Skip to main content

Advertisement

Log in

Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Energy storage is considered a key technology for successful realization of renewable energies and electrification of the powertrain. This review discusses the lithium ion battery as the leading electrochemical storage technology, focusing on its main components, namely electrode(s) as active and electrolyte as inactive materials. State-of-the-art (SOTA) cathode and anode materials are reviewed, emphasizing viable approaches towards advancement of the overall performance and reliability of lithium ion batteries; however, existing challenges are not neglected. Liquid aprotic electrolytes for lithium ion batteries comprise a lithium ion conducting salt, a mixture of solvents and various additives. Due to its complexity and its role in a given cell chemistry, electrolyte, besides the cathode materials, is identified as most susceptible, as well as the most promising, component for further improvement of lithium ion batteries. The working principle of the most important commercial electrolyte additives is also discussed. With regard to new applications and new cell chemistries, e.g., operation at high temperature and high voltage, further improvements of both active and inactive materials are inevitable. In this regard, theoretical support by means of modeling, calculation and simulation approaches can be very helpful to ex ante pre-select and identify the aforementioned components suitable for a given cell chemistry as well as to understand degradation phenomena at the electrolyte/electrode interface. This overview highlights the advantages and limitations of SOTA lithium battery systems, aiming to encourage researchers to carry forward and strengthen the research towards advanced lithium ion batteries, tailored for specific applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2

Adapted with permission from [65]. Copyright (2015) American Chemical Society

Fig. 3

Reprinted with permission from [28]. Copyright (2009) Royal Society of Chemistry

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Reprinted with permission from [101]. Copyright (2017) John Wiley and Sons

Fig. 9
Fig. 10

Redrawn from [47, 136]

Fig. 11

Reprinted with permission from [144]. Copyright (2015) Elsevier

Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Electrochemistry Dictionary and Encyclopedia (2014) The electrochemical society. http://knowledge.electrochem.org/ed/dict.htm

  2. Zoski CG (2007) Handbook of electrochemistry. Elsevier, Amsterdam

    Google Scholar 

  3. Inzelt G, Lewenstam A, Scholz F (2013) Handbook of reference electrodes. Springer, Berlin

    Book  Google Scholar 

  4. Scholz F (2009) Electroanalytical methods: guide to experiments and applications. Springer, Berlin

    Google Scholar 

  5. Srinivasan S (2006) Fuel cells: from fundamentals to applications. Springer, Berlin

    Google Scholar 

  6. Breitkopf C, Swider-Lyons K (2016) Springer handbook of electrochemical energy. Springer, Berlin

    Google Scholar 

  7. Brett CMA, Brett AMO (1993) Electrochemistry—principles, methods and applications. Oxford University Press, New York

  8. Balzani V (2001) Electron transfer in chemistry: catalysis of electron transfer, heterogenous systems, gas-phase systems. Wiley, Amsterdam

    Book  Google Scholar 

  9. Kuznetsov AM, Ulstrup J (1999) Electron transfer in chemistry and biology: an introduction to the theory. Wiley, Amsterdam

    Google Scholar 

  10. Taube H, Myers H, Rich RL (1953) J Am Chem Soc 75:4118. https://doi.org/10.1021/ja01112a546

    Article  CAS  Google Scholar 

  11. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications. Wiley, Amsterdam

    Google Scholar 

  12. Sharma P, Bhatti TS (2010) Energy Convers Manag 51:2901. https://doi.org/10.1016/j.enconman.2010.06.031

    Article  CAS  Google Scholar 

  13. Simon P, Gogotsi Y (2008) Nat Mater 7:845

    Article  CAS  PubMed  Google Scholar 

  14. Wang G, Zhang L, Zhang J (2012) Chem Soc Rev 41:797

    Article  CAS  PubMed  Google Scholar 

  15. Frackowiak E, Béguin F (2001) Carbon 39:937. https://doi.org/10.1016/S0008-6223(00)00183-4

    Article  CAS  Google Scholar 

  16. Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L (2009) Int J Hydrogen Energy 34:4889. https://doi.org/10.1016/j.ijhydene.2009.04.005

    Article  CAS  Google Scholar 

  17. Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) Chem Soc Rev 44:7484

    Article  CAS  PubMed  Google Scholar 

  18. Winter M, Besenhard JO (1999) Chem Unserer Zeit 33:252. https://doi.org/10.1002/ciuz.19990330503

    Article  CAS  Google Scholar 

  19. Goodenough JB, Park K-S (2013) J Am Chem Soc 135:1167. https://doi.org/10.1021/ja3091438

    Article  CAS  PubMed  Google Scholar 

  20. Meister P, Jia H, Li J, Kloepsch R, Winter M, Placke T (2016) Chem Mater 28:7203. https://doi.org/10.1021/acs.chemmater.6b02895

    Article  CAS  Google Scholar 

  21. Kasnatscheew J, Rodehorst U, Streipert B, Wiemers-Meyer S, Jakelski R, Wagner R, Laskovic IC, Winter M (2016) J Electrochem Soc 163:A2943. https://doi.org/10.1149/2.0461614jes

    Article  CAS  Google Scholar 

  22. Goodenough JB, Kim Y (2009) Chem Mater 22:587. https://doi.org/10.1021/cm901452z

    Article  CAS  Google Scholar 

  23. Kraytsberg A, Ein-Eli Y (2012) Adv Energy Mater 2:922. https://doi.org/10.1002/aenm.201200068

    Article  CAS  Google Scholar 

  24. Winter M, Brodd RJ (2004) Chem Rev 104:4245. https://doi.org/10.1021/Cr020730k

    Article  CAS  PubMed  Google Scholar 

  25. Reddy T (2010) Linden’s handbook of batteries, 4th edn. McGraw-Hill, New York

    Google Scholar 

  26. Bieker P, Winter M (2016) Chem Unserer Zeit 50:26. https://doi.org/10.1002/ciuz.201500713

    Article  CAS  Google Scholar 

  27. Winter M, Besenhard JO (1999) Chem Unserer Zeit 33:320. https://doi.org/10.1002/ciuz.19990330603

    Article  CAS  Google Scholar 

  28. Palacin MR (2009) Chem Soc Rev 38:2565. https://doi.org/10.1039/b820555h

    Article  CAS  PubMed  Google Scholar 

  29. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Nat Mater 11:19

    Article  CAS  Google Scholar 

  30. Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) J Phys Chem Lett 1:2193. https://doi.org/10.1021/jz1005384

    Article  CAS  Google Scholar 

  31. Luntz AC, McCloskey BD (2014) Chem Rev 114:11721. https://doi.org/10.1021/cr500054y

    Article  CAS  PubMed  Google Scholar 

  32. Manthiram A, Fu Y, Su Y-S (2013) Acc Chem Res 46:1125. https://doi.org/10.1021/ar300179v

    Article  CAS  PubMed  Google Scholar 

  33. Manthiram A, Fu Y, Chung S-H, Zu C, Su Y-S (2014) Chem Rev 114:11751. https://doi.org/10.1021/cr500062v

    Article  CAS  PubMed  Google Scholar 

  34. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Chem Rev 114:11636. https://doi.org/10.1021/cr500192f

    Article  CAS  PubMed  Google Scholar 

  35. Saha P, Datta MK, Velikokhatnyi OI, Manivannan A, Alman D, Kumta PN (2014) Prog Mater Sci 66:1. https://doi.org/10.1016/j.pmatsci.2014.04.001

    Article  CAS  Google Scholar 

  36. Muldoon J, Bucur CB, Gregory T (2014) Chem Rev 114:11683. https://doi.org/10.1021/cr500049y

    Article  CAS  PubMed  Google Scholar 

  37. Ponrouch A, Frontera C, Barde F, Palacin MR (2016) Nat Mater 15:169. https://doi.org/10.1038/nmat4462. http://www.nature.com/nmat/journal/v15/n2/abs/nmat4462.html#supplementary-information

  38. Muldoon J, Bucur CB, Oliver AG, Sugimoto T, Matsui M, Kim HS, Allred GD, Zajicek J, Kotani Y (2012) Energy Environ Sci 5:5941. https://doi.org/10.1039/c2ee03029b

    Article  CAS  Google Scholar 

  39. Jayaprakash N, Das SK, Archer LA (2011) Chem Commun 47:12610. https://doi.org/10.1039/c1cc15779e

    Article  CAS  Google Scholar 

  40. Lin M-C, Gong M, Lu B, Wu Y, Wang D-Y, Guan M, Angell M, Chen C, Yang J, Hwang B-J, Dai H (2015) Nature 520:324. https://doi.org/10.1038/nature14340. http://www.nature.com/nature/journal/v520/n7547/abs/nature14340.html#supplementary-information

  41. Rothermel S, Meister P, Schmuelling G, Fromm O, Meyer H-W, Nowak S, Winter M, Placke T (2014) Energy Environ Sci 7:3412. https://doi.org/10.1039/c4ee01873g

    Article  CAS  Google Scholar 

  42. Placke T, Fromm O, Lux SF, Bieker P, Rothermel S, Meyer H-W, Passerini S, Winter M (2012) J Electrochem Soc 159:A1755. https://doi.org/10.1149/2.011211jes

    Article  CAS  Google Scholar 

  43. Placke T, Bieker P, Lux SF, Fromm O, Meyer HW, Passerini S, Winter M (2012) Zeitschrift für Physikalische Chemie. Int J Res Phys Chem Chem Phys 226:391. https://doi.org/10.1524/zpch.2012.0222

    Article  CAS  Google Scholar 

  44. Meister P, Fromm O, Rothermel S, Kasnatscheew J, Winter M, Placke T (2017) Electrochim Acta 228:18. https://doi.org/10.1016/j.electacta.2017.01.034

    Article  CAS  Google Scholar 

  45. Liang Y, Tao Z, Chen J (2012) Adv Energy Mater 2:742. https://doi.org/10.1002/aenm.201100795

    Article  CAS  Google Scholar 

  46. Speer ME, Kolek M, Jassoy JJ, Heine J, Winter M, Bieker PM, Esser B (2015) Chem Commun 51:15261. https://doi.org/10.1039/c5cc04932f

    Article  CAS  Google Scholar 

  47. Bieker P, Winter M (2016) Chem Unserer Zeit 50:172. https://doi.org/10.1002/ciuz.201600745

    Article  CAS  Google Scholar 

  48. Winter M, Placke T, Rothermel S, Meister P, Bar A, von Wedel W (2017) Elektromobilität—Was uns jetzt und künftig antreibt. BINE-Themeninfo I/2017. https://www.bine.info/fileadmin/content/Publikationen/Themen-Infos/I2017/themen0117internetx.pdf

  49. Andre D, Kim S-J, Lamp P, Lux SF, Maglia F, Paschos O, Stiaszny B (2015) J Mater Chem A 3:6709. https://doi.org/10.1039/c5ta00361j

    Article  CAS  Google Scholar 

  50. Besenhard JO, Winter M (1998) Pure Appl Chem 70:603

    Article  CAS  Google Scholar 

  51. Winter M, Besenhard JO, Spahr ME, Novak P (1998) Adv Mater 10:725

    Article  CAS  Google Scholar 

  52. Qi X, Blizanac B, DuPasquier A, Oljaca M, Li J, Winter M (2013) Carbon 64:334. https://doi.org/10.1016/j.carbon.2013.07.083

    Article  CAS  Google Scholar 

  53. Qi X, Blizanac B, DuPasquier A, Meister P, Placke T, Oljaca M, Li J, Winter M (2014) Phys Chem Chem Phys 16:25306

    Article  CAS  PubMed  Google Scholar 

  54. Lux SF, Schappacher F, Balducci A, Passerini S, Winter M (2010) J Electrochem Soc 157:A320. https://doi.org/10.1149/1.3291976

    Article  CAS  Google Scholar 

  55. Kasnatscheew J, Börner M, Streipert B, Meister P, Wagner R, Cekic Laskovic I, Winter M (2017) J Power Sources 362:278. https://doi.org/10.1016/j.jpowsour.2017.07.044

    Article  CAS  Google Scholar 

  56. Krämer E, Schedlbauer T, Hoffmann B, Terborg L, Nowak S, Gores HJ, Passerini S, Winter M (2013) J Electrochem Soc 160:A356. https://doi.org/10.1149/2.081302jes

    Article  CAS  Google Scholar 

  57. Wagner R, Preschitschek N, Passerini S, Leker J, Winter M (2013) J Appl Electrochem 43:481. https://doi.org/10.1007/s10800-013-0533-6

    Article  CAS  Google Scholar 

  58. Meister P, Qi X, Kloepsch R, Krämer E, Streipert B, Winter M, Placke T (2017) Chemsuschem 10:804. https://doi.org/10.1002/cssc.201601636

    Article  CAS  PubMed  Google Scholar 

  59. Streipert B, Roser S, Kasnatscheew J, Janssen P, Cao X, Wagner R, Cekic-Laskovic I, Winter M (2017) J Electrochem Soc 164:A1474. https://doi.org/10.1149/2.0671707jes

    Article  CAS  Google Scholar 

  60. Bieker G, Winter M, Bieker P (2015) Phys Chem Chem Phys 17:8670. https://doi.org/10.1039/c4cp05865h

    Article  CAS  PubMed  Google Scholar 

  61. Ryou M-H, Lee YM, Lee Y, Winter M, Bieker P (2015) Adv Funct Mater 25:834. https://doi.org/10.1002/adfm.201402953

    Article  CAS  Google Scholar 

  62. Heine J, Hilbig P, Qi X, Niehoff P, Winter M, Bieker P (2015) J Electrochem Soc 162:A1094. https://doi.org/10.1149/2.0011507jes

    Article  CAS  Google Scholar 

  63. Winter M (2009) Z Phys Chem 223:1395. https://doi.org/10.1524/zpch.2009.6086

    Article  CAS  Google Scholar 

  64. Rupp B, Schmuck M, Balducci A, Winter M, Kern W (2008) Eur Polym J 44:2986. https://doi.org/10.1016/j.eurpolymj.2008.06.022

    Article  CAS  Google Scholar 

  65. Hovington P, Lagacé M, Guerfi A, Bouchard P, Mauger A, Julien CM, Armand M, Zaghib K (2015) Nano Lett 15:2671. https://doi.org/10.1021/acs.nanolett.5b00326

    Article  CAS  PubMed  Google Scholar 

  66. Kim T-H, Park J-S, Chang SK, Choi S, Ryu JH, Song H-K (2012) Adv Energy Mater 2:860. https://doi.org/10.1002/aenm.201200028

    Article  CAS  Google Scholar 

  67. Kasavajjula U, Wang C, Appleby AJ (2007) J Power Source 163:1003. https://doi.org/10.1016/j.jpowsour.2006.09.084

    Article  CAS  Google Scholar 

  68. Winter M, Besenhard JO (1999) Electrochim Acta 45:31. https://doi.org/10.1016/s0013-4686(99)00191-7

    Article  CAS  Google Scholar 

  69. Zhang W-J (2011) J Power Source 196:13. https://doi.org/10.1016/j.jpowsour.2010.07.020

    Article  CAS  Google Scholar 

  70. Park C-M, Kim J-H, Kim H, Sohn H-J (2010) Chem Soc Rev 39:3115. https://doi.org/10.1039/b919877f

    Article  CAS  PubMed  Google Scholar 

  71. Obrovac MN, Chevrier VL (2014) Chem Rev 114:11444. https://doi.org/10.1021/cr500207g

    Article  CAS  PubMed  Google Scholar 

  72. Winter M, Besenhard J, Albering J, Yang J, Wachtler M (1998) Progress Battery Battery Mater 17:208

    CAS  Google Scholar 

  73. Cabana J, Monconduit L, Larcher D, Palacin MR (2010) Adv Mater 22:E170

    Article  CAS  PubMed  Google Scholar 

  74. Reddy MV, Subba Rao GV, Chowdari BVR (2013) Chem Rev 113:5364. https://doi.org/10.1021/cr3001884

    Article  CAS  PubMed  Google Scholar 

  75. Jia H, Kloepsch R, He X, Evertz M, Nowak S, Li J, Winter M, Placke T (2016) Acta Chim Slov 63:470

    Article  CAS  PubMed  Google Scholar 

  76. Flandrois S, Simon B (1999) Carbon 37:165. https://doi.org/10.1016/S0008-6223(98)00290-5

    Article  CAS  Google Scholar 

  77. Kohs W, Santner HJ, Hofer F, Schrottner H, Doninger J, Barsukov I, Buqa H, Albering JH, Moller KC, Besenhard JO, Winter M (2003) J Power Source 119:528. https://doi.org/10.1016/s0378-7753(03)00278-7

    Article  Google Scholar 

  78. Huggins R (2008) Advanced batteries: materials science aspects. Springer, New York

    Google Scholar 

  79. Winter M, Besenhard JO (2011) Handbook of battery materials. Wiley, Amsterdam, p 433

    Book  Google Scholar 

  80. Wang Y, Nakamura S, Ue M, Balbuena PB (2001) J Am Chem Soc 123:11708. https://doi.org/10.1021/ja0164529

    Article  CAS  PubMed  Google Scholar 

  81. Wang YX, Nakamura S, Tasaki K, Balbuena PB (2002) J Am Chem Soc 124:4408. https://doi.org/10.1021/ja017073i

    Article  CAS  PubMed  Google Scholar 

  82. Placke T, Siozios V, Rothermel S, Meister P, Colle C, Winter M (2015) Z Phys Chem 229:1451

    Article  CAS  Google Scholar 

  83. Placke T, Siozios V, Schmitz R, Lux SF, Bieker P, Colle C, Meyer HW, Passerini S, Winter M (2012) J Power Source 200:83. https://doi.org/10.1016/j.jpowsour.2011.10.085

    Article  CAS  Google Scholar 

  84. Schmitz RW, Murmann P, Schmitz R, Müller R, Krämer L, Kasnatscheew J, Isken P, Niehoff P, Nowak S, Röschenthaler G-V, Ignatiev N, Sartori P, Passerini S, Kunze M, Lex-Balducci A, Schreiner C, Cekic-Laskovic I, Winter M (2014) Prog Solid State Chem 42:65. https://doi.org/10.1016/j.progsolidstchem.2014.04.003

    Article  CAS  Google Scholar 

  85. Wagner R, Brox S, Kasnatscheew J, Gallus DR, Amereller M, Cekic-Laskovic I, Winter M (2014) Electrochem Commun 40:80. https://doi.org/10.1016/j.elecom.2014.01.004

    Article  CAS  Google Scholar 

  86. Kasnatscheew J, Schmitz RW, Wagner R, Winter M, Schmitz R (2013) J Electrochem Soc 160:A1369. https://doi.org/10.1149/2.009309jes

    Article  CAS  Google Scholar 

  87. Winter M, Moeller K-C, Besenhard JO (2003) Carbonaceous and graphitic anodes. In: Nazri G-A, Pistoia G (eds) Lithium batteries: science and technology. Springer, Boston, p 145

  88. Börner M, Klamor S, Hoffmann B, Schroeder M, Nowak S, Würsig A, Winter M, Schappacher FM (2016) J Electrochem Soc 163:A831. https://doi.org/10.1149/2.0191606jes

    Article  CAS  Google Scholar 

  89. Cao X, He X, Wang J, Liu H, Röser S, Rad BR, Evertz M, Streipert B, Li J, Wagner R, Winter M, Cekic-Laskovic I (2016) ACS Appl Mater Interface 8:25971. https://doi.org/10.1021/acsami.6b07687

    Article  CAS  Google Scholar 

  90. Yi T-F, Jiang L-J, Shu J, Yue C-B, Zhu R-S, Qiao H-B (2010) J Phys Chem Solids 71:1236. https://doi.org/10.1016/j.jpcs.2010.05.001

    Article  CAS  Google Scholar 

  91. Sun X, Radovanovic PV, Cui B (2015) New J Chem 39:38. https://doi.org/10.1039/c4nj01390e

    Article  CAS  Google Scholar 

  92. Nitta N, Wu F, Lee JT, Yushin G (2015) Mater Today 18:252. https://doi.org/10.1016/j.mattod.2014.10.040

    Article  CAS  Google Scholar 

  93. Xu B, Qian D, Wang Z, Meng YS (2012) Mater Sci Eng R Rep 73:51

    Article  CAS  Google Scholar 

  94. Masquelier C, Croguennec L (2013) Chem Rev 113:6552. https://doi.org/10.1021/cr3001862

    Article  CAS  PubMed  Google Scholar 

  95. Ellis BL, Lee KT, Nazar LF (2010) Chem Mater 22:691. https://doi.org/10.1021/cm902696j

    Article  CAS  Google Scholar 

  96. Kasnatscheew J, Evertz M, Streipert B, Wagner R, Klöpsch R, Vortmann B, Hahn H, Nowak S, Amereller M, Gentschev AC, Lamp P, Winter M (2016) Phys Chem Chem Phys 18:3956. https://doi.org/10.1039/c5cp07718d

    Article  CAS  PubMed  Google Scholar 

  97. Ohzuku T, Brodd RJ (2007) J Power Source 174:449. https://doi.org/10.1016/j.jpowsour.2007.06.154

    Article  CAS  Google Scholar 

  98. Wagner R, Streipert B, Kraft V, Reyes Jiménez A, Röser S, Kasnatscheew J, Gallus DR, Börner M, Mayer C, Arlinghaus HF, Korth M, Amereller M, Cekic-Laskovic I, Winter M (2016) Adv Mater Interface 3:1600096. https://doi.org/10.1002/admi.201600096

    Article  CAS  Google Scholar 

  99. Gallus DR, Wagner R, Wiemers-Meyer S, Winter M, Cekic-Laskovic I (2015) Electrochim Acta 184:410. https://doi.org/10.1016/j.electacta.2015.10.002

    Article  CAS  Google Scholar 

  100. Buchberger I, Seidlmayer S, Pokharel A, Piana M, Hattendorff J, Kudejova P, Gilles R, Gasteiger HA (2015) J Electrochem Soc 162:A2737. https://doi.org/10.1149/2.0721514jes

    Article  CAS  Google Scholar 

  101. Kasnatscheew J, Evertz M, Kloepsch R, Streipert B, Wagner R, Cekic Laskovic I, Winter M (2017) Energy Technol 5:1670. https://doi.org/10.1002/ente.201700068

    Article  CAS  Google Scholar 

  102. Kasnatscheew J, Evertz M, Streipert B, Wagner R, Nowak S, Cekic Laskovic I, Winter M (2017) J Phys Chem C 121:1521. https://doi.org/10.1021/acs.jpcc.6b11746

    Article  CAS  Google Scholar 

  103. Wagner R, Kraft V, Streipert B, Kasnatscheew J, Gallus DR, Amereller M, Korth M, Cekic-Laskovic I, Winter M (2017) Electrochim Acta 228:9. https://doi.org/10.1016/j.electacta.2017.01.029

    Article  CAS  Google Scholar 

  104. Chen Z, Qin Y, Amine K, Sun YK (2010) J Mater Chem 20:7606. https://doi.org/10.1039/c0jm00154f

    Article  CAS  Google Scholar 

  105. Fu LJ, Liu H, Li C, Wu YP, Rahm E, Holze R, Wu HQ (2006) Solid State Sci 8:113. https://doi.org/10.1016/j.solidstatesciences.2005.10.019

    Article  CAS  Google Scholar 

  106. Krueger S, Kloepsch R, Li J, Nowak S, Passerini S, Winter M (2013) J Electrochem Soc 160:A542. https://doi.org/10.1149/2.022304jes

    Article  CAS  Google Scholar 

  107. Kasnatscheew J, Evertz M, Streipert B, Wagner R, Nowak S, Cekic Laskovic I, Winter M (2017) J Power Source 359:458. https://doi.org/10.1016/j.jpowsour.2017.05.092

    Article  CAS  Google Scholar 

  108. He P, Yu HJ, Li D, Zhou HS (2012) J Mater Chem 22:3680. https://doi.org/10.1039/C2jm14305d

    Article  CAS  Google Scholar 

  109. Manthiram A, Choi J, Choi W (2006) Solid State Ion 177:2629. https://doi.org/10.1016/j.ssi.2006.02.041

    Article  CAS  Google Scholar 

  110. Reed J, Ceder G, Van der Ven A (2001) Electrochem Solid State Lett 4:A78. https://doi.org/10.1149/1.1368896

    Article  CAS  Google Scholar 

  111. Chebiam RV, Kannan AM, Prado F, Manthiram A (2001) Electrochem Commun 3:624. https://doi.org/10.1016/s1388-2481(01)00232-6

    Article  CAS  Google Scholar 

  112. Liu W, Oh P, Liu X, Lee MJ, Cho W, Chae S, Kim Y, Cho J (2015) Angew Chem Int Ed 54:4440. https://doi.org/10.1002/anie.201409262

    Article  CAS  Google Scholar 

  113. Ohzuku T, Makimura Y (2001) Layered lithium insertion material of LiNi 1/2Mn 1/2O2: A possible alternative to LiCoO2 for advanced lithium-ion batteries. Chem Lett 30:744–745

  114. Zhecheva E, Stoyanova R (1993) Solid State Ion 66:143. https://doi.org/10.1016/0167-2738(93)90037-4

    Article  CAS  Google Scholar 

  115. Whittingham MS (2004) Chem Rev 104:4271. https://doi.org/10.1021/Cr020731c

    Article  CAS  PubMed  Google Scholar 

  116. Rozier P, Tarascon JM (2015) J Electrochem Soc 162:A2490. https://doi.org/10.1149/2.0111514jes

    Article  CAS  Google Scholar 

  117. Li J, Klopsch R, Stan MC, Nowak S, Kunze M, Winter M, Passerini S (2011) J Power Source 196:4821. https://doi.org/10.1016/j.jpowsour.2011.01.006

    Article  CAS  Google Scholar 

  118. Kasnatscheew J, Placke T, Streipert B, Rothermel S, Wagner R, Meister P, Laskovic IC, Winter M (2017) J Electrochem Soc 164:A2479. https://doi.org/10.1149/2.0961712jes

    Article  CAS  Google Scholar 

  119. Kang K, Meng YS, Bréger J, Grey CP, Ceder G (2006) Science 311:977

    Article  CAS  PubMed  Google Scholar 

  120. Fergus JW (2010) J Power Source 195:4554. https://doi.org/10.1016/j.jpowsour.2010.01.076

    Article  CAS  Google Scholar 

  121. Long L, Wang S, Xiao M, Meng Y (2016) J Mater Chem A 4:10038. https://doi.org/10.1039/c6ta02621d

    Article  CAS  Google Scholar 

  122. Quartarone E, Mustarelli P (2011) Chem Soc Rev 40:2525

    Article  CAS  PubMed  Google Scholar 

  123. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Nat Mater 8:621

    Article  CAS  PubMed  Google Scholar 

  124. Lewandowski A, Świderska-Mocek A (2009) J Power Source 194:601. https://doi.org/10.1016/j.jpowsour.2009.06.089

    Article  CAS  Google Scholar 

  125. Xu K (2004) Chem Rev 104:4303. https://doi.org/10.1021/Cr030203g

    Article  CAS  PubMed  Google Scholar 

  126. Jow TR, Xu K, Borodin O, Makoto U (2014) Electrolytes for lithium and lithium-ion batteries. Springer, New York

    Book  Google Scholar 

  127. Xu K (2014) Chem Rev 114:11503. https://doi.org/10.1021/cr500003w

    Article  CAS  PubMed  Google Scholar 

  128. Amereller M, Schedlbauer T, Moosbauer D, Schreiner C, Stock C, Wudy F, Zugmann S, Hammer H, Maurer A, Gschwind RM, Wiemhofer HD, Winter M, Gores HJ (2014) Prog Solid State Chem 42:39. https://doi.org/10.1016/j.progsolidstchem.2014.04.001

    Article  CAS  Google Scholar 

  129. Wang Y, Yi J, Xia Y (2012) Adv Energy Mater 2:830. https://doi.org/10.1002/aenm.201200065

    Article  CAS  Google Scholar 

  130. Li Q, Chen J, Fan L, Kong X, Lu Y (2016) Green Energy Environ 1:18. https://doi.org/10.1016/j.gee.2016.04.006

    Article  Google Scholar 

  131. Ozawa K (1994) Solid State Ionics 69:212. https://doi.org/10.1016/0167-2738(94)90411-1

    Article  CAS  Google Scholar 

  132. Izutsu K (2009) Electrochemistry in nonaqueous solutions. Wiley, Amsterdam

    Book  Google Scholar 

  133. Borodin O, Smith GD (2009) J Phys Chem B 113:1763. https://doi.org/10.1021/jp809614h

    Article  CAS  PubMed  Google Scholar 

  134. von Wald Cresce A, Borodin O, Xu K (2012) J Phys Chem C 116:26111. https://doi.org/10.1021/jp303610t

    Article  CAS  Google Scholar 

  135. Borodin O (2014) Molecular modeling of electrolytes. In: Jow TR, Xu K, Borodin O, Ue M (eds) Electrolytes for lithium and lithium-ion batteries. Springer, New York, pp 371–402

  136. Cekic-Laskovic I, von Aspern N, Imholt L, Kaymaksiz S, Oldiges K, Rad BR, Winter M (2017) Top Curr Chem 375:37

    Article  CAS  Google Scholar 

  137. Brox S, Röser S, Husch T, Hildebrand S, Fromm O, Korth M, Winter M, Cekic-Laskovic I (2016) Chemsuschem 9:1704. https://doi.org/10.1002/cssc.201600369

    Article  CAS  PubMed  Google Scholar 

  138. Husch T, Yilmazer ND, Balducci A, Korth M (2015) Phys Chem Chem Phys 17:3394. https://doi.org/10.1039/c4cp04338c

    Article  CAS  PubMed  Google Scholar 

  139. Wagner R, Korth M, Streipert B, Kasnatscheew J, Gallus DR, Brox S, Amereller M, Cekic-Laskovic I, Winter M (2016) ACS Appl Mater Interface 8:30871. https://doi.org/10.1021/acsami.6b09164

    Article  CAS  Google Scholar 

  140. Nowak S, Winter M (2015) J Electrochem Soc 162:A2500. https://doi.org/10.1149/2.0121514jes

    Article  CAS  Google Scholar 

  141. Kraft V, Weber W, Streipert B, Wagner R, Schultz C, Winter M, Nowak S (2016) RSC Adv 6:8. https://doi.org/10.1039/c5ra23624j

    Article  CAS  Google Scholar 

  142. Weber W, Wagner R, Streipert B, Kraft V, Winter M, Nowak S (2016) J Power Source 306:193. https://doi.org/10.1016/j.jpowsour.2015.12.025

    Article  CAS  Google Scholar 

  143. Weber W, Kraft V, Grützke M, Wagner R, Winter M, Nowak S (2015) J Chromatogr A 1394:128. https://doi.org/10.1016/j.chroma.2015.03.048

    Article  CAS  PubMed  Google Scholar 

  144. Kraft V, Grützke M, Weber W, Menzel J, Wiemers-Meyer S, Winter M, Nowak S (2015) J Chromatogr A 1409:201. https://doi.org/10.1016/j.chroma.2015.07.054

    Article  CAS  PubMed  Google Scholar 

  145. Verma P, Maire P, Novák P (2010) Electrochim Acta 55:6332. https://doi.org/10.1016/j.electacta.2010.05.072

    Article  CAS  Google Scholar 

  146. Gauthier M, Carney TJ, Grimaud A, Giordano L, Pour N, Chang H-H, Fenning DP, Lux SF, Paschos O, Bauer C, Maglia F, Lupart S, Lamp P, Shao-Horn Y (2015) J Phys Chem Lett 6:4653. https://doi.org/10.1021/acs.jpclett.5b01727

    Article  CAS  PubMed  Google Scholar 

  147. Ue M, Murakami A, Nakamura S (2002) J Electrochem Soc 149:A1572. https://doi.org/10.1149/1.1517579

    Article  CAS  Google Scholar 

  148. Johansson P (2006) J Phys Chem A 110:12077. https://doi.org/10.1021/jp0653297

    Article  CAS  PubMed  Google Scholar 

  149. Shao N, Sun X-G, Dai S, Jiang D-E (2011) J Phys Chem B 115:12120. https://doi.org/10.1021/jp204401t

    Article  CAS  PubMed  Google Scholar 

  150. Zhang X, Pugh JK, Ross PN (2001) J Electrochem Soc 148:E183. https://doi.org/10.1149/1.1362546

    Article  CAS  Google Scholar 

  151. Assary RS, Curtiss LA, Redfern PC, Zhang Z, Amine K (2011) J Phys Chem C 115:12216. https://doi.org/10.1021/jp2019796

    Article  CAS  Google Scholar 

  152. Borodin O, Behl W, Jow TR (2013) J Phys Chem C 117:8661. https://doi.org/10.1021/jp400527c

    Article  CAS  Google Scholar 

  153. Kasnatscheew J, Streipert B, Röser S, Wagner R, Cekic Laskovic I, Winter M (2017) Phys Chem Chem Phys 19:16078. https://doi.org/10.1039/C7CP03072J

    Article  CAS  PubMed  Google Scholar 

  154. Xing L, Borodin O, Smith GD, Li W (2011) J Phys Chem A 115:13896. https://doi.org/10.1021/jp206153n

    Article  CAS  PubMed  Google Scholar 

  155. Yoshitake H, Abe K, Kitakura T, Gong JB, Lee YS, Nakamura H, Yoshio M (2003) Chem Lett 32:134

    Article  CAS  Google Scholar 

  156. Xing L, Li W, Wang C, Gu F, Xu M, Tan C, Yi J (2009) J Phys Chem B 113:16596. https://doi.org/10.1021/jp9074064

    Article  CAS  PubMed  Google Scholar 

  157. Xing L, Wang C, Li W, Xu M, Meng X, Zhao S (2009) J Phys Chem B 113:5181. https://doi.org/10.1021/jp810279h

    Article  CAS  PubMed  Google Scholar 

  158. Scheers J, Johansson P (2014) Prediction of electrolyte and additive electrochemical stabilities. In: Jow TR, Xu K, Borodin O, Ue M (eds) Electrolytes for lithium and lithium-ion batteries. Springer, New York, p 403

    Chapter  Google Scholar 

  159. Tan S, Ji YJ, Zhang ZR, Yang Y (2014) ChemPhysChem 15:1956. https://doi.org/10.1002/cphc.201402175

    Article  CAS  PubMed  Google Scholar 

  160. Zhang Z, Hu L, Wu H, Weng W, Koh M, Redfern PC, Curtiss LA, Amine K (2013) Energy Environ Sci 6:1806. https://doi.org/10.1039/c3ee24414h

    Article  CAS  Google Scholar 

  161. Böttcher T, Duda B, Kalinovich N, Kazakova O, Ponomarenko M, Vlasov K, Winter M, Röschenthaler GV (2014) Prog Solid State Chem 42:202. https://doi.org/10.1016/j.progsolidstchem.2014.04.013

    Article  CAS  Google Scholar 

  162. Böttcher T, Kalinovich N, Kazakova O, Ponomarenko M, Vlasov K, Winter M, Röschenthaler GV (2015) Chapter 6—Novel fluorinated solvents and additives for lithium-ion batteries. In: Groult H (ed) Advanced fluoride-based materials for energy conversion. Elsevier, New York, pp 125–145

  163. Abouimrane A, Belharouak I, Amine K (2009) Electrochem Commun 11:1073. https://doi.org/10.1016/j.elecom.2009.03.020

    Article  CAS  Google Scholar 

  164. Duncan H, Salem N, Abu-Lebdeh Y (2013) J Electrochem Soc 160:A838. https://doi.org/10.1149/2.088306jes

    Article  CAS  Google Scholar 

  165. Isken P, Dippel C, Schmitz R, Schmitz RW, Kunze M, Passerini S, Winter M, Lex-Balducci A (2011) Electrochim Acta 56:7530. https://doi.org/10.1016/j.electacta.2011.06.095

    Article  CAS  Google Scholar 

  166. Zhang SS (2006) J Power Source 162:1379. https://doi.org/10.1016/j.jpowsour.2006.07.074

    Article  CAS  Google Scholar 

  167. El Ouatani L, Dedryvere R, Siret C, Biensan P, Reynaud S, Iratcabal P, Gonbeau D (2009) J Electrochem Soc 156:A103. https://doi.org/10.1149/1.3029674

    Article  CAS  Google Scholar 

  168. Jorn R, Kumar R, Abraham DP, Voth GA (2013) J Phys Chem C 117:3747. https://doi.org/10.1021/jp3102282

    Article  CAS  Google Scholar 

  169. Leung K (2013) J Phys Chem C 117:1539. https://doi.org/10.1021/jp308929a

    Article  CAS  Google Scholar 

  170. Single F, Horstmann B, Latz A (2017) J Electrochem Soc 164:E3132. https://doi.org/10.1149/2.0121711jes

    Article  CAS  Google Scholar 

  171. Single F, Horstmann B, Latz A (2016) Phys Chem Chem Phys 18:17810. https://doi.org/10.1039/c6cp02816k

    Article  CAS  PubMed  Google Scholar 

  172. Zhang S, He M, Su C-C, Zhang Z (2016) Curr Opin Chem Eng 13:24. https://doi.org/10.1016/j.coche.2016.08.003

    Article  CAS  Google Scholar 

  173. Reyes Jiménez A, Klöpsch R, Wagner R, Rodehorst UC, Kolek M, Nölle R, Winter M, Placke T (2017) ACS Nano. https://doi.org/10.1021/acsnano.7b00922

    Article  PubMed  Google Scholar 

  174. Okuno Y, Ushirogata K, Sodeyama K, Tateyama Y (2016) Phys Chem Chem Phys 18:8643. https://doi.org/10.1039/c5cp07583a

    Article  CAS  PubMed  Google Scholar 

  175. Profatilova IA, Stock C, Schmitz A, Passerini S, Winter M (2013) J Power Source 222:140. https://doi.org/10.1016/j.jpowsour.2012.08.066

    Article  CAS  Google Scholar 

  176. Wilken S, Johansson P, Jacobsson P (2013) Lithium batteries. Wiley, Amsterdam, p 39

    Book  Google Scholar 

  177. Streipert B, Janßen P, Cao X, Kasnatscheew J, Wagner R, Cekic-Laskovic I, Winter M, Placke T (2017) J Electrochem Soc 164:A168. https://doi.org/10.1149/2.0711702jes

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Johannes Kasnatscheew or Isidora Cekic-Laskovic.

Additional information

This article is part of the Topical Collection “Modeling Electrochemical Energy Storage at the Atomic Scale”; edited by “Martin Korth”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasnatscheew, J., Wagner, R., Winter, M. et al. Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry. Top Curr Chem (Z) 376, 16 (2018). https://doi.org/10.1007/s41061-018-0196-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-018-0196-1

Keywords

Navigation