Topics in Current Chemistry

, 375:87 | Cite as

Two-Dimensional Resonance Raman Signatures of Vibronic Coherence Transfer in Chemical Reactions

  • Zhenkun Guo
  • Brian P. Molesky
  • Thomas P. Cheshire
  • Andrew M. Moran
Review
  • 105 Downloads
Part of the following topical collections:
  1. Multidimensional Time-Resolved Spectroscopy

Abstract

Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in condensed phase systems. 2DRR spectroscopy is motivated by knowledge of non-equilibrium effects that cannot be detected with traditional resonance Raman spectroscopy. For example, 2DRR spectra may reveal correlated distributions of reactant and product geometries in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this chapter, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide. We show that signatures of “vibronic coherence transfer” in the photodissociation process can be targeted with particular 2DRR pulse sequences. Key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopy techniques are also addressed. Overall, recent experimental developments and applications of the 2DRR method suggest that it will be a valuable tool for elucidating ultrafast chemical reaction mechanisms.

Keywords

Multidimensional spectroscopy Raman spectroscopy Ultrafast spectroscopy  Photodissociation Coherence transfer 

Notes

Acknowledgements

This work is supported by the National Science Foundation under CHE-0952439 and CHE-1504350.

References

  1. 1.
    Mukamel S (1995) Principles of nonlinear optical spectroscopy. Oxford University Press, New YorkGoogle Scholar
  2. 2.
    Nitzan A (2006) Chemical dynamics in condensed phases. Oxford University Press, OxfordGoogle Scholar
  3. 3.
    Valkunas L, Abramavicius D, Mančal T (2013) Molecular excitation dynamics and relaxation: quantum theory and spectroscopy. Wiley-VCH, WeinheimGoogle Scholar
  4. 4.
    Vos MH, Lambry J-C, Robles SJ, Youvan DC, Breton J, Martin J-L (1991) Proc Natl Acad Sci 88:8885CrossRefGoogle Scholar
  5. 5.
    Vos MH, Rappaport F, Lambry J-C, Breton J, Martin J-L (1993) Nature 363:320CrossRefGoogle Scholar
  6. 6.
    Peteanu LA, Schoenlein RW, Wang H, Mathies RA, Shank CV (1993) Proc Natl Acad Sci 90:11762CrossRefGoogle Scholar
  7. 7.
    Banin U, Kosloff R, Ruhman S (1993) Isr J Chem 33:141CrossRefGoogle Scholar
  8. 8.
    Benjamin I, Banin U, Ruhman S (1993) J. Chem. Phys. 98:8337CrossRefGoogle Scholar
  9. 9.
    Zhu L, Sage JT, Champion PM (1994) Science 266:629CrossRefGoogle Scholar
  10. 10.
    Zewail AH (2000) J Phys Chem A 104:5560CrossRefGoogle Scholar
  11. 11.
    Bixon M, Jortner J (1997) J Chem Phys 107:1470CrossRefGoogle Scholar
  12. 12.
    Wynne K, Reid GD, Hochstrasser RM (1996) J Chem Phys 105:2287CrossRefGoogle Scholar
  13. 13.
    Song Y, Clafton SN, Pensack RD, Kee TW, Scholes GD (2014) Nat Commun 5:4933CrossRefGoogle Scholar
  14. 14.
    Fuller FD, Pan J, Gelzinis A, Butkus V, Senlik SS, Wilcox DE, Yocum CF, Valkunas L, Abramavicius D, Ogilvie JP (2014) Nat Chem 6:706CrossRefGoogle Scholar
  15. 15.
    Mohseni M, Omar Y, Engel GS, Plenio MB (2014) Quantum effects in biology. Cambridge University Press, CambridgeGoogle Scholar
  16. 16.
    Chenu A, Scholes GD (2015) Annu Rev Phys Chem 66:69CrossRefGoogle Scholar
  17. 17.
    Jonas DM (2003) Annu Rev Phys Chem 54:425CrossRefGoogle Scholar
  18. 18.
    Ogilvie JP, Kubarych KJ (2009) Adv At Mol Opt Phys 57:249CrossRefGoogle Scholar
  19. 19.
    Loring RF, Mukamel S (1985) J Chem Phys 83:2116CrossRefGoogle Scholar
  20. 20.
    Tanimura Y, Mukamel S (1993) J Chem Phys 99:9496CrossRefGoogle Scholar
  21. 21.
    Tanimura Y, Okumura K (1996) J Chem Phys 106:2078CrossRefGoogle Scholar
  22. 22.
    Molesky BP, Giokas PG, Guo Z, Moran AM (2014) J Chem Phys 114:114202CrossRefGoogle Scholar
  23. 23.
    Guo Z, Molesky BM, Cheshire TP, Moran AM (2015) J Chem Phys 143:124202CrossRefGoogle Scholar
  24. 24.
    Molesky BM, Guo Z, Moran AM (2015) J Chem Phys 142:212405Google Scholar
  25. 25.
    Molesky BM, Guo Z, Cheshire TP, Moran AM (2016) J Chem Phys 145:034203CrossRefGoogle Scholar
  26. 26.
    Molesky BM, Guo Z, Cheshire TP, Moran AM (2016) J Chem Phys 145:180901CrossRefGoogle Scholar
  27. 27.
    McCamant DW, Kukura P, Yoon S, Mathies RA (2004) Rev Sci Instrum 75:4971CrossRefGoogle Scholar
  28. 28.
    Kukura P, McCamant DW, Mathies RA (2007) Annu Rev Phys Chem 58:461CrossRefGoogle Scholar
  29. 29.
    Takeuchi S, Ruhman S, Tsuneda T, Chiba M, Taketsugu T, Tahara T (2008) Science 322:1073CrossRefGoogle Scholar
  30. 30.
    Kraack JP, Wand A, Buckup T, Motzkus M, Ruhman S (2013) Phys Chem Chem Phys 15:14487CrossRefGoogle Scholar
  31. 31.
    Wang Y, Liu W, Tang L, Oscar B, Han F, Fang C (2013) J Phys Chem A 117:6024CrossRefGoogle Scholar
  32. 32.
    Hoffman DP, Mathies RA (2016) Acc Chem Res 49:616CrossRefGoogle Scholar
  33. 33.
    Hutson WO, Spencer AP, Harel E (2016) J Phys Chem Lett 7:3636CrossRefGoogle Scholar
  34. 34.
    Spencer AP, Hutson WO, Harel E (2017) Nat Commun 8:14732CrossRefGoogle Scholar
  35. 35.
    Harel E (2017) J Chem Phys 146:154201CrossRefGoogle Scholar
  36. 36.
    Banin U, Kosloff R, Ruhman S (1994) Chem Phys 183:289CrossRefGoogle Scholar
  37. 37.
    Kühne T, Vöhringer P (1996) J Chem Phys 105:10788CrossRefGoogle Scholar
  38. 38.
    Gershgoren E, Gordon E, Ruhman S (1997) J Chem Phys 106:4806CrossRefGoogle Scholar
  39. 39.
    Kühne T, Küster R, Vöhringer P (1998) Chem Phys 233:161CrossRefGoogle Scholar
  40. 40.
    Hess S, Bürsing H, Vöhringer P (1999) J Chem Phys 111:5461CrossRefGoogle Scholar
  41. 41.
    Yang T-S, Chang M-S, Hayashi M, Lin SH, Vöhringer P, Dietz W, Scherer NF (1999) J Chem Phys 110:12070CrossRefGoogle Scholar
  42. 42.
    Nishiyama Y, Terazima M, Kimura Y (2012) J Phys Chem B 116:9023CrossRefGoogle Scholar
  43. 43.
    Baratz A, Ruhman S (2008) Chem Phys Lett 461:211CrossRefGoogle Scholar
  44. 44.
    Herrmann V, Krebs P (1995) J Phys Chem 99:6794CrossRefGoogle Scholar
  45. 45.
    Johnson AE, Myers AB (1995) J Chem Phys 104:3519CrossRefGoogle Scholar
  46. 46.
    Myers AB (1995) In: Myers AB, Rizzo TR (eds) Laser techniques in chemistry, vol 23. John Wiley & Sons, New YorkGoogle Scholar
  47. 47.
    Heller EJ (1981) Acc Chem Res 14:368CrossRefGoogle Scholar
  48. 48.
    Myers AB, Mathies RA, Tannor DJ, Heller EJ (1982) J Chem Phys 77:3857CrossRefGoogle Scholar
  49. 49.
    Ivanecky JE III, Wright JC (1993) Chem Phys Lett 206:437CrossRefGoogle Scholar
  50. 50.
    Ulness DJ, Kirkwood JC, Albrecht AC (1998) J Chem Phys 108:3897CrossRefGoogle Scholar
  51. 51.
    Jansen TIC, Snijders JG, Duppen K (2001) J Chem Phys 114:109210CrossRefGoogle Scholar
  52. 52.
    Blank DA, Kaufman LJ, Fleming GR (1999) J Chem Phys 111:3105CrossRefGoogle Scholar
  53. 53.
    Kubarych KJ, Milne CJ, Lin S, Astinov V, Miller RJD (2002) J Chem Phys 116:2016CrossRefGoogle Scholar
  54. 54.
    Mehlenbacher R, Lyons B, Wilson KC, Du Y, McCamant DW (2009) J Chem Phys 131:244512CrossRefGoogle Scholar
  55. 55.
    Kaufman LJ, Heo J, Ziegler LD, Fleming GR (2002) Phys Rev Lett 88(207402):1Google Scholar
  56. 56.
    Berg M, Vanden Bout DA (1997) Acc Chem Res 30:65CrossRefGoogle Scholar
  57. 57.
    van Veldhoven E, Khurmi C, Zhang X, Berg MA (2007) Chem Phys Chem 8:1761CrossRefGoogle Scholar
  58. 58.
    Berg MA (2012) Adv Chem Phys 150:1Google Scholar
  59. 59.
    Lepetit L, Chériaux G, Joffre M (1995) J Opt Soc Am B 12:2467CrossRefGoogle Scholar
  60. 60.
    Goodno GD, Dadusc G, Miller RJD (1998) J Opt Soc Am B 15:1791CrossRefGoogle Scholar
  61. 61.
    Underwood DF, Blank DA (2005) J Phys Chem A 109:3295CrossRefGoogle Scholar
  62. 62.
    Moran AM, Nome RA, Scherer NF (2007) J Chem Phys 127(184505):1Google Scholar
  63. 63.
    Park S, Kim J, Scherer NF (2012) Phys Chem Chem Phys 14:8116CrossRefGoogle Scholar
  64. 64.
    Moran AM, Maddox JB, Hong JW, Kim J, Nome RA, Bazan GC, Mukamel S, Scherer NF (2006) J Chem Phys 124(194904):1Google Scholar
  65. 65.
    Busby E, Carroll EC, Chinn EM, Chang L, Moulé AJ, Larsen DS (2011) J Phys Chem Lett 2:2764CrossRefGoogle Scholar
  66. 66.
    Band YB, Freed KF (1977) J Chem Phys 67:1462CrossRefGoogle Scholar
  67. 67.
    Hennebicq E, Beljonne D, Curutchet C, Scholes GD, Silbey RJ (2009) J Chem Phys 130(214505):1Google Scholar
  68. 68.
    Roden J, Schulz G, Eisfeld A, Briggs J (2009) J Chem Phys 131:044909CrossRefGoogle Scholar
  69. 69.
    Womick JM, Moran AM (2011) J Phys Chem B 115:1347CrossRefGoogle Scholar
  70. 70.
    Chenu A, Chrisensson N, Kauffmann HF, Mančal T (2013) Sci Rep 3:2029CrossRefGoogle Scholar
  71. 71.
    O’Reilly EJ, Olaya-Castro A (2014) Nat Commun 5:3012Google Scholar
  72. 72.
    Singh VP, Westberg M, Wang C, Dahlberg PD, Gellen T, Gardiner AT, Cogdell RJ, Engel GS (2015) J Chem Phys 142:212446CrossRefGoogle Scholar
  73. 73.
    Moran AM, Dreyer J, Mukamel S (2003) J Chem Phys 118:1347CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Zhenkun Guo
    • 1
  • Brian P. Molesky
    • 1
  • Thomas P. Cheshire
    • 1
  • Andrew M. Moran
    • 1
  1. 1.Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations