Advertisement

Topics in Current Chemistry

, 376:1 | Cite as

Photo- and Electrochemical Valorization of Carbon Dioxide Using Earth-Abundant Molecular Catalysts

  • Alonso Rosas-Hernández
  • Christoph Steinlechner
  • Henrik Junge
  • Matthias Beller
Review
Part of the following topical collections:
  1. Chemical Transformations of Carbon Dioxide

Abstract

The dramatic increase in anthropogenic carbon dioxide emissions in recent decades has forced us to look for alternative carbon-neutral processes for the production of energy vectors and commodity chemicals. Photo- and electrochemical reduction of CO2 are appealing strategies for the storage of sustainable and intermittent energies in the form of chemical bonds of synthetic fuels and value-added molecules. In these approaches, carbon dioxide is converted to products such as CO, HCOOH and MeOH through proton-coupled electron transfer reactions. The use of earth-abundant elements as components of the catalytic materials is crucial for the large-scale applicability of this technology. This review summarizes the most recent advances related to this issue, with particular focus on studies where molecular metal complexes are used as catalysts. In addition, with the aim of aiding in the design of more robust and efficient non-noble metal-based catalysts, we discuss the lessons learned from the corresponding mechanistic studies.

Keywords

CO2 reduction Molecular catalysts Earth-abundant metals Photocatalysis Electrocatalysis 

References

  1. 1.
    Smil V (2003) Energy at the crossroads: global perspectives and uncertainties. MIT Press, CambridgeGoogle Scholar
  2. 2.
    (2016) BP Statistical review of energyGoogle Scholar
  3. 3.
    United Nations Development Programme (2003) World energy assessment report: energy and the challenge of sustainabilityGoogle Scholar
  4. 4.
    Nocera DG (2009) Chem Soc Rev 38:13CrossRefGoogle Scholar
  5. 5.
    Lewis NS, Nocera DG (2006) Proc Natl Acad Sci USA 103:15729CrossRefGoogle Scholar
  6. 6.
    Barber J, Archer MD (2004) In: Archer MD, Barber J (eds) Molecular to global photosynthesis. Imperial College Press, London, pp 1–44Google Scholar
  7. 7.
    Gray HB (2009) Nat Chem 1:7CrossRefGoogle Scholar
  8. 8.
    Costentin C, Robert M, Saveant J-M (2013) Chem Soc Rev 42:2423CrossRefGoogle Scholar
  9. 9.
    Windle CD, Perutz RN (2012) Coord Chem Rev 256:2562CrossRefGoogle Scholar
  10. 10.
    Cole EB, Bocarsly AB (2010) In: Aresta M (ed) Carbon dioxide as chemical feedstock. Wiley-VCH, Weinheim, pp 291–316CrossRefGoogle Scholar
  11. 11.
    Sutin N, Creutz C, Fujita E (1997) Comments Inorg Chem 19:67–92CrossRefGoogle Scholar
  12. 12.
    Frese KW (1993) In: Sullivan BP, Krist K, Guard HE (eds) Electrochemical and electrocatalytic reactions of carbon dioxide. Elsevier, Amsterdam, pp 145–216CrossRefGoogle Scholar
  13. 13.
    Rosen BA, Salehi-Khojin A, Rorson M, Zhu W, Whipple DT, Kenis PJA, Masel RI (2011) Science 334:643CrossRefGoogle Scholar
  14. 14.
    Johnson TC, Morris DJ, Wills M (2010) Chem Soc Rev 39:81CrossRefGoogle Scholar
  15. 15.
    Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2008) Chem Soc Rev 38:89CrossRefGoogle Scholar
  16. 16.
    Dubois MR, Dubois DL (2009) Acc Chem Res 42:1974–1982CrossRefGoogle Scholar
  17. 17.
    Saveant J-M (2008) Chem Rev 108:2348–2378CrossRefGoogle Scholar
  18. 18.
    Sampson MD, Kubiak CP (2016) J Am Chem Soc 138:1386CrossRefGoogle Scholar
  19. 19.
    Hawecker J, Lehn J-M, Ziessel R (1984) J Chem Soc Chem Commun 328–330Google Scholar
  20. 20.
    Bourrez M, Molton F, Chardon-Noblat S, Deronzier A (2011) Angew Chem Int Ed 50:9903CrossRefGoogle Scholar
  21. 21.
    Hartl F, Rossenaar BD, Stor GJ, Stufkens DJ (1995) Recl Trav Chim Pays-Bas 114:565CrossRefGoogle Scholar
  22. 22.
    (2011–2012) Haynes WM (ed) CRC handbook of chemistry and physics, 92nd edn. CRC Press, Boca RatonGoogle Scholar
  23. 23.
    Smieja JM, Sampson MD, Grice KA, Benson EE, Froehlich JD, Kubiak CP (2013) Inorg Chem 52:2484CrossRefGoogle Scholar
  24. 24.
    Agarwal J, Shaw TW, Stanton CJ III, Majetich GF, Bocarsly AB, Schaefer HF III (2014) Angew Chem Int Ed 53:5152CrossRefGoogle Scholar
  25. 25.
    Sampson MD, Nguyen AD, Grice KA, Moore CE, Rheingold AL, Kubiak CP (2014) J Am Chem Soc 136:5460CrossRefGoogle Scholar
  26. 26.
    DuBois DL (2014) Inorg Chem 53:3935–3960CrossRefGoogle Scholar
  27. 27.
    Franco F, Cometto C, Ferrero Vallana F, Sordello F, Priola E, Minero C, Nervi C, Gobetto R (2014) Chem Commun 50:14670CrossRefGoogle Scholar
  28. 28.
    Agarwal J, Shaw TW, Schaefer HF III, Bocarsly AB (2015) Inorg Chem 54:5285CrossRefGoogle Scholar
  29. 29.
    Finn C, Schnittger S, Yellowlees LJ, Love JB (2012) Chem Commun 48:1392CrossRefGoogle Scholar
  30. 30.
    Qiao J, Liu Y, Hong F, Zhang J (2014) Chem Soc Rev 43:631CrossRefGoogle Scholar
  31. 31.
    Hammouche M, Lexa D, Momenteau M, Saveant JM (1991) J Am Chem Soc 113:8455CrossRefGoogle Scholar
  32. 32.
    Bhugun I, Lexa D, Saveant JM (1996) J Am Chem Soc 118:1769CrossRefGoogle Scholar
  33. 33.
    Costentin C, Drouet S, Robert M, Savéant J-M (2012) Science 338:90CrossRefGoogle Scholar
  34. 34.
    Costentin C, Drouet S, Robert M, Savéant J-M (2012) J Am Chem Soc 134:11235CrossRefGoogle Scholar
  35. 35.
    Costentin C, Passard G, Robert M, Savéant J-M (2014) J Am Chem Soc 136:11821CrossRefGoogle Scholar
  36. 36.
    Costentin C, Passard G, Robert M, Savéant J-M (2014) Proc Natl Acad Sci USA 11:14990CrossRefGoogle Scholar
  37. 37.
    Mohamed EA, Zahran ZN, Naruta Y (2015) Chem Commun 51:16900CrossRefGoogle Scholar
  38. 38.
    Jeoung J-H, Dobbek H (2007) Science 318:1461CrossRefGoogle Scholar
  39. 39.
    Shin W, Lee SH, Shin JW, Lee SP, Kim Y (2003) J Am Chem Soc 125:14688CrossRefGoogle Scholar
  40. 40.
    Taheri A, Thompson EJ, Fettinger JC, Berben LA (2015) ACS Catal 5:7140CrossRefGoogle Scholar
  41. 41.
    Loewen ND, Thompson EJ, Kagan M, Banales CL, Myers TW, Fettinger JC, Berben LA (2016) Chem Sci 7:2728CrossRefGoogle Scholar
  42. 42.
    Beley M, Collin JP, Ruppert R, Sauvage JP (1984) J Chem Soc Chem Commun 1315–1316Google Scholar
  43. 43.
    Thoi VS, Chang CJ (2011) Chem Commun 47:6578CrossRefGoogle Scholar
  44. 44.
    Schneider J, Jia H, Kobiro K, Cabelli DE, Muckermana JT, Fujita E (2012) Energy Environ Sci 5:9502CrossRefGoogle Scholar
  45. 45.
    Sheng M, Jiang N, Gustafson S, You B, Ess DH, Sun Y (2015) Dalton Trans 44:16247CrossRefGoogle Scholar
  46. 46.
    Lacy DC, McCrory CCL, Peters JC (2014) Inorg Chem 53:4980CrossRefGoogle Scholar
  47. 47.
    Koike T, Akita M (2014) Inorg Chem Front 1:562CrossRefGoogle Scholar
  48. 48.
    Luo S-P, Mejía E, Friedrich A, Pazidis A, Junge H, Surkus A-E, Jackstell R, Denurra S, Gladiali S, Lochbrunner S, Beller M (2013) Angew Chem Int Ed 52:419–423CrossRefGoogle Scholar
  49. 49.
    Rosas-Hernández A, Steinlechner C, Junge H, Beller M (2017) Green Chem 19:2356CrossRefGoogle Scholar
  50. 50.
    Takeda H, Ohashi K, Sekine A, Ishitani O (2016) J Am Chem Soc 138:4354CrossRefGoogle Scholar
  51. 51.
    Pellegrin Y, Odobel F (2017) C R Chim 20:283CrossRefGoogle Scholar
  52. 52.
    Takeda H, Koizumi H, Okamotoa K, Ishitani O (2014) Chem Commun 50:1491CrossRefGoogle Scholar
  53. 53.
    Fei H, Sampson MD, Lee Y, Kubiak CP, Cohen SM (2015) Inorg Chem 54:6821CrossRefGoogle Scholar
  54. 54.
    Cheung PL, Machan CW, Malkhasian AYS, Agarwal J, Kubiak CP (2016) Inorg Chem 55:3192CrossRefGoogle Scholar
  55. 55.
    Zhang J-X, Hu C-Y, Wang W, Wang H, Bian Z-Y (2016) Appl Catal A 522:145CrossRefGoogle Scholar
  56. 56.
    Grodkowski J, Behar D, Neta P, Hambright P (1997) J Phys Chem A 101:248CrossRefGoogle Scholar
  57. 57.
    Dhanasekaran T, Grodkowski J, Neta P, Hambright P, Fujita E (1999) J Phys Chem A 103:7742CrossRefGoogle Scholar
  58. 58.
    Grodkowski J, Dhanasekaran T, Neta P, Hambright P, Brunschwig BS, Shinozaki K, Fujita E (2000) J Phys Chem A 104:11332 11339 CrossRefGoogle Scholar
  59. 59.
    Grodkowski J, Neta P, Fujita E, Mahammed A, Simkhovich L, Gross ZJ (2002) Phys Chem A 106:4772CrossRefGoogle Scholar
  60. 60.
    Grodkowski J, Neta P (2000) J Phys Chem A 104:4475CrossRefGoogle Scholar
  61. 61.
    Bonin J, Robert M, Routier M (2014) J Am Chem Soc 136:16768CrossRefGoogle Scholar
  62. 62.
    Rao H, Bonin J, Robert M (2017) Chem Commun 53:2830CrossRefGoogle Scholar
  63. 63.
    Knöelker HJ, Baum E, Goesmann H, Klauss R (1999) Angew Chem Int Ed 38(13/14):1856–2070CrossRefGoogle Scholar
  64. 64.
    Alsabeh PG, Rosas-Hernández A, Barsch E, Junge H, Ludwig R, Beller M (2016) Catal Sci Technol 6:3623CrossRefGoogle Scholar
  65. 65.
    Rosas A, Alsabeh PG, Barsch E, Junge H, Ludwig R, Beller M (2016) Chem Commun 52:8393CrossRefGoogle Scholar
  66. 66.
    Guo Z, Cheng S, Cometto C, Anxolabéhère-Mallart E, Ng S-M, Ko C-C, Liu G, Chen L, Robert M, Lau T-C (2016) J Am Chem Soc 138:9413CrossRefGoogle Scholar
  67. 67.
    Lehn J-M, Ziessel R (1982) Proc Natl Acad Sci 79:701CrossRefGoogle Scholar
  68. 68.
    Hawecker J, Lehn J-M, Ziessel R (1983) J Chem Soc Chem Commun 536–538Google Scholar
  69. 69.
    Ziessel R, Hawecker J, Lehn J-M (1986) Helv Chim Acta 69:1065CrossRefGoogle Scholar
  70. 70.
    Matsuoka S, Yamamoto K, Pac C, Yanagida S (1991) Chem Lett 20:2099CrossRefGoogle Scholar
  71. 71.
    Matsuoka S, Yamamoto K, Ogata T, Kusaba M, Nakashima N, Fujita E, Yanagida S (1993) J Am Chem Soc 115:601CrossRefGoogle Scholar
  72. 72.
    Ogata T, Yamamoto Y, Wada Y, Murakoshi K, Kusaba M, Nakashima N, Ishida A, Takamuku S, Yanagida S (1995) J Phys Chem 99:11916CrossRefGoogle Scholar
  73. 73.
    Chen L, Guo Z, Wei X-G, Gallenkamp C, Bonin J, Anxolabéhère-Mallart E, Lau K-C, Lau T-C, Robert M (2015) J Am Chem Soc 137:10918CrossRefGoogle Scholar
  74. 74.
    Chan SL-F, Lam TL, Yang C, Yan S-C, Cheng NM (2015) Chem Commun 51:7799CrossRefGoogle Scholar
  75. 75.
    Yang C, Mehmood F, Lam TL, Chan SL-F, Wu Y, Yeung C-S, Guan X, Li K, Chung CYS, Zhou C, Zou T, Che C-M (2016) Chem Sci 7:3123CrossRefGoogle Scholar
  76. 76.
    Wang F, Cao B, To W-P, Tse C-W, Li K, Chang X-Y, Zang C, Chan SL-F, Che C-M (2016) Catal Sci Technol 6:7408CrossRefGoogle Scholar
  77. 77.
    Wang S, Yao W, Lin J, Ding Z, Wang X (1034) Angew Chem Int Ed 2014:53Google Scholar
  78. 78.
    Teinnemans AHA, Koster TPM, Thewissen DHMW, Mackor A (1984) Recl Trav Chim Pays-Pas 103:288CrossRefGoogle Scholar
  79. 79.
    Ouyang T, Huang H-H, Wang J-W, Zhong D-C, Lu T-B (2017) Angew Chem Int Ed 56:738CrossRefGoogle Scholar
  80. 80.
    Grodkowski J, Neta P (2002) J Phys Chem A 106:4772CrossRefGoogle Scholar
  81. 81.
    Grant JL, Goswami K, Spreer LO, Otvos JW, Calvin M (1987) J Chem Soc Dalton Trans 2105–2109Google Scholar
  82. 82.
    Craig CA, Spreer LO, Otvos JW, Calvin M (1990) J Phys Chem 94:7957CrossRefGoogle Scholar
  83. 83.
    Mochizuki K, Manaka S, Takeda I, Kondo T (1996) Inorg Chem 35:5132CrossRefGoogle Scholar
  84. 84.
    Méndez MA, Voyame P, Girault HH (2011) Angew Chem Int Ed 50:7391CrossRefGoogle Scholar
  85. 85.
    Thoi VS, Kornienko N, Margarit CG, Yang P, Chang CJ (2013) J Am Chem Soc 135:14413CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Alonso Rosas-Hernández
    • 1
  • Christoph Steinlechner
    • 1
  • Henrik Junge
    • 1
  • Matthias Beller
    • 1
  1. 1.Leibniz-Institute for Catalysis at the University of RostockRostockGermany

Personalised recommendations