Topics in Current Chemistry

, 376:6 | Cite as

Two-Dimensional Spectroscopy at Terahertz Frequencies

  • Jian Lu
  • Xian Li
  • Yaqing Zhang
  • Harold Y. Hwang
  • Benjamin K. Ofori-Okai
  • Keith A. Nelson
Review
Part of the following topical collections:
  1. Multidimensional Time-Resolved Spectroscopy

Abstract

Multidimensional spectroscopy in the visible and infrared spectral ranges has become a powerful technique to retrieve dynamic correlations and couplings in wide-ranging systems by utilizing multiple correlated light-matter interactions. Its extension to the terahertz (THz) regime of the electromagnetic spectrum, where rich material degrees of freedom reside, however, has been progressing slowly. This chapter reviews some of the THz-frequency two-dimensional (2D) spectroscopy techniques and experimental results realized in recent years. Examples include gas molecule rotations, spin precessions in magnetic systems, and liquid molecular dynamics studied by 2D THz or hybrid 2D THz-Raman spectroscopy techniques. The methodology shows promising applications to different THz-frequency degrees of freedom in various chemical systems and processes.

Keywords

Terahertz Gas-phase molecular rotations Liquid-phase molecular dynamics Magnetic resonances 

Notes

Acknowledgements

We thank Sharly Fleischer, Takayuki Kurihara, and Tohru Suemoto for contributions to this work. This work was supported, in part, by Office of Naval Research Grant N00014-13-1-0509 and Defense University Research Instrumentation Program Grant N00014-15-1-2879, National Science Foundation Grants CHE-1111557 and CHE-1665383, and the Samsung Global Research Outreach program.

References

  1. 1.
    Hamm P, Zanni MT (2011) Concepts and methods of 2D infrared spectroscopy. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. 2.
    Mukamel S (2000) Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations. Annu Rev Phys Chem 51:691–729.  https://doi.org/10.1146/annurev.physchem.51.1.691 CrossRefGoogle Scholar
  3. 3.
    Jonas DM (2003) Two-dimensional femtosecond spectroscopy. Annu Rev Phys Chem 54:425–463.  https://doi.org/10.1146/annurev.physchem.54.011002.103907 CrossRefGoogle Scholar
  4. 4.
    Zheng J, Kwak K, Fayer MD (2007) Ultrafast 2D IR vibrational echo spectroscopy. Acc Chem Res 40:75–83.  https://doi.org/10.1021/ar068010d CrossRefGoogle Scholar
  5. 5.
    Ramasesha K, De Marco L, Mandal A, Tokmakoff A (2013) Water vibrations have strongly mixed intra- and intermolecular character. Nat Chem 5:935–940.  https://doi.org/10.1038/nchem.1757 CrossRefGoogle Scholar
  6. 6.
    Baiz CR, Reppert M, Tokmakoff A (2013) Amide I two-dimensional infrared spectroscopy: methods for visualizing the vibrational structure of large proteins. J Phys Chem A 117:5955–5961.  https://doi.org/10.1021/jp310689a CrossRefGoogle Scholar
  7. 7.
    Krummel AT, Mukherjee P, Zanni MT (2003) Inter and intrastrand vibrational coupling in DNA studied with heterodyned 2D-IR spectroscopy. J Phys Chem B 107:9165–9169.  https://doi.org/10.1021/JP035473H CrossRefGoogle Scholar
  8. 8.
    Fuller FD, Ogilvie JP (2015) Experimental implementations of two-dimensional Fourier transform electronic spectroscopy. Annu Rev Phys Chem 66:667–690.  https://doi.org/10.1146/annurev-physchem-040513-103623 CrossRefGoogle Scholar
  9. 9.
    Stone KW, Gundogdu K, Turner DB et al (2009) Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells. Science (80-) 324:1169–1173.  https://doi.org/10.1126/science.1170274 CrossRefGoogle Scholar
  10. 10.
    Turner DB, Nelson KA (2010) Coherent measurements of high-order electronic correlations in quantum wells. Nature 466:1089–1092.  https://doi.org/10.1038/nature09286 CrossRefGoogle Scholar
  11. 11.
    Brixner T, Stenger J, Vaswani HM et al (2005) Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434:625–628.  https://doi.org/10.1038/nature03429 CrossRefGoogle Scholar
  12. 12.
    Cheng Y-C, Fleming GR (2009) Dynamics of light harvesting in photosynthesis. Annu Rev Phys Chem 60:241–262.  https://doi.org/10.1146/annurev.physchem.040808.090259 CrossRefGoogle Scholar
  13. 13.
    Eisele DM, Arias DH, Fu X et al (2014) Robust excitons inhabit soft supramolecular nanotubes. Proc Natl Acad Sci 111:E3367–E3375.  https://doi.org/10.1073/pnas.1408342111 CrossRefGoogle Scholar
  14. 14.
    Krebs N, Pugliesi I, Hauer J, Riedle E (2013) Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250–720 nm supercontinuum probe. New J Phys 15:85016.  https://doi.org/10.1088/1367-2630/15/8/085016 CrossRefGoogle Scholar
  15. 15.
    Lee Y-S (2009) Principles of terahertz science and technology. Springer, BerlinGoogle Scholar
  16. 16.
    Blanchard F, Razzari L, Bandulet HC et al (2007) Generation of 1.5 µJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal. Opt Express 15:13212.  https://doi.org/10.1364/OE.15.013212 CrossRefGoogle Scholar
  17. 17.
    Ferguson B, Zhang X-C (2002) Materials for terahertz science and technology. Nat Mater 1:26–33.  https://doi.org/10.1038/nmat708 CrossRefGoogle Scholar
  18. 18.
    Schmuttenmaer CA (2004) Exploring dynamics in the far-infrared with terahertz spectroscopy. Chem Rev 104:1759–1779.  https://doi.org/10.1021/cr020685g CrossRefGoogle Scholar
  19. 19.
    Tonouchi M (2007) Cutting-edge terahertz technology. Nat Photonics 1:97–105.  https://doi.org/10.1038/nphoton.2007.3 CrossRefGoogle Scholar
  20. 20.
    Yeh KL, Hoffmann MC, Hebling J, Nelson KA (2007) Generation of 10 μJ ultrashort terahertz pulses by optical rectification. Appl Phys Lett 90:171121.  https://doi.org/10.1063/1.2734374 CrossRefGoogle Scholar
  21. 21.
    Hirori H, Doi A, Blanchard F, Tanaka K (2011) Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3. Appl Phys Lett 98:91106.  https://doi.org/10.1063/1.3560062 CrossRefGoogle Scholar
  22. 22.
    Shalaby M, Hauri CP (2015) Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness. Nat Commun 6:5976.  https://doi.org/10.1038/ncomms6976 CrossRefGoogle Scholar
  23. 23.
    Vicario C, Ruchert C, Hauri CP (2015) High field broadband THz generation in organic materials. J Mod Opt 62:1480–1485.  https://doi.org/10.1080/09500340.2013.800242 CrossRefGoogle Scholar
  24. 24.
    Lee S-H, Jazbinsek M, Hauri CP, Kwon O-P (2016) Recent progress in acentric core structures for highly efficient nonlinear optical crystals and their supramolecular interactions and terahertz applications. CrystEngComm 18:7180–7203.  https://doi.org/10.1039/C6CE00707D CrossRefGoogle Scholar
  25. 25.
    Kampfrath T, Tanaka K, Nelson KA (2013) Resonant and nonresonant control over matter and light by intense terahertz transients. Nat Photonics 7:680–690.  https://doi.org/10.1038/nphoton.2013.184 CrossRefGoogle Scholar
  26. 26.
    Hwang HY, Fleischer S, Brandt NC et al (2015) A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses. J Mod Opt 62:1447–1479.  https://doi.org/10.1080/09500340.2014.918200 CrossRefGoogle Scholar
  27. 27.
    Woerner M, Kuehn W, Bowlan P et al (2013) Ultrafast two-dimensional terahertz spectroscopy of elementary excitations in solids. New J Phys 15:25039.  https://doi.org/10.1088/1367-2630/15/2/025039 CrossRefGoogle Scholar
  28. 28.
    Kuehn W, Reimann K, Woerner M et al (2011) Strong correlation of electronic and lattice excitations in GaAs/AlGaAs semiconductor quantum wells revealed by two-dimensional terahertz spectroscopy. Phys Rev Lett 107:67401.  https://doi.org/10.1103/PhysRevLett.107.067401 CrossRefGoogle Scholar
  29. 29.
    Somma C, Reimann K, Flytzanis C et al (2014) High-field terahertz bulk photovoltaic effect in lithium niobate. Phys Rev Lett 112:146602.  https://doi.org/10.1103/PhysRevLett.112.146602 CrossRefGoogle Scholar
  30. 30.
    Maag T, Bayer A, Baierl S et al (2015) Coherent cyclotron motion beyond Kohn’s theorem. Nat Phys 11:1–6.  https://doi.org/10.1038/NPHYS3559 CrossRefGoogle Scholar
  31. 31.
    Lu J, Zhang Y, Hwang HY et al (2016) Nonlinear two-dimensional terahertz photon echo and rotational spectroscopy in the gas phase. Proc Natl Acad Sci USA 113:11800–11805.  https://doi.org/10.1073/pnas.1609558113 CrossRefGoogle Scholar
  32. 32.
    Lu J, Zhang Y, Hwang HY et al (2016) Two-dimensional terahertz photon echo and rotational spectroscopy in the gas phase. In: International conference on ultrafast phenomena. OSA Technical Digest (online), Optical Society of America, Paper UTu1A.6.  https://doi.org/10.1364/UP.2016.UTu1A.6
  33. 33.
    Somma C, Folpini G, Reimann K et al (2016) Two-phonon quantum coherences in indium antimonide studied by nonlinear two-dimensional terahertz spectroscopy. Phys Rev Lett 116:1–6.  https://doi.org/10.1103/PhysRevLett.116.177401 CrossRefGoogle Scholar
  34. 34.
    Somma C, Folpini G, Reimann K et al (2016) Phase-resolved two-dimensional terahertz spectroscopy including off-resonant interactions beyond the χ (3) limit. J Chem Phys 144:184202.  https://doi.org/10.1063/1.4948639 CrossRefGoogle Scholar
  35. 35.
    Lu J, Li X, Hwang HY et al (2016) 2D nonlinear terahertz magnetic resonance spectroscopy of magnons in a canted antiferromagnet. In: International conference on ultrafast phenomena. OSA Technical Digest (online), Optical Society of America, Paper UTh3A.2.  https://doi.org/10.1364/UP.2016.UTh3A.2
  36. 36.
    Lu J, Li X, Hwang HY et al (2017) Coherent two-dimensional terahertz magnetic resonance spectroscopy of collective spin waves. Phys Rev Lett 118:207204.  https://doi.org/10.1103/PhysRevLett.118.207204 CrossRefGoogle Scholar
  37. 37.
    Finneran IA, Welsch R, Allodi MA et al (2016) Coherent two-dimensional terahertz-terahertz-Raman spectroscopy. Proc Natl Acad Sci USA 113:6857–6861.  https://doi.org/10.1073/pnas.1605631113 CrossRefGoogle Scholar
  38. 38.
    Finneran IA, Welsch R, Allodi MA et al (2017) 2D THz-THz-Raman photon-echo spectroscopy of molecular vibrations in liquid bromoform. J Phys Chem Lett 8:4640–4644.  https://doi.org/10.1021/acs.jpclett.7b02106 CrossRefGoogle Scholar
  39. 39.
    Savolainen J, Ahmed S, Hamm P (2013) Two-dimensional Raman-terahertz spectroscopy of water. Proc Natl Acad Sci USA 110:20402–20407.  https://doi.org/10.1073/pnas.1317459110 CrossRefGoogle Scholar
  40. 40.
    Shalit A, Ahmed S, Savolainen J, Hamm P (2016) Terahertz echoes reveal the inhomogeneity of aqueous salt solutions. Nat Chem 9:273–278.  https://doi.org/10.1038/nchem.2642 CrossRefGoogle Scholar
  41. 41.
    Boyd R (2007) Nonlinear optics. Academic Press, BostonGoogle Scholar
  42. 42.
    Hebling J, Almasi G, Kozma I, Kuhl J (2002) Velocity matching by pulse front tilting for large area THz-pulse generation. Opt Express 10:1161.  https://doi.org/10.1364/OE.10.001161 CrossRefGoogle Scholar
  43. 43.
    Hebling J, Yeh K-L, Hoffmann MC et al (2008) Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. J Opt Soc Am B 25:B6–B19.  https://doi.org/10.1364/JOSAB.25.0000B6 CrossRefGoogle Scholar
  44. 44.
    Vicario C, Jazbinsek M, Ovchinnikov AV et al (2015) High efficiency THz generation in DSTMS, DAST and OH1 pumped by Cr:forsterite laser. Opt Express 23:4573–4580.  https://doi.org/10.1364/OE.23.004573 CrossRefGoogle Scholar
  45. 45.
    Dai J, Liu J, Zhang XC (2011) Terahertz wave air photonics: Terahertz wave generation and detection with laser-induced gas plasma. IEEE J Sel Top Quantum Electron 17:183–190.  https://doi.org/10.1109/JSTQE.2010.2047007 CrossRefGoogle Scholar
  46. 46.
    Clough B, Dai J, Zhang XC (2012) Laser air photonics: beyond the terahertz gap. Mater Today 15:50–58CrossRefGoogle Scholar
  47. 47.
    Carr GL, Martin MC, McKinney WR et al (2002) High-power terahertz radiation from relativistic electrons. Nature 420:153–156.  https://doi.org/10.1038/nature01175 CrossRefGoogle Scholar
  48. 48.
    Wu Z, Fisher AS, Goodfellow J et al (2013) Intense terahertz pulses from SLAC electron beams using coherent transition radiation. Rev Sci Instrum 84:22701.  https://doi.org/10.1063/1.4790427 CrossRefGoogle Scholar
  49. 49.
    Wu Q, Zhang XC (1995) Free-space electro-optic sampling of terahertz beams. Appl Phys Lett 67:3523.  https://doi.org/10.1063/1.114909 CrossRefGoogle Scholar
  50. 50.
    Nahata A, Auston DH, Heinz TF, Wu C (1996) Coherent detection of freely propagating terahertz radiation by electro-optic sampling. Appl Phys Lett 68:150.  https://doi.org/10.1063/1.116130 CrossRefGoogle Scholar
  51. 51.
    Novelli F, Fausti D, Giusti F et al (2013) Mixed regime of light-matter interaction revealed by phase sensitive measurements of the dynamical Franz-Keldysh effect. Sci Rep 3:1227.  https://doi.org/10.1038/srep01227 CrossRefGoogle Scholar
  52. 52.
    Pein BC, Chang W, Hwang HY et al (2017) Terahertz-driven luminescence and colossal Stark effect in CdSe-CdS colloidal quantum dots. Nano Lett 17:5375–5380.  https://doi.org/10.1021/acs.nanolett.7b01837 CrossRefGoogle Scholar
  53. 53.
    Cook DJ, Chen JX, Morlino EA, Hochstrasser RM (1999) Terahertz-field-induced second-harmonic generation measurements of liquid dynamics. Chem Phys Lett 309:221–228.  https://doi.org/10.1016/S0009-2614(99)00668-5 CrossRefGoogle Scholar
  54. 54.
    Hoffmann MC, Brandt NC, Hwang HY et al (2009) Terahertz Kerr effect. Appl Phys Lett 95:231105.  https://doi.org/10.1063/1.3271520 CrossRefGoogle Scholar
  55. 55.
    Kampfrath T, Sell A, Klatt G et al (2011) Coherent terahertz control of antiferromagnetic spin waves. Nat Photonics 5:31–34.  https://doi.org/10.1038/nphoton.2010.259 CrossRefGoogle Scholar
  56. 56.
    Allodi MA, Finneran IA, Blake GA (2015) Nonlinear terahertz coherent excitation of vibrational modes of liquids. J Chem Phys 143:234204.  https://doi.org/10.1063/1.4938165 CrossRefGoogle Scholar
  57. 57.
    Hwang HY, Hoffmann MC, Brandt NC, Nelson KA (2010) THz Kerr effect in relaxor ferroelectrics. In: International conference on ultrafast phenomena. OSA Technical Digest (CD), Optical Society of America, Paper ThE41.  https://doi.org/10.1364/UP.2010.ThE41
  58. 58.
    Lu J, Li X, Hwang HY et al (2016) Terahertz Kerr effect in an organic ferroelectric. In: International conference on ultrafast phenomena. OSA Technical Digest (online), Optical Society of America, Paper UW4A.14.  https://doi.org/10.1364/UP.2016.UW4A.14
  59. 59.
    Fleischer S, Zhou Y, Field RW, Nelson KA (2011) Molecular orientation and alignment by intense single-cycle THz pulses. Phys Rev Lett 107:163603.  https://doi.org/10.1103/PhysRevLett.107.163603 CrossRefGoogle Scholar
  60. 60.
    Fleischer S, Field RW, Nelson KA (2012) Commensurate two-quantum coherences induced by time-delayed THz fields. Phys Rev Lett 109:123603.  https://doi.org/10.1103/PhysRevLett.109.123603 CrossRefGoogle Scholar
  61. 61.
    Hamm P (2005) Principles of nonlinear optical spectroscopy : a practical approach or : Mukamel for dummies. University of Zurich. http://www.mitr.p.lodz.pl/evu/lectures/Hamm.pdf
  62. 62.
    Tokmakoff A (2014) Time-dependent quantum mechanics and spectroscopy. University of Chicago. http://tdqms.uchicago.edu/
  63. 63.
    Hamm P, Shalit A (2017) Perspective: echoes in 2D-Raman–THz spectroscopy. J Chem Phys 146:130901.  https://doi.org/10.1063/1.4979288 CrossRefGoogle Scholar
  64. 64.
    Tokmakoff A, Lang M, Larsen D et al (1997) Two-dimensional Raman spectroscopy of vibrational interactions in liquids. Phys Rev Lett 79:2702–2705.  https://doi.org/10.1103/PhysRevLett.79.2702 CrossRefGoogle Scholar
  65. 65.
    Frostig H, Bayer T, Dudovich N et al (2015) Single-beam spectrally controlled two-dimensional Raman spectroscopy. Nat Photonics 9:339–343.  https://doi.org/10.1038/nphoton.2015.64 CrossRefGoogle Scholar
  66. 66.
    Harde H, Keiding S, Grischkowsky D (1991) THz commensurate echoes: periodic rephasing of molecular transitions in free-induction decay. Phys Rev Lett 66:1834–1837.  https://doi.org/10.1103/PhysRevLett.66.1834 CrossRefGoogle Scholar
  67. 67.
    Fleischer S, Averbukh IS, Prior Y (2007) Selective alignment of molecular spin isomers. Phys Rev Lett 99:93002.  https://doi.org/10.1103/PhysRevLett.99.093002 CrossRefGoogle Scholar
  68. 68.
    Karras G, Hertz E, Billard F et al (2015) Orientation and alignment echoes. Phys Rev Lett 114:153601.  https://doi.org/10.1103/PhysRevLett.114.153601 CrossRefGoogle Scholar
  69. 69.
    Engel GS, Calhoun TR, Read EL et al (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446:782–786.  https://doi.org/10.1038/nature05678 CrossRefGoogle Scholar
  70. 70.
    Roberts ST, Loparo JJ, Tokmakoff A (2006) Characterization of spectral diffusion from two-dimensional line shapes. J Chem Phys 125:84502.  https://doi.org/10.1063/1.2232271 CrossRefGoogle Scholar
  71. 71.
    Damari R, Kallush S, Fleischer S (2016) Rotational control of asymmetric molecules: dipole- versus polarizability-driven rotational dynamics. Phys Rev Lett 117:103001.  https://doi.org/10.1103/PhysRevLett.117.103001 CrossRefGoogle Scholar
  72. 72.
    Damari R, Rosenberg D, Fleischer S (2017) Coherent radiative decay of molecular rotations: a comparative study of terahertz-oriented versus optically aligned molecular ensembles. Phys Rev Lett 119:33002.  https://doi.org/10.1103/PhysRevLett.119.033002 CrossRefGoogle Scholar
  73. 73.
    Fecko CJ, Eaves JD, Loparo JJ, Tokmakoff A, Geissler PL (2003) Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science (80-) 301:1698–1702.  https://doi.org/10.1126/science.1087251 CrossRefGoogle Scholar
  74. 74.
    Asbury JB, Steinel T, Kwak K et al (2004) Dynamics of water probed with vibrational echo correlation spectroscopy. J Chem Phys 121:12431–12446.  https://doi.org/10.1063/1.1818107 CrossRefGoogle Scholar
  75. 75.
    Hamm P, Savolainen J (2012) Two-dimensional-Raman–terahertz spectroscopy of water: theory. J Chem Phys 136:94516.  https://doi.org/10.1063/1.3691601 CrossRefGoogle Scholar
  76. 76.
    Hamm P, Savolainen J, Ono J, Tanimura Y (2012) Note: Inverted time-ordering in two-dimensional-Raman–terahertz spectroscopy of water. J Chem Phys 136:236101CrossRefGoogle Scholar
  77. 77.
    Teo SM, Ofori-Okai BK, Werley CA, Nelson KA (2015) Invited article: Single-shot THz detection techniques optimized for multidimensional THz spectroscopy. Rev Sci Instrum 86:51301.  https://doi.org/10.1063/1.4921389 CrossRefGoogle Scholar
  78. 78.
    Bajaj VS, Mak-Jurkauskas ML, Belenky M et al (2009) Functional and shunt states of bacteriorhodopsin resolved by 250 GHz dynamic nuclear polarization-enhanced solid-state NMR. Proc Natl Acad Sci USA 106:9244–9249.  https://doi.org/10.1073/pnas.0900908106 CrossRefGoogle Scholar
  79. 79.
    Borbat PP, Costa-Filho AJ, Earle KA et al (2001) Electron spin resonance in studies of membranes and proteins. Science (80-) 291:266–269.  https://doi.org/10.1126/science.291.5502.266 CrossRefGoogle Scholar
  80. 80.
    Koppens FHL, Buizert C, Tielrooij KJ et al (2006) Driven coherent oscillations of a single electron spin in a quantum dot. Supplementary notes. Nature 442:766–771.  https://doi.org/10.1038/nature05065 CrossRefGoogle Scholar
  81. 81.
    Craig GA, Murrie M (2015) 3d single-ion magnets. Chem Soc Rev 44:2135–2147.  https://doi.org/10.1039/C4CS00439F CrossRefGoogle Scholar
  82. 82.
    Nehrkorn J, Martins BM, Holldack K et al (2013) Zero-field splittings in metHb and metMb with aquo and fluoro ligands: a FD-FT THz-EPR study. Mol Phys 111:2696–2707.  https://doi.org/10.1080/00268976.2013.809806 CrossRefGoogle Scholar
  83. 83.
    Andersson KK, Schmidt PP, Katterle B et al (2003) Examples of high-frequency EPR studies in bioinorganic chemistry. J Biol Inorg Chem 8:235–247.  https://doi.org/10.1007/s00775-002-0429-0 CrossRefGoogle Scholar
  84. 84.
    Möbius K, Savitsky A, Wegener C et al (2005) Combining high-field EPR with site-directed spin labeling reveals unique information on proteins in action. Magn Reson Chem 43:S4–S19.  https://doi.org/10.1002/mrc.1690 CrossRefGoogle Scholar
  85. 85.
    Yamaguchi K, Nakajima M, Suemoto T (2010) Coherent control of spin precession motion with impulsive magnetic fields of half-cycle terahertz radiation. Phys Rev Lett 105:237201.  https://doi.org/10.1103/PhysRevLett.105.237201 CrossRefGoogle Scholar
  86. 86.
    Kozlov GV, Lebedev SP, Mukhin AA et al (1993) Submillimeter backward-wave oscillator spectroscopy of the rare-earth orthoferrites. IEEE Trans Magn 29:3443–3445.  https://doi.org/10.1109/20.281190 CrossRefGoogle Scholar
  87. 87.
    Baierl S, Hohenleutner M, Kampfrath T et al (2016) Nonlinear spin control by terahertz-driven anisotropy fields. Nat Photonics 10:715–718.  https://doi.org/10.1038/nphoton.2016.181 CrossRefGoogle Scholar
  88. 88.
    Baierl S, Mentink JH, Hohenleutner M et al (2016) Terahertz-driven nonlinear spin response of antiferromagnetic nickel oxide. Phys Rev Lett 117:197201.  https://doi.org/10.1103/PhysRevLett.117.197201 CrossRefGoogle Scholar
  89. 89.
    Mukai Y, Hirori H, Yamamoto T et al (2016) Nonlinear magnetization dynamics of antiferromagnetic spin resonance induced by intense terahertz magnetic field. New J Phys 18:13045.  https://doi.org/10.1088/1367-2630/18/1/013045 CrossRefGoogle Scholar
  90. 90.
    Herrmann GF (1963) Resonance and high frequency susceptibility in canted antiferromagnetic substances. J Phys Chem Solids 24:597–606.  https://doi.org/10.1016/S0022-3697(63)80001-3 CrossRefGoogle Scholar
  91. 91.
    Herrmann GF (1964) Magnetic resonances and susceptibility in orthoferrites. Phys Rev 133:A1334–A1344.  https://doi.org/10.1103/PhysRev.133.A1334 CrossRefGoogle Scholar
  92. 92.
    Morello A, Stamp PCE, Tupitsyn IS (2006) Pairwise decoherence in coupled spin qubit networks. Phys Rev Lett 97:207206.  https://doi.org/10.1103/PhysRevLett.97.207206 CrossRefGoogle Scholar
  93. 93.
    Fleury PA, Loudon R (1968) Scattering of light by one- and two-magnon excitations. Phys Rev 166:514–530.  https://doi.org/10.1103/PhysRev.166.514 CrossRefGoogle Scholar
  94. 94.
    Kozuki K, Nagashima T, Hangyo M (2011) Measurement of electron paramagnetic resonance using terahertz time-domain spectroscopy. Opt Express 19:24950.  https://doi.org/10.1364/OE.19.024950 CrossRefGoogle Scholar
  95. 95.
    Lu J, Li X, Skorupskii G et al (2017) Rapid and precise determination of zero-field splittings by terahertz time-domain electron paramagnetic resonance spectroscopy. Chem Sci 8:7312–7323.  https://doi.org/10.1039/c7sc00830a CrossRefGoogle Scholar
  96. 96.
    Schnegg A, Behrends J, Lips K et al (2009) Frequency domain Fourier transform THz-EPR on single molecule magnets using coherent synchrotron radiation. Phys Chem Chem Phys 11:6820–6825.  https://doi.org/10.1039/b905709a CrossRefGoogle Scholar
  97. 97.
    Champion PM, Sievers AJ (1977) Far infrared magnetic resonance in FeSiF6·6H2O and Fe(SPh)42−. J Chem Phys 66:1819–1825.  https://doi.org/10.1063/1.434200 CrossRefGoogle Scholar
  98. 98.
    Brackett GC (1971) Far-infrared magnetic resonance in Fe(III) and Mn(III) porphyrins, myoglobin, hemoglobin, ferrichrome A, and Fe(III) dithiocarbamates. J Chem Phys 54:4383.  https://doi.org/10.1063/1.1674688 CrossRefGoogle Scholar
  99. 99.
    Nehrkorn J, Telser J, Holldack K et al (2015) Simulating frequency-domain electron paramagnetic resonance: bridging the gap between experiment and magnetic parameters for high-spin transition-metal ion complexes. J Phys Chem B 119:13816–13824.  https://doi.org/10.1021/acs.jpcb.5b04156 CrossRefGoogle Scholar
  100. 100.
    Kuehn W, Reimann K, Woerner M et al (2011) Two-dimensional terahertz correlation spectra of electronic excitations in semiconductor quantum wells. J Phys Chem B 115:5448–5455.  https://doi.org/10.1021/jp1099046 CrossRefGoogle Scholar
  101. 101.
    Lee S-H, Lu J, Lee S-J et al (2017) Benzothiazolium single crystals: a new class of nonlinear optical crystals with efficient THz wave generation. Adv Mater 29:1701748.  https://doi.org/10.1002/adma.201701748 CrossRefGoogle Scholar
  102. 102.
    Chen Z, Zhou X, Werley CA, Nelson KA (2011) Generation of high power tunable multicycle teraherz pulses. Appl Phys Lett 99:71102.  https://doi.org/10.1063/1.3624919 CrossRefGoogle Scholar
  103. 103.
    Lu J, Hwang HY, Li X et al (2015) Tunable multi-cycle THz generation in organic crystal HMQ-TMS. Opt Express 23:22723–22729.  https://doi.org/10.1364/OE.23.022723 CrossRefGoogle Scholar
  104. 104.
    Liu B, Bromberger H, Cartella A et al (2017) Generation of narrowband, high-intensity, carrier-envelope phase-stable pulses tunable between 4 and 18 THz. Opt Lett 42:129.  https://doi.org/10.1364/OL.42.000129 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jian Lu
    • 1
  • Xian Li
    • 1
  • Yaqing Zhang
    • 1
  • Harold Y. Hwang
    • 1
  • Benjamin K. Ofori-Okai
    • 1
  • Keith A. Nelson
    • 1
  1. 1.Department of ChemistryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations