Topics in Current Chemistry

, 375:90 | Cite as

Recent Developments in Single-Walled Carbon Nanotube Thin Films Fabricated by Dry Floating Catalyst Chemical Vapor Deposition

  • Qiang Zhang
  • Nan Wei
  • Patrik Laiho
  • Esko I. Kauppinen
Part of the following topical collections:
  1. Single-Walled Carbon Nanotubes: Preparation, Property and Application


Transparent conducting films (TCFs) are critical components of many optoelectronic devices that pervade modern technology. Due to their excellent optoelectronic properties and flexibility, single-walled carbon nanotube (SWNT) films are regarded as an important alternative to doped metal oxides or brittle and expensive ceramic materials. Compared with liquid-phase processing, the dry floating catalyst chemical vapor deposition (FCCVD) method without dispersion of carbon nanotubes (CNTs) in solution is more direct and simpler. By overcoming the tradeoff between CNT length and solubility during film fabrication, the dry FCCVD method enables production of films that contain longer CNTs and offer excellent optoelectronic properties. This review focuses on fabrication of SWNT films using the dry FCCVD method, covering SWNT synthesis, thin-film fabrication and performance regulation, the morphology of SWNTs and bundles, transparency and conductivity characteristics, random bundle films, patterned films, individual CNT networks, and various applications, especially as TCFs in touch displays. Films based on SWNTs produced by the dry FCCVD method are already commercially available for application in touch display devices. Further research on the dry FCCVD method could advance development of not only industrial applications of CNTs but also the fundamental science of related nanostructured materials and nanodevices.


Single-walled carbon nanotubes Dry floating catalyst chemical vapor deposition Transparent conducting film Touch displays 



We acknowledge financial support from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 604472 (IRENA project), the Aalto Energy Efficiency (AEF) Research Program through the MOPPI project, TEKES of Finland via CNT-PV project, and Academy of Finland via projects 286546 and 292600.


  1. 1.
    de Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539CrossRefGoogle Scholar
  2. 2.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605CrossRefGoogle Scholar
  3. 3.
    Ijiima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  4. 4.
    Dresselhaus MS, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon N. Y. 33:883–891CrossRefGoogle Scholar
  5. 5.
    Saito R et al (2001) Chirality-dependent G-band Raman intensity of carbon nanotubes. Phys Rev B 64:853121–853127CrossRefGoogle Scholar
  6. 6.
    Cheng HM, Li F, Sun X, Brown SDM, Pimenta MA, Marucci A, Dresselhaus G, Dresselhaus MS (1998) Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chem Phys Lett 289:602–610CrossRefGoogle Scholar
  7. 7.
    Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Electronic structure of graphene tubules based on C60. Phys Rev B 46:1804–1811CrossRefGoogle Scholar
  8. 8.
    Kane CL, Mele EJ (1997) Size, shape, and low energy electronic structure of carbon nanotubes. Phys Rev Lett 78:1932CrossRefGoogle Scholar
  9. 9.
    Yao Z, Kane CL, Dekker C (2000) High-field electrical transport in single-wall carbon nanotubes. Phys Rev Lett 84:2941–2944CrossRefGoogle Scholar
  10. 10.
    Zhou X, Park JJY, Huang S, Liu J, McEuen PPL (2005) Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys Rev Lett 95:146805CrossRefGoogle Scholar
  11. 11.
    Pop E, Mann D, Wang Q, Goodson K, Dai HJ (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6:96–100CrossRefGoogle Scholar
  12. 12.
    Pan ZW et al (1999) Tensile tests of ropes of very long aligned multiwall carbon nanotubes. Appl Phys Lett 74:3152–3154CrossRefGoogle Scholar
  13. 13.
    Yu M (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640CrossRefGoogle Scholar
  14. 14.
    Hu L, Hecht DS, Gru G (2010) Carbon nanotube thin films: fabrication, properties, and applications. Chem Rev 499:5790–5844CrossRefGoogle Scholar
  15. 15.
    Ma W et al (2009) Monitoring a micromechanical process in macroscale carbon nanotube films and fibers. Adv Mater 21:603–608CrossRefGoogle Scholar
  16. 16.
    Brieland-Shoultz A et al (2014) Scaling the stiffness, strength, and toughness of ceramic-coated nanotube foams into the structural regime. Adv Funct Mater 24:5728–5735CrossRefGoogle Scholar
  17. 17.
    Zhou W, Bai X, Wang E, Xie S (2009) Synthesis, structure, and properties of single-walled carbon nanotubes. Adv Mater 21:4565–4583CrossRefGoogle Scholar
  18. 18.
    Zhang Q et al (2017) Performance improvement of continuous carbon nanotube fibers by acid treatment. Chin Phys B 26:28802CrossRefGoogle Scholar
  19. 19.
    Yu L, Shearer C, Shapter J (2016) Recent development of carbon nanotube transparent conductive films. Chem Rev 116:13413–13453CrossRefGoogle Scholar
  20. 20.
    Cao Q, Rogers JA (2009) Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv Mater 21:29–53CrossRefGoogle Scholar
  21. 21.
    Zhou W, Ma W, Niu Z, Song L, Xie S (2012) Freestanding single-walled carbon nanotube bundle networks: fabrication, properties and composites. Chin Sci Bull 57:205–224CrossRefGoogle Scholar
  22. 22.
    Ma W et al (2007) Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films. Nano Lett 7:2307–2311CrossRefGoogle Scholar
  23. 23.
    Wu Z et al (2004) Transparent, conductive carbon nanotube films. Science 305:1273–1276CrossRefGoogle Scholar
  24. 24.
    Mirri F et al (2012) High-performance carbon nanotube transparent conductive films by scalable dip coating. ACS Nano 6:9737–9744CrossRefGoogle Scholar
  25. 25.
    Cao Q et al (2006) Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv Mater 18:304–309CrossRefGoogle Scholar
  26. 26.
    Liu B et al (2009) Metal-catalyst-free growth of single-walled carbon nanotubes. J Am Chem Soc 131:2082–2083CrossRefGoogle Scholar
  27. 27.
    Zhang L et al (2017) Selective growth of metal-free metallic and semiconducting single-wall carbon nanotubes. Adv Mater. Google Scholar
  28. 28.
    Zhang M (2005) Strong, transparent, multifunctional, carbon nanotube sheets. Science 309:1215–1219CrossRefGoogle Scholar
  29. 29.
    Feng C et al (2010) Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv Funct Mater 20:885–891CrossRefGoogle Scholar
  30. 30.
    Nasibulin AG et al (2011) Multifunctional free-standing single-walled carbon nanotube films. ACS Nano 5:3214–3221CrossRefGoogle Scholar
  31. 31.
    Kaskela A et al (2010) Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett 10:4349–4355CrossRefGoogle Scholar
  32. 32.
    Nasibulin AG et al (2008) Integration of single-walled carbon nanotubes into polymer films by thermo-compression. Chem Eng J 136:409–413CrossRefGoogle Scholar
  33. 33.
    Kaskela A et al (2016) Highly individual SWCNTs for high performance thin film electronics. Carbon N Y 103:228–234CrossRefGoogle Scholar
  34. 34.
    Baughman RH (2002) Carbon nanotubes-the route toward applications. Science 297:787–792CrossRefGoogle Scholar
  35. 35.
    Nasibulin AG, Moisala A, Brown DP, Jiang H, Kauppinen EI (2005) A novel aerosol method for single walled carbon nanotube synthesis. Chem Phys Lett 402:227–232CrossRefGoogle Scholar
  36. 36.
    Bronikowski MJ, Willis PA, Colbert DT, Smith KA, Smalley RE (2001) Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: a parametric study. J Vac Sci Technol 19:1800–1805CrossRefGoogle Scholar
  37. 37.
    Li Y-L (2004) Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304:276–278CrossRefGoogle Scholar
  38. 38.
    Gui X et al (2010) Soft, highly conductive nanotube sponges and composites with controlled compressibility. ACS Nano 4:2320–2326CrossRefGoogle Scholar
  39. 39.
    Lamouroux E, Serp P, Kalck P (2007) Catalytic routes towards single wall carbon nanotubes. Catal Rev 49:341–405CrossRefGoogle Scholar
  40. 40.
    Barnard JS, Paukner C, Koziol KK (2016) The role of carbon precursor on carbon nanotube chirality in floating catalyst chemical vapour deposition. Nanoscale 8:17262–17270CrossRefGoogle Scholar
  41. 41.
    Moisala A, Nasibulin AG, Kauppinen EI (2003) The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes. J Phys Condens Matter 15(42):3011CrossRefGoogle Scholar
  42. 42.
    Mustonen K et al (2015) Gas phase synthesis of non-bundled, small diameter single-walled carbon nanotubes with near-armchair chiralities. Appl Phys Lett 107:013106CrossRefGoogle Scholar
  43. 43.
    Cheng HM et al (1998) Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl Phys Lett 72:3282–3284CrossRefGoogle Scholar
  44. 44.
    Li Y-L, Zhang L-H, Zhong X-H, Windle AH (2007) Synthesis of high purity single-walled carbon nanotubes from ethanol by catalytic gas flow CVD reactions. Nanotechnology 18:225604CrossRefGoogle Scholar
  45. 45.
    Chen Z et al (2004) An enhanced CVD approach to extensive nanotube networks with directionality. Carbon N Y 12:275504Google Scholar
  46. 46.
    He M, Jiang H, Kauppinen EI, Lehtonen J (2012) Diameter and chiral angle distribution dependencies on the carbon precursors in surface-grown single-walled carbon nanotubes. Nanoscale 4:7394CrossRefGoogle Scholar
  47. 47.
    Harutyunyan AR et al (2009) Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science 326:116–120CrossRefGoogle Scholar
  48. 48.
    Vilatela JJ, Windle AH (2010) Yarn-like carbon nanotube fibers. Adv Mater 22:4959–4963CrossRefGoogle Scholar
  49. 49.
    Hou PX et al (2014) Preparation of metallic single-wall carbon nanotubes by selective etching. ACS Nano 8:7156–7162CrossRefGoogle Scholar
  50. 50.
    Piao Y et al (2016) Intensity ratio of resonant Raman modes for (n, m) enriched semiconducting carbon nanotubes. ACS Nano 10:5252–5259CrossRefGoogle Scholar
  51. 51.
    Jiang H, Nasibulin AG, Brown DP, Kauppinen EI (2007) Unambiguous atomic structural determination of single-walled carbon nanotubes by electron diffraction. Carbon N Y 45:662–667CrossRefGoogle Scholar
  52. 52.
    He M et al (2013) Chiral-selective growth of single-walled carbon nanotubes on lattice-mismatched epitaxial cobalt nanoparticles. Sci Rep 3:1460CrossRefGoogle Scholar
  53. 53.
    Nasibulin AG et al (2006) An essential role of CO2 and H2O during single-walled CNT synthesis from carbon monoxide. Chem Phys Lett 417:179–184CrossRefGoogle Scholar
  54. 54.
    Moisala A et al (2006) Single-walled carbon nanotube synthesis using ferrocene and iron pentacarbonyl in a laminar flow reactor. Chem Eng Sci 61:4393–4402CrossRefGoogle Scholar
  55. 55.
    Nasibulin AG et al (2007) A novel hybrid carbon material. Nat Nanotechnol 2:156–161CrossRefGoogle Scholar
  56. 56.
    Hecht DS, Hu L, Irvin G (2011) Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater 23:1482–1513CrossRefGoogle Scholar
  57. 57.
    Ellmer K (2012) Past achievements and future challenges in the development of optically transparent electrodes. Nat Photon 6:809–817CrossRefGoogle Scholar
  58. 58.
    Chang DS, Lai ST (2015) Implementation of cross-generation automation transportation system in the TFT-LCD industry. Int J Adv Manuf Technol 78:753–763CrossRefGoogle Scholar
  59. 59.
    Du J, Pei S, Ma L, Cheng HM (2014) 25th anniversary article: carbon nanotube- and graphene-based transparent conductive films for optoelectronic devices. Adv Mater 26:1958–1991CrossRefGoogle Scholar
  60. 60.
    Feldman D et al. (2015) Shared solar: current landscape, market potential, and the impact of federal securities regulation (No. NREL/TP--6A20-63892). National Renewable Energy Lab.(NREL), Golden, CO (United States)Google Scholar
  61. 61.
    Hecht DS et al (2009) Carbon-nanotube film on plastic as transparent electrode for resistive touch screens. J Soc Inf Disp 17:941CrossRefGoogle Scholar
  62. 62.
    Anisimov AS, Brown DP, Mikladal BF, Liam Ó (2014) Printed touch sensors using carbon NanoBud material. Soc. Inf. Disp. Tech. Dig. 1–8Google Scholar
  63. 63.
    Garnett EC et al (2012) Self-limited plasmonic welding of silver nanowire junctions. Nat Mater 11:241–249CrossRefGoogle Scholar
  64. 64.
    Lee JY, Connor ST, Cui Y, Peumans P (2008) Solution-processed metal nanowire mesh transparent electrodes. Nano Lett 8:689–692CrossRefGoogle Scholar
  65. 65.
    Li X et al (2009) Large-area synthesis of high quality and uniform graphene films on copper foils. Science 324:1312–1314CrossRefGoogle Scholar
  66. 66.
    Fukaya N et al (2014) One-step sub-10 μm patterning of carbon-nanotube thin films for transparent conductor applications. ACS Nano 8:3285–3293CrossRefGoogle Scholar
  67. 67.
    Sun D-M et al (2013) Mouldable all-carbon integrated circuits. Nat Commun 4:1–8Google Scholar
  68. 68.
    Zhou W, Zhang Q, Wang Y, Xie S (2014) Ultrathin carbon nanotube film and preparation method and device thereof. U.S. Patent Application No. 14/889,753Google Scholar
  69. 69.
    Gonzalez D et al (2005) A new thermophoretic precipitator for collection of nanometer-sized aerosol particles. Aerosol Sci Technol 39:1064–1071CrossRefGoogle Scholar
  70. 70.
    Yu L, Shearer C, Shapter J (2016) Recent development of carbon nanotube transparent conductive films. Chem Rev. Google Scholar
  71. 71.
    Dionigi C et al (2007) Carbon nanotube networks patterned from aqueous solutions of latex bead carriers. J Mater Chem 17:3681CrossRefGoogle Scholar
  72. 72.
    Castro MRS, Lasagni AF, Schmidt HK, Mücklich F (2008) Direct laser interference patterning of multi-walled carbon nanotube-based transparent conductive coatings. Appl Surf Sci 254:5874–5878CrossRefGoogle Scholar
  73. 73.
    Fukaya N, Kim DY, Kishimoto S, Noda S, Ohno Y (2014) One-step sub-10 μm patterning of carbon-nanotube thin films for transparent conductor applications. ACS Nano 8:3285–3293CrossRefGoogle Scholar
  74. 74.
    Zhou W et al (2004) Single wall carbon nanotube fibers extruded from super-acid suspensions: preferred orientation, electrical, and thermal transport. J Appl Phys 95:649–655CrossRefGoogle Scholar
  75. 75.
    Dan B, Irvin GC, Pasquali M (2009) Continuous and scalable fabrication of transparent conducting carbon nanotube films. ACS Nano 3:835–843CrossRefGoogle Scholar
  76. 76.
    Hu L, Hecht DS, Grüner G (2004) Percolation in transparent and conducting carbon nanotube networks. Nano Lett 4:2513–2517CrossRefGoogle Scholar
  77. 77.
    Ruzicka B, Degiorgi L (2000) Optical and dc conductivity study of potassium-doped single-walled carbon nanotube films. Phys Rev B 61:R2468–R2471CrossRefGoogle Scholar
  78. 78.
    Bergin SD et al (2008) Towards solutions of single-walled carbon nanotubes in common solvents. Adv Mater 20:1876–1881CrossRefGoogle Scholar
  79. 79.
    Tian Y et al (2010) Analysis of the size distribution of single-walled carbon nanotubes using optical absorption spectroscopy. J Phys Chem Lett 1:1143–1148CrossRefGoogle Scholar
  80. 80.
    King PJ, Higgins TM, De S, Nicoloso N, Coleman JN (2012) Percolation effects in supercapacitors with thin, transparent carbon nanotube electrodes. ACS Nano 6:1732–1741CrossRefGoogle Scholar
  81. 81.
    De S, King PJ, Lyons PE, Khan U, Coleman JN (2010) Size effects and the problem with percolation in nanostructured transparent conductors. ACS Nano 4:7064–7072CrossRefGoogle Scholar
  82. 82.
    De S, Coleman JN (2011) The effects of percolation in nanostructured transparent conductors. MRS Bull 36:774–781CrossRefGoogle Scholar
  83. 83.
    Harris JM et al (2012) Electronic durability of flexible transparent films from type-specific single-wall carbon nanotubes. ACS Nano 6:881–887CrossRefGoogle Scholar
  84. 84.
    Timmermans MY et al (2012) Effect of carbon nanotube network morphology on thin film transistor performance. Nano Res 5:307–319CrossRefGoogle Scholar
  85. 85.
    Znidarsic A et al (2013) Spatially resolved transport properties of pristine and doped single-walled carbon nanotube networks. J Phys Chem C 117:13324–13330CrossRefGoogle Scholar
  86. 86.
    Farajian AA, Esfarjani K, Kawazoe Y (1999) Nonlinear coherent transport through doped nanotube junctions. Phys Rev Lett 82:5084–5087CrossRefGoogle Scholar
  87. 87.
    Shin D-W et al (2009) A role of HNO3 on transparent conducting film with single-walled carbon nanotubes. Nanotechnology 20:475703CrossRefGoogle Scholar
  88. 88.
    Susi T et al (2011) Nitrogen-doped single-walled carbon nanotube thin films exhibiting anomalous sheet resistances. Chem Mater 23:2201–2208CrossRefGoogle Scholar
  89. 89.
    Geng H-Z et al (2007) Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J Am Chem Soc 129:7758–7759CrossRefGoogle Scholar
  90. 90.
    Lyons PE et al (2008) The relationship between network morphology and conductivity in nanotube films. J Appl Phys 104:044302CrossRefGoogle Scholar
  91. 91.
    Hecht D, Hu L, Grüner G (2006) Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks. Appl Phys Lett 89:133112CrossRefGoogle Scholar
  92. 92.
    Anoshkin IV et al (2014) Hybrid carbon source for single-walled carbon nanotube synthesis by aerosol CVD method. Carbon N Y 78:130–136CrossRefGoogle Scholar
  93. 93.
    Reynaud O et al (2014) Aerosol feeding of catalyst precursor for CNT synthesis and highly conductive and transparent film fabrication. Chem Eng J 255:134–140CrossRefGoogle Scholar
  94. 94.
    Hata K et al (2004) Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306:1362–1364CrossRefGoogle Scholar
  95. 95.
    Shin DH, Shim HC, Song JW, Kim S, Han CS (2009) Conductivity of films made from single-walled carbon nanotubes in terms of bundle diameter. Scr Mater 60:607–610CrossRefGoogle Scholar
  96. 96.
    Han J-H, Strano MS (2014) Room temperature carrier transport through large diameter bundles of semiconducting single-walled carbon nanotube. Mater Res Bull 58:1–5CrossRefGoogle Scholar
  97. 97.
    Nirmalraj PN, Lyons PE, De S, Coleman JN, Boland JJ (2009) Electrical connectivity in single-walled carbon nanotube networks. Nano Lett 9:3890–3895CrossRefGoogle Scholar
  98. 98.
    Mustonen K et al (2015) Uncovering the ultimate performance of single-walled carbon nanotube films as transparent conductors. Appl Phys Lett 107:1–6Google Scholar
  99. 99.
    Blackburn JL et al (2008) Transparent conductive single-walled carbon nanotube networks with precisely tunable ratios of semiconducting and metallic nanotubes. ACS Nano 2:1266–1274CrossRefGoogle Scholar
  100. 100.
    Rother M, Schießl SP, Zakharko Y, Gannott F, Zaumseil J (2016) Understanding charge transport in mixed networks of semiconducting carbon nanotubes. ACS Appl Mater Interfaces 8:5571–5579CrossRefGoogle Scholar
  101. 101.
    Zhang WJ, Zhang QF, Chai Y, Shen X, Wu JL (2007) Carbon nanotube intramolecular junctions. Nanotechnology 18:395205CrossRefGoogle Scholar
  102. 102.
    Ouyang M (2001) Atomically resolved single-walled carbon nanotube intramolecular junctions. Science 291:97–100CrossRefGoogle Scholar
  103. 103.
    Stadermann M et al (2004) Nanoscale study of conduction through carbon nanotube networks. Phys Rev B 69:201402CrossRefGoogle Scholar
  104. 104.
    Topinka MA, Rowell MW, Goldhaber-gordon D, Mcgehee MD, Gruner G (2009) Charge transport in interpenetrating networks of semiconducting and metallic carbon nanotubes. Nano Lett 9:2–4CrossRefGoogle Scholar
  105. 105.
    Hayes RA, Feenstra BJ (2003) Video-speed electronic paper based on electrowetting. Nature 425:383–385CrossRefGoogle Scholar
  106. 106.
    Park Y, Hu L, Gruner G, Irvin G, Drzaic P (2008) 37.4: late-news paper : integration of carbon nanotube transparent electrodes into display applications. Sid Dig. Google Scholar
  107. 107.
    Zhang D et al (2006) Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett 6:1880–1886CrossRefGoogle Scholar
  108. 108.
    Li J et al (2006) Organic light-emitting diodes having carbon nanotube anodes. Nano Lett 6:2472–2477CrossRefGoogle Scholar
  109. 109.
    Trancik JE, Barton SC, Hone J (2008) Transparent and catalytic carbon nanotube films. Nano Lett 8:982–987CrossRefGoogle Scholar
  110. 110.
    Park J-U et al (2007) High-resolution electrohydrodynamic jet printing. Nat Mater 6:782–789CrossRefGoogle Scholar
  111. 111.
    Yang F et al (2014) Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510:522–524CrossRefGoogle Scholar
  112. 112.
    Krupke R, Hennrich F, Löhneysen HV, Kappes MM (2003) Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301:344–347CrossRefGoogle Scholar
  113. 113.
    Park S, Vosguerichian M, Bao Z (2013) A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5:1727CrossRefGoogle Scholar
  114. 114.
    Jackson R, Domercq B, Jain R, Kippelen B, Graham S (2008) Stability of doped transparent carbon nanotube electrodes. Adv Funct Mater 18:2548–2554CrossRefGoogle Scholar
  115. 115.
    Doherty EM et al (2009) The spatial uniformity and electromechanical stability of transparent, conductive films of single walled nanotubes. Carbon N Y 47:2466–2473CrossRefGoogle Scholar
  116. 116.
    Lipomi DJ et al (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 6:788–792CrossRefGoogle Scholar
  117. 117.
    Cai L et al (2012) Highly transparent and conductive stretchable conductors based on hierarchical reticulate single-walled carbon nanotube architecture. Adv Funct Mater 22:5238–5244CrossRefGoogle Scholar
  118. 118.
    Kim SN, Rusling JF, Papadimitrakopoulos F (2007) Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv Mater 19:3214–3228CrossRefGoogle Scholar
  119. 119.
    Avouris P, Freitag M, Perebeinos V (2008) Carbon-nanotube photonics and optoelectronics. Nat Photon 2:341–350CrossRefGoogle Scholar
  120. 120.
    Kivistö S et al (2009) Carbon nanotube films for ultrafast broadband technology. Opt Express 17:2358CrossRefGoogle Scholar
  121. 121.
    Rotermund F et al (2012) Mode-locking of solid-state lasers by single-walled carbon-nanotube based saturable absorbers. Quantum Electron 42:663–670CrossRefGoogle Scholar
  122. 122.
    Xiao L et al (2008) Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. Nano Lett 8:4539–4545CrossRefGoogle Scholar
  123. 123.
    Niu Z et al (2011) Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy Environ Sci 4:1440CrossRefGoogle Scholar
  124. 124.
    Niu Z et al (2013) Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv Mater 25:1058–1064CrossRefGoogle Scholar
  125. 125.
    Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:E28CrossRefGoogle Scholar
  126. 126.
    Mustonen K et al (2012) Influence of the diameter of single-walled carbon nanotube bundles on the optoelectronic performance of dry-deposited thin films. Beilstein J Nanotechnol 3:692–702CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Applied PhysicsAalto University School of ScienceAaltoFinland

Personalised recommendations