin valorization has gained increasing attention over the past decade. Being the world’s largest source of renewable aromatics, its valorization could pave the way towards more profitable and more sustainable lignocellulose biorefineries. Many lignin valorization strategies focus on the disassembly of lignin into aromatic monomers, which can serve as platform molecules for the chemical industry. Within this framework, the oxidative conversion of lignin is of great interest because it enables the formation of highly functionalized, valuable compounds. This work provides a brief overview and critical discussion of lignin oxidation research. In the first part, oxidative conversion of lignin models and isolated lignin streams is reviewed. The second part highlights a number of challenges with respect to the substrate, catalyst, and operating conditions, and proposes some future directions regarding the oxidative conversion of lignin.

Keywords

Lignin Oxidation Catalysis Biorefinery Model compounds 

Notes

Acknowledgements

This work was performed in the framework of Catalisti (formerly FISCH)-SBO project ARBOREF, FWO-SBO project BioWood, EU Interreg Vlaanderen-Nederland project BIO-HArT and EOS Excellence of Science project BioFact. T.V., W.S. and T.R. acknowledge the Research Foundation Flanders (FWO Vlaanderen) for (post-)doctoral fellowships.

References

  1. 1.
    Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 47(3):852–908CrossRefPubMedGoogle Scholar
  2. 2.
    De Clercq R, Dusselier M, Sels BF (2017) Heterogeneous catalysis for bio-based polyester monomers from cellulosic biomass: advances, challenges and prospects. Green Chem 19(21):5012–5040CrossRefGoogle Scholar
  3. 3.
    Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6(25):4497–4559CrossRefGoogle Scholar
  4. 4.
    Delidovich I, Hausoul PJC, Deng L, Pfützenreuter R, Rose M, Palkovits R (2016) Alternative monomers based on lignocellulose and their use for polymer production. Chem Rev 116(3):1540–1599CrossRefPubMedGoogle Scholar
  5. 5.
    Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344(6185):1246843CrossRefGoogle Scholar
  6. 6.
    Sun Z, Fridrich B, de Santi A, Elangovan S, Barta K (2018) Bright side of lignin depolymerization: toward new platform chemicals. Chem Rev 118(2):614–678CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Key RE, Bozell JJ (2016) Progress toward lignin valorization via selective catalytic technologies and the tailoring of biosynthetic pathways. ACS Sustain Chem Eng 4(10):5123–5135CrossRefGoogle Scholar
  8. 8.
    Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PC, Weckhuysen BM (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew Chem Int Ed 55(29):8164–8215CrossRefGoogle Scholar
  9. 9.
    Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115(21):11559–11624CrossRefPubMedGoogle Scholar
  10. 10.
    Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110(6):3552–3599CrossRefGoogle Scholar
  11. 11.
    Gillet S, Aguedo M, Petitjean L, Morais A, da Costa Lopes A, Łukasik R, Anastas P (2017) Lignin transformations for high value applications: towards targeted modifications using green chemistry. Green Chem 19(18):4200–4233CrossRefGoogle Scholar
  12. 12.
    Renders T, Van den Bosch S, Koelewijn S-F, Schutyser W, Sels B (2017) Lignin-first biomass fractionation: the advent of active stabilisation strategies. Energy Environ Sci 10(7):1551–1557CrossRefGoogle Scholar
  13. 13.
    Van den Bosch S, Schutyser W, Vanholme R, Driessen T, Koelewijn SF, Renders T, De Meester B, Huijgen WJJ, Dehaen W, Courtin CM, Lagrain B, Boerjan W, Sels BF (2015) Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy Environ Sci 8(6):1748–1763CrossRefGoogle Scholar
  14. 14.
    Shuai L, Amiri MT, Questell-Santiago YM, Héroguel F, Li Y, Kim H, Meilan R, Chapple C, Ralph J, Luterbacher JS (2016) Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 354(6310):329–333CrossRefPubMedGoogle Scholar
  15. 15.
    Deuss PJ, Lancefield CS, Narani A, de Vries JG, Westwood NJ, Barta K (2017) Phenolic acetals from lignins of varying compositions via iron(iii) triflate catalysed depolymerisation. Green Chem 19(12):2774–2782CrossRefGoogle Scholar
  16. 16.
    da Costa Sousa L, Jin M, Chundawat SPS, Bokade V, Tang X, Azarpira A, Lu F, Avci U, Humpula J, Uppugundla N, Gunawan C, Pattathil S, Cheh AM, Kothari N, Kumar R, Ralph J, Hahn MG, Wyman CE, Singh S, Simmons BA, Dale BE, Balan V (2016) Next-generation ammonia pretreatment enhances cellulosic biofuel production. Energy Environ Sci 9(4):1215–1223CrossRefGoogle Scholar
  17. 17.
    Mittal A, Katahira R, Donohoe BS, Pattathil S, Kandemkavil S, Reed ML, Biddy MJ, Beckham GT (2017) Ammonia pretreatment of corn stover enables facile lignin extraction. ACS Sustain Chem Eng 5(3):2544–2561CrossRefGoogle Scholar
  18. 18.
    Ma R, Xu Y, Zhang X (2015) Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production. Chemsuschem 8(1):24–51CrossRefPubMedGoogle Scholar
  19. 19.
    Rodrigues Pinto PC, Borges da Silva EA, Rodrigues AE (2012) Lignin as source of fine chemicals: vanillin and syringaldehyde. In: Baskar C, Baskar S, Dhillon RS (eds) Biomass conversion: the interface of biotechnology, chemistry and materials science. Springer, Berlin, pp 381–420CrossRefGoogle Scholar
  20. 20.
    Hanson SK, Baker RT, Gordon JC, Scott BL, Thorn DL (2010) Aerobic oxidation of lignin models using a base metal vanadium catalyst. Inorg Chem 49(12):5611–5618CrossRefPubMedGoogle Scholar
  21. 21.
    Sedai B, Díaz-Urrutia C, Baker RT, Wu R, Silks LP, Hanson SK (2013) Aerobic oxidation of β-1 lignin model compounds with copper and oxovanadium catalysts. ACS Catal 3(12):3111–3122CrossRefGoogle Scholar
  22. 22.
    Sedai B, Díaz-Urrutia C, Baker RT, Wu R, Silks LP, Hanson SK (2011) Comparison of copper and vanadium homogeneous catalysts for aerobic oxidation of lignin models. ACS Cataly 1(7):794–804CrossRefGoogle Scholar
  23. 23.
    Hanson SK, Wu R, Silks LA (2012) C–C or C–O bond cleavage in a phenolic lignin model compound: selectivity depends on vanadium catalyst. Angew Chem Int Ed 51(14):3410–3413CrossRefGoogle Scholar
  24. 24.
    Jiang Y-Y, Yan L, Yu H-Z, Zhang Q, Fu Y (2016) Mechanism of vanadium-catalyzed selective C–O and C–C cleavage of lignin model compound. ACS Catal 6(7):4399–4410CrossRefGoogle Scholar
  25. 25.
    Son S, Toste FD (2010) Non-oxidative vanadium-catalyzed C–O bond cleavage: application to degradation of lignin model compounds. Angew Chem Int Ed 49(22):3791–3794CrossRefGoogle Scholar
  26. 26.
    Chan JM, Bauer S, Sorek H, Sreekumar S, Wang K, Toste FD (2013) Studies on the vanadium-catalyzed nonoxidative depolymerization of Miscanthus giganteus-derived lignin. ACS Catal 3(6):1369–1377CrossRefGoogle Scholar
  27. 27.
    Hanson SK, Baker RT (2015) Knocking on wood: base metal complexes as catalysts for selective oxidation of lignin models and extracts. Acc Chem Res 48(7):2037–2048CrossRefPubMedGoogle Scholar
  28. 28.
    Díaz-Urrutia C, Chen W-C, Crites C-O, Daccache J, Korobkov I, Baker RT (2015) Towards lignin valorisation: comparing homogeneous catalysts for the aerobic oxidation and depolymerisation of organosolv lignin. RSC Adv 5(86):70502–70511CrossRefGoogle Scholar
  29. 29.
    Sedai B, Baker RT (2014) Copper catalysts for selective C–C bond cleavage of β-O-4 lignin model compounds. Adv Synth Catal 356(17):3563–3574CrossRefGoogle Scholar
  30. 30.
    Canevali C, Orlandi M, Pardi L, Rindone B, Scotti R, Sipila J, Morazzoni F (2002) Oxidative degradation of monomeric and dimeric phenylpropanoids: reactivity and mechanistic investigation. J Chem Soc Dalton Trans 15:3007–3014CrossRefGoogle Scholar
  31. 31.
    Biannic B, Bozell JJ (2013) Efficient cobalt-catalyzed oxidative conversion of lignin models to benzoquinones. Org Lett 15(11):2730–2733CrossRefPubMedGoogle Scholar
  32. 32.
    Lange H, Decina S, Crestini C (2013) Oxidative upgrade of lignin—recent routes reviewed. Eur Polym J 49(6):1151–1173CrossRefGoogle Scholar
  33. 33.
    Labat G, Meunier B (1989) Factors controlling the reactivity of a ligninase model based on the association of potassium monopersulfate to manganese and iron porphyrin complexes. J Org Chem 54(21):5008–5011CrossRefGoogle Scholar
  34. 34.
    Artaud I, Ben-Aziza K, Mansuy D (1993) Iron porphyrin-catalyzed oxidation of 1, 2-dimethoxyarenes: a discussion of the different reactions involved and the competition between the formation of methoxyquinones or muconic dimethyl esters. J Org Chem 58(12):3373–3380CrossRefGoogle Scholar
  35. 35.
    Shimada M, Habe T, Umezawa T, Higuchi T, Okamoto T (1984) The CC bond cleavage of a lignin model compound, 1, 2-diarylpropane-1, 3-diol, with a heme-enzyme model catalyst tetraphenylporphyrinatoiron (III) chloride in the presence of tert-butylhydroperoxide. Biochem Biophys Res Commun 122(3):1247–1252CrossRefPubMedGoogle Scholar
  36. 36.
    Cui F, Wijesekera T, Dolphin D, Farrell R, Skerker P (1993) Biomimetic degradation of lignin. J Biotechnol 30(1):15–26CrossRefGoogle Scholar
  37. 37.
    Zucca P, Rescigno A, Rinaldi AC, Sanjust E (2014) Biomimetic metalloporphines and metalloporphyrins as potential tools for delignification: molecular mechanisms and application perspectives. J Mol Catal A Chem 388–389:2–34CrossRefGoogle Scholar
  38. 38.
    Luo F-X, Zhou T-G, Li X, Luo Y-L, Shi Z-J (2015) Fragmentation of structural units of lignin promoted by persulfate through selective C–C cleavage under mild conditions. Orga Chem Front 2(9):1066–1070CrossRefGoogle Scholar
  39. 39.
    Mottweiler J, Rinesch T, Besson C, Buendia J, Bolm C (2015) Iron-catalysed oxidative cleavage of lignin and β-O-4 lignin model compounds with peroxides in DMSO. Green Chem 17(11):5001–5008CrossRefGoogle Scholar
  40. 40.
    Ren X, Wang P, Han X, Zhang G, Gu J, Ding C, Zheng X, Cao F (2017) Depolymerization of lignin to aromatics by selectively oxidizing cleavage of C–C and C–O bonds using CuCl2/polybenzoxazine catalysts at room temperature. ACS Sustain Chem Eng 5(8):6548–6556CrossRefGoogle Scholar
  41. 41.
    Mottweiler J, Puche M, Räuber C, Schmidt T, Concepción P, Corma A, Bolm C (2015) Copper-and vanadium-catalyzed oxidative cleavage of lignin using dioxygen. Chemsuschem 8(12):2106–2113CrossRefPubMedGoogle Scholar
  42. 42.
    Deng W, Zhang H, Wu X, Li R, Zhang Q, Wang Y (2015) Oxidative conversion of lignin and lignin model compounds catalyzed by CeO2-supported Pd nanoparticles. Green Chem 17(11):5009–5018CrossRefGoogle Scholar
  43. 43.
    Zhou Z-Z, Liu M, Li C-J (2017) Selective copper-N-heterocyclic carbene (copper–NHC)-catalyzed aerobic cleavage of β-1 lignin models to aldehydes. ACS Catal 7(5):3344–3348CrossRefGoogle Scholar
  44. 44.
    Hou T, Luo N, Li H, Heggen M, Lu J, Wang Y, Wang F (2017) Yin and Yang dual characters of CuOx clusters for C–C bond oxidation driven by visible light. ACS Catal 7(6):3850–3859CrossRefGoogle Scholar
  45. 45.
    Blandez JF, Navalón S, Alvaro M, Garcia H (2015) Graphenes as metal-free catalysts for the oxidative depolymerization of lignin models. ChemCatChem 7(18):3020–3026CrossRefGoogle Scholar
  46. 46.
    Crestini C, Pro P, Neri V, Saladino R (2005) Methyltrioxorhenium: a new catalyst for the activation of hydrogen peroxide to the oxidation of lignin and lignin model compounds. Bioorg Med Chem 13(7):2569–2578CrossRefPubMedGoogle Scholar
  47. 47.
    Lancefield CS, Ojo OS, Tran F, Westwood NJ (2015) Isolation of functionalized phenolic monomers through selective oxidation and C–O bond cleavage of the β-O-4 linkages in lignin. Angew Chem Int Ed 54(1):258–262CrossRefGoogle Scholar
  48. 48.
    Patil ND, Yao SG, Meier MS, Mobley JK, Crocker M (2015) Selective cleavage of the Calpha–Cbeta linkage in lignin model compounds via Baeyer–Villiger oxidation. Org Biomol Chem 13(11):3243–3254CrossRefPubMedGoogle Scholar
  49. 49.
    Rahimi A, Azarpira A, Kim H, Ralph J, Stahl SS (2013) Chemoselective metal-free aerobic alcohol oxidation in lignin. J Am Chem Soc 135(17):6415–6418CrossRefPubMedGoogle Scholar
  50. 50.
    Wang M, Lu J, Zhang X, Li L, Li H, Luo N, Wang F (2016) Two-step, catalytic C–C bond oxidative cleavage process converts lignin models and extracts to aromatic acids. ACS Catal 6(9):6086–6090CrossRefGoogle Scholar
  51. 51.
    Zhang C, Li H, Lu J, Zhang X, MacArthur KE, Heggen M, Wang F (2017) Promoting lignin depolymerization and restraining the condensation via an oxidation–hydrogenation strategy. ACS Catal 7(5):3419–3429CrossRefGoogle Scholar
  52. 52.
    Bosque I, Magallanes G, Rigoulet M, Kärkäs MD, Stephenson CR (2017) Redox catalysis facilitates lignin depolymerization. ACS Centr Sci 3:621CrossRefGoogle Scholar
  53. 53.
    Luo J, Zhang X, Lu J, Zhang J (2017) Fine tuning the redox potentials of carbazolic porous organic frameworks for visible-light photoredox catalytic degradation of lignin β-O-4 models. ACS Catal 7(8):5062–5070CrossRefGoogle Scholar
  54. 54.
    Dawange M, Galkin MV, Samec JS (2015) Selective aerobic benzylic alcohol oxidation of lignin model compounds: route to aryl ketones. ChemCatChem 7(3):401–404CrossRefGoogle Scholar
  55. 55.
    Zhu R, Wang B, Cui M, Deng J, Li X, Ma Y, Fu Y (2016) Chemoselective oxidant-free dehydrogenation of alcohols in lignin using Cp* Ir catalysts. Green Chem 18(7):2029–2036CrossRefGoogle Scholar
  56. 56.
    Das A, Rahimi A, Ulbrich A, Alherech M, Motagamwala AH, Bhalla A, da Costa Sousa L, Balan V, Dumesic JA, Hegg EL, Dale BE, Ralph J, Coon JJ, Stahl SS (2018) Lignin conversion to low-molecular-weight aromatics via an aerobic oxidation-hydrolysis sequence: comparison of different lignin sources. ACS Sustain Chem Eng 6(3):3367–3374CrossRefGoogle Scholar
  57. 57.
    Guo H, Miles-Barrett D, Neal AR, Zhang T, Li C, Westwood NJ (2018) Unravelling the enigma of ligninOX: can the oxidation of lignin be controlled? Chem Sci 9(3):702–711CrossRefPubMedGoogle Scholar
  58. 58.
    Lancefield CS, Rashid GMM, Bouxin F, Wasak A, Tu W-C, Hallett J, Zein S, Rodríguez J, Jackson SD, Westwood NJ, Bugg TDH (2016) Investigation of the chemocatalytic and biocatalytic valorization of a range of different lignin preparations: the importance of β-O-4 content. ACS Sustain Chem Eng 4(12):6921–6930CrossRefGoogle Scholar
  59. 59.
    Dabral S, Wotruba H, Hernández JG, Bolm C (2018) Mechanochemical oxidation and cleavage of lignin β-O-4 model compounds and lignin. ACS Sustain Chem Eng 6(3):3242–3254CrossRefGoogle Scholar
  60. 60.
    Dabral S, Hernández J, Kamer P, Bolm C (2017) Organocatalytic chemoselective primary alcohol oxidation and subsequent cleavage of lignin model compounds and lignin. ChemSusChem 10(13):2707–2713CrossRefPubMedGoogle Scholar
  61. 61.
    Mobley JK, Yao SG, Crocker M, Meier M (2015) Oxidation of lignin and lignin β-O-4 model compounds via activated dimethyl sulfoxide. RSC Adv 5(127):105136–105148CrossRefGoogle Scholar
  62. 62.
    Wang Y, Wang Q, He J, Zhang Y (2017) Highly effective C-C bond cleavage of lignin model compounds. Green Chem 19(13):3135–3141CrossRefGoogle Scholar
  63. 63.
    Jennings JA, Parkin S, Munson E, Delaney SP, Calahan JL, Isaacs M, Hong K, Crocker M (2017) Regioselective Baeyer–Villiger oxidation of lignin model compounds with tin beta zeolite catalyst and hydrogen peroxide. RSC Adv 7(42):25987–25997CrossRefGoogle Scholar
  64. 64.
    Wang M, Li L, Lu J, Li H, Zhang X, Liu H, Luo N, Wang F (2017) Acid promoted C–C bond oxidative cleavage of β-O-4 and β-1 lignin models to esters over a copper catalyst. Green Chem 19(3):702–706CrossRefGoogle Scholar
  65. 65.
    Liu H, Wang M, Li H, Luo N, Xu S, Wang F (2017) New protocol of copper-catalyzed oxidative C(CO)–C bond cleavage of aryl and aliphatic ketones to organic acids using O2 as the terminal oxidant. J Catal 346:170–179CrossRefGoogle Scholar
  66. 66.
    Rinesch T, Mottweiler J, Puche M, Concepción P, Corma A, Bolm C (2017) Mechanistic investigation of the catalyzed cleavage for the lignin β-O-4 linkage: implications for vanillin and vanillic acid formation. ACS Sustain Chem Eng 5(11):9818–9825CrossRefGoogle Scholar
  67. 67.
    Nguyen JD, Matsuura BS, Stephenson CR (2014) A photochemical strategy for lignin degradation at room temperature. J Am Chem Soc 136(4):1218–1221CrossRefPubMedGoogle Scholar
  68. 68.
    Rahimi A, Ulbrich A, Coon JJ, Stahl SS (2014) Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 515(7526):249–252CrossRefPubMedGoogle Scholar
  69. 69.
    Chen CL (1992) Nitrobenzene and cupric oxide oxidations. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin, pp 301–321CrossRefGoogle Scholar
  70. 70.
    Fache M, Boutevin B, Caillol S (2016) Vanillin production from lignin and its use as a renewable chemical. ACS Sustain Chem Eng 4(1):35–46CrossRefGoogle Scholar
  71. 71.
    Santos SG, Marques AP, Lima DL, Evtuguin DV, Esteves VI (2010) Kinetics of eucalypt lignosulfonate oxidation to aromatic aldehydes by oxygen in alkaline medium. Ind Eng Chem Res 50(1):291–298CrossRefGoogle Scholar
  72. 72.
    Partenheimer W (2009) The aerobic oxidative cleavage of lignin to produce hydroxyaromatic benzaldehydes and carboxylic acids via metal/bromide catalysts in acetic acid/water mixtures. Adv Synth Catal 351(3):456–466CrossRefGoogle Scholar
  73. 73.
    Voitl T, Rudolf von Rohr P (2008) Oxidation of lignin using aqueous polyoxometalates in the presence of alcohols. Chemsuschem 1(8–9):763–769CrossRefPubMedGoogle Scholar
  74. 74.
    Werhan H, Mir JM, Voitl T, Von Rohr PR (2011) Acidic oxidation of kraft lignin into aromatic monomers catalyzed by transition metal salts. Holzforschung 65(5):703–709CrossRefGoogle Scholar
  75. 75.
    Chatel G, Rogers RD (2013) Oxidation of lignin using ionic liquids—an innovative strategy to produce renewable chemicals. ACS Sustain Chem Eng 2(3):322–339CrossRefGoogle Scholar
  76. 76.
    De Gregorio GF, Prado R, Vriamont C, Erdocia X, Labidi J, Hallett JP, Welton T (2016) Oxidative depolymerization of lignin using a novel polyoxometalate-protic ionic liquid system. ACS Sustain Chem Eng 4(11):6031–6036CrossRefGoogle Scholar
  77. 77.
    Stärk K, Taccardi N, Bösmann A, Wasserscheid P (2010) Oxidative depolymerization of lignin in ionic liquids. Chemsuschem 3(6):719–723CrossRefPubMedGoogle Scholar
  78. 78.
    Ma R, Guo M, Lin K-T, Hebert VR, Zhang J, Wolcott MP, Quintero M, Ramasamy KK, Chen X, Zhang X (2016) Peracetic acid depolymerization of biorefinery lignin for production of selective monomeric phenolic compounds. Chem A Eur J 22(31):10884–10891CrossRefGoogle Scholar
  79. 79.
    Xiang Q, Lee Y (2000) Oxidative cracking of precipitated hardwood lignin by hydrogen peroxide. Appl Biochem Biotechnol 84(1–9):153–162CrossRefPubMedGoogle Scholar
  80. 80.
    Ma R, Guo M, Zhang X (2014) Selective conversion of biorefinery lignin into dicarboxylic acids. Chemsuschem 7(2):412–415CrossRefPubMedGoogle Scholar
  81. 81.
    Azarpira A, Ralph J, Lu F (2014) Catalytic alkaline oxidation of lignin and its model compounds: a pathway to aromatic biochemicals. BioEnergy Res 7(1):78–86CrossRefGoogle Scholar
  82. 82.
    Lai Y-Z, Guo X-P (1991) Variation of the phenolic hydroxyl group content in wood lignins. Wood Sci Technol 25(6):467–472CrossRefGoogle Scholar
  83. 83.
    Galkin MV, Dahlstrand C, Samec JSM (2015) Mild and robust redox-neutral Pd/C-catalyzed lignol β-O-4′ bond cleavage through a low-energy-barrier pathway. Chemsuschem 8(13):2187–2192CrossRefPubMedGoogle Scholar
  84. 84.
    Deuss PJ, Scott M, Tran F, Westwood NJ, de Vries JG, Barta K (2015) Aromatic monomers by in situ conversion of reactive intermediates in the acid-catalyzed depolymerization of lignin. J Am Chem Soc 137(23):7456–7467CrossRefPubMedGoogle Scholar
  85. 85.
    Behling R, Valange S, Chatel G (2016) Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends? Green Chem 18(7):1839–1854CrossRefGoogle Scholar
  86. 86.
    Das L, Kolar P, Sharma-Shivappa R (2012) Heterogeneous catalytic oxidation of lignin into value-added chemicals. Biofuels 3(2):155–166CrossRefGoogle Scholar
  87. 87.
    Prat D, Hayler J, Wells A (2014) A survey of solvent selection guides. Green Chem 16(10):4546–4551CrossRefGoogle Scholar
  88. 88.
    Osterberg PM, Niemeier JK, Welch CJ, Hawkins JM, Martinelli JR, Johnson TE, Root TW, Stahl SS (2015) Experimental limiting oxygen concentrations for nine organic solvents at temperatures and pressures relevant to aerobic oxidations in the pharmaceutical industry. Org Process Res Dev 19(11):1537–1543CrossRefPubMedGoogle Scholar
  89. 89.
    Mota MIF, Rodrigues Pinto PC, Loureiro JM, Rodrigues AE (2016) Recovery of vanillin and syringaldehyde from lignin oxidation: a review of separation and purification processes. Sep Purif Rev 45(3):227–259CrossRefGoogle Scholar
  90. 90.
    Taraban’ko VE, Koropatchinskaya NV, Kudryashev AV, Kuznetsov BN (1995) Influence of lignin origin on the efficiency of the catalytic oxidation of lignin into vanillin and syringaldehyde. Russ Chem Bull 44(2):367–371CrossRefGoogle Scholar
  91. 91.
    Tarabanko VE, Kaygorodov KL, Skiba EA, Tarabanko N, Chelbina YV, Baybakova OV, Kuznetsov BN, Djakovitch L (2017) Processing pine wood into vanillin and glucose by sequential catalytic oxidation and enzymatic hydrolysis. J Wood Chem Technol 37(1):43–51CrossRefGoogle Scholar
  92. 92.
    Huskinson B, Marshak MP, Suh C, Er S, Gerhardt MR, Galvin CJ, Chen X, Aspuru-Guzik A, Gordon RG, Aziz MJ (2014) A metal-free organic–inorganic aqueous flow battery. Nature 505:195CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Surface Chemistry and CatalysisKU LeuvenLeuvenBelgium

Personalised recommendations