Topics in Current Chemistry

, 375:83 | Cite as

Benzenoid Quinodimethanes

  • Akihito Konishi
  • Takashi Kubo
Part of the following topical collections:
  1. Physical Organic Chemistry of Quinodimethanes


Reactivity and physical properties of π-conjugated hydrocarbon systems depend predominantly on the topology of π-electrons array. Quinoidal conjugations serve as giving diradical character to molecules, leading to unique chemical behaviors. The simplest member of quinodimethanes are o-, m-, and p-quinodimethanes, which are very reactive due to diradical character and cannot be isolated under normal experimental conditions. However, chemical modifications, such as π-extension or introduction of substituent groups, of quinodimethanes imparts stabilities to quinodimethanes that can be handled under ambient conditions. This chapter offers an overview of reactivity and magnetic properties of benzenoid o-, m-, and p-quinodimethanes.


Benzenoid Quinodimethane Diradical Clar sextet Graphene nanoribbon 


  1. 1.
    Kubo T (2015) Recent progress in quinoidal singlet biradical molecules. Chem Lett 44:111–122CrossRefGoogle Scholar
  2. 2.
    Abe M (2013) Diradicals. Chem Rev 113:7011–7088CrossRefGoogle Scholar
  3. 3.
    Zeng Z, Wu J (2015) Stable π-extended p-quinodimethanes: synthesis and tunable ground states. Chem Rec 15:322–328CrossRefGoogle Scholar
  4. 4.
    Ni Y, Wu J (2016) Diradical approach toward organic near infrared dyes. Tetrahedron Lett 57:5426–5434CrossRefGoogle Scholar
  5. 5.
    Sun Z, Zeng Z, Wu J (2013) Benzenoid polycyclic hydrocarbons with an open-shell biradical ground state. Chem Asian J 8:2894–2904CrossRefGoogle Scholar
  6. 6.
    Sun Z, Ye Q, Chi C, Wu J (2012) Low band gap polycyclic hydrocarbons: from closed-shell near infrared dyes and semiconductors to open-shell radicals. Chem Soc Rev 41:7857CrossRefGoogle Scholar
  7. 7.
    Nishinaga T (2016) Organic redox systems. Wiley, HobokenCrossRefGoogle Scholar
  8. 8.
    Szwarc M (1947) The C–H bond energy in toluene and xylenes. Nature 160:403CrossRefGoogle Scholar
  9. 9.
    Brown CJ, Farthing AC (1949) Preparation and structure of di-p-xylylene. Nature 164:915CrossRefGoogle Scholar
  10. 10.
    Coulson CA, Craig DP, Maccoll A, Pullman A (1947) p-Quinodimethane and its diradical. Discuss Faraday Soc 2:36CrossRefGoogle Scholar
  11. 11.
    Williams DJ, Pearson JM, Levy M (1970) Nuclear magnetic resonance spectra of quinodimethanes. J Am Chem Soc 92:1436–1438CrossRefGoogle Scholar
  12. 12.
    Pearson JM, Six HA, Williams DJ, Levy M (1971) Spectroscopic studies of quinodimethanes. J Am Chem Soc 93:5034–5036CrossRefGoogle Scholar
  13. 13.
    Yamakita Y, Furukawa Y, Tasumi M (1993) Observation of the infrared and Raman spectra of p-benzoquinodimethane in low-temperature Ar matrices. Chem Lett 22:311–314CrossRefGoogle Scholar
  14. 14.
    Yamakita Y, Tasumi M (1995) Vibrational analyses of p-benzoquinodimethane and p-benzoquinone based on ab initio Hartree–Fock and second-order Moller–Plesset calculations. J Phys Chem 99:8524–8534CrossRefGoogle Scholar
  15. 15.
    Koenig T, Wielesek R, Snell W, Balle T (1975) Helium(I) photoelectron spectrum of p-quinodimethane. J Am Chem Soc 97:3225–3226CrossRefGoogle Scholar
  16. 16.
    Mahaffy PG, Wieser JD, Montgomery LK (1977) An electron diffraction study of p-xylylene. J Am Chem Soc 99:4514–4515CrossRefGoogle Scholar
  17. 17.
    Bobrowski M, Skurski P, Freza S (2011) The electronic structure of p-xylylene and its reactivity with vinyl molecules. Chem Phys 382:20–26CrossRefGoogle Scholar
  18. 18.
    Thiele J, Balhorn H (1904) Ueber einen chinoïden Kohlenwasserstoff. Ber Dtsch Chem Ges 37:1463–1470CrossRefGoogle Scholar
  19. 19.
    Tschitschibabin AE (1907) Über einige phenylierte Derivate des p, p-ditolyls. Ber Dtsch Chem Ges 40:1810–1819CrossRefGoogle Scholar
  20. 20.
    Cava MP, Napier DR (1957) Condensed cyclobutane aromatic systems. II. Dihalo derivatives of benzocyclobutene and benzocyclobutadiene dimer. J Am Chem Soc 79:1701–1705CrossRefGoogle Scholar
  21. 21.
    Segura JL, Martín N (1999) o-Quinodimethanes: efficient intermediates in organic synthesis. Chem Rev 99:3199–3246CrossRefGoogle Scholar
  22. 22.
    Yoshida H, Ohshita J, Kunai A (2010) Aryne, ortho-quinone methide, and ortho-quinodimethane: synthesis of multisubstituted arenes using the aromatic reactive intermediates. Bull Chem Soc Jpn 83:199–219CrossRefGoogle Scholar
  23. 23.
    Charlton JL, Alauddin MM (1987) Orthoquinodimethanes. Tetrahedron 43:2873–2889CrossRefGoogle Scholar
  24. 24.
    Quinkert G, Wiersdorff W-W, Finke M, Opitz K (1966) Über das tetraphenyl-o-xylylen. Tetrahedron Lett 7:2193–2200CrossRefGoogle Scholar
  25. 25.
    Fishwick CWG, Jones DW (1988) ortho-Quinonoid Compounds. In: Patai S, Rappoport Z (eds) The chemistry of the quinonoid compounds. Wiley, New York, pp 403–453Google Scholar
  26. 26.
    Flynn CR, Michl J (1974) π, π-Biradicaloid hydrocarbons. o-Xylylene. Photochemical preparation from 1,4-dihydrophthalazine in rigid glass, electric spectroscopy, and calculations. J Am Chem Soc 96:3280–3288CrossRefGoogle Scholar
  27. 27.
    Flynn CR, Michl J (1973) Photochemical preparation of o-xylylene from 1,3-dihydrophthalazine in rigid glass. J Am Chem Soc 95:5802–5803CrossRefGoogle Scholar
  28. 28.
    Tseng KL, Michl J (1977) An approach to biradical-like species. Spectroscopy of o-xylylene in argon matrix. J Am Chem Soc 99:4840–4842CrossRefGoogle Scholar
  29. 29.
    Miller RD, Kolc J, Michl J (1976) Photochemical generation of stable o-xylylene derivatives by the electrocyclic ring opening of some polycyclic benzocyclobutene derivatives. J Am Chem Soc 98:8510–8514CrossRefGoogle Scholar
  30. 30.
    McMahon RJ, Chapman OL (1987) Direct spectroscopic observation of intramolecular hydrogen shifts in carbenes. J Am Chem Soc 109:683–692CrossRefGoogle Scholar
  31. 31.
    Baird NC (1972) Quantum organic photochemistry. II. Resonance and aromaticity in the lowest 3ππ* state of cyclic hydrocarbons. J Am Chem Soc 94:4941–4948CrossRefGoogle Scholar
  32. 32.
    Roth WR, Biermann M, Erker G, Jelich K, Gerhartz W, Görner H (1980) Isolierung und Energiemulde des 2,3-dimethylen-1,4-cyclohexadiyl-Diradikals. Chem Ber 113:586–597CrossRefGoogle Scholar
  33. 33.
    Roth WR, Scholz BP (1982) Zur Energiedelle von Diradikalen, II. Das 2,3-dimethylen-1,4-cyclohexadiyl. Chem Ber 115:1197–1208CrossRefGoogle Scholar
  34. 34.
    Roth WR, Biermann M, Dekker H, Jochems R, Mosselman C, Hermann H (1978) Das Energieprofil des o-Chinodimethan-Benzocyclobuten-Gleichgewichtes. Chem Ber 111:3892–3903CrossRefGoogle Scholar
  35. 35.
    Roth WR, Scholz BP (1981) Das Energieprofil des o-Chinodimethan ⇄ Benzocyclobuten-Gleichgewichtes, II. Chem Ber 114:3741–3750CrossRefGoogle Scholar
  36. 36.
    Kametani T, Honda T, Ebisawa Y, Ichikawa H (1985) An Mo theoretical study on the reaction of benzocyclobutene with ethylene. Concerted vs stepwise. Tetrahedron 41:3643–3653CrossRefGoogle Scholar
  37. 37.
    Chou CH, Trahanovsky WS (1986) The [4 + 4] dimerization of 2,3-dimethylene-2,3-dihydrofuran: secondary deuterium kinetic isotope effect evidence for a two-step mechanism. J Am Chem Soc 108:4138–4144CrossRefGoogle Scholar
  38. 38.
    Trahanovsky WS, Macias JR (1986) Direct observation of o-xylylene (o-quinodimethane) in solution. Dimerization kinetics of some o-quinodimethanes. J Am Chem Soc 108:6820–6821CrossRefGoogle Scholar
  39. 39.
    Migirdicyan E, Baudet J (1975) Electron spectra of o- and m-xylylenes and their methylated derivatives. experimental and theoretical study. J Am Chem Soc 97:7400–7404CrossRefGoogle Scholar
  40. 40.
    McCullough JJ (1980) o-Xylylenes and isoindenes as reaction intermediates. Acc Chem Res 13:270–276CrossRefGoogle Scholar
  41. 41.
    Davidson ER, Borden WT (1977) Some aspects of the potential surface for singlet trimethylenemethane. J Am Chem Soc 99:2053–2060CrossRefGoogle Scholar
  42. 42.
    Borden WT (1982) Diradicals. Wiley, New YorkGoogle Scholar
  43. 43.
    Schlenk W, Brauns M (1915) Zur Frage der Metachinoide. Ber Dtsch Chem Ges 48:661–669CrossRefGoogle Scholar
  44. 44.
    Neuhaus P, Grote D, Sander W (2008) Matrix isolation, spectroscopic characterization, and photoisomerization of m-xylylene. J Am Chem Soc 130:2993–3000CrossRefGoogle Scholar
  45. 45.
    Wright BB, Platz MS (1983) Electron spin resonance spectroscopy of the triplet state of m-xylylene. J Am Chem Soc 105:628–630CrossRefGoogle Scholar
  46. 46.
    Wenthold PG, Kim JB, Lineberger WC (1997) Photoelectron spectroscopy of m-xylylene anion. J Am Chem Soc 119:1354–1359CrossRefGoogle Scholar
  47. 47.
    Zhang G, Li S, Jiang Y (2003) Effects of substitution on the singlet–triplet energy splittings and ground-state multiplicities of m-phenylene-based diradicals: a density functional theory study. J Phys Chem A 107:5573–5582CrossRefGoogle Scholar
  48. 48.
    Wang T, Krylov AI (2005) The effect of substituents on electronic states’ ordering in meta-xylylene diradicals: qualitative insights from quantitative studies. J Chem Phys 123:104304CrossRefGoogle Scholar
  49. 49.
    Wang T, Krylov AI (2006) Electronic structure of the two dehydro-meta-xylylene triradicals and their derivatives. Chem Phys Lett 425:196–200CrossRefGoogle Scholar
  50. 50.
    Goodman JL, Berson JA (1984) Formation and intermolecular capture of m-quinodimethane. J Am Chem Soc 106:1867–1868CrossRefGoogle Scholar
  51. 51.
    Goodman JL, Berson JA (1985) m-Quinodimethane, parent hydrocarbon of the m-quinonoid non-kekule series. low-temperature isolation and solution-phase chemical reactivity. J Am Chem Soc 107:5409–5424CrossRefGoogle Scholar
  52. 52.
    Berson JA (1988) meta-Quinonoid Compounds. In: Patai S, Rappoport Z (eds) The chemistry of the quinonoid compounds. Wiley, New York, pp 455–536Google Scholar
  53. 53.
    Müller E, Müller-Rodloff I (1935) Magnetochemische Untersuchungen organischer Stoffe. 1. Mitteilung. Zur Frage der Existenz von Biradikalen. Justus Liebig’s Ann der Chemie 517:134–151CrossRefGoogle Scholar
  54. 54.
    Schwab G-M, Agliardi N (1940) Einwirkung von organischen Radikalen auf p-Wasserstoff. II. Mitteil.: zur Frage nach der Natur der Biradikale. Ber Dtsch Chem Ges (A B Series) 73:95–98CrossRefGoogle Scholar
  55. 55.
    Jarrett HS, Sloan GJ, Vaughan WR (1956) Paramagnetic resonance absorption in some organic biradicals. J Chem Phys 25:697CrossRefGoogle Scholar
  56. 56.
    Sloan GJ, Vaughan WR (1957) Stable organic biradicals. J Org Chem 22:750–761CrossRefGoogle Scholar
  57. 57.
    Müller E, Rieker A, Scheffler K, Moosmayer A (1966) Applications and limitations of magnetic methods in free-radical chemistry. Angew Chem Int Ed Engl 5:6–15CrossRefGoogle Scholar
  58. 58.
    Cavalieridoro P, Mangini A, Pedulli GF, Spagnolo P, Tiecco M (1970) On the nature of the radical formed from tetraphenyl-p-xylene dichloride and zinc dust. Mol Phys 18:861–863CrossRefGoogle Scholar
  59. 59.
    Hutchison CA, Kowalsky A, Pastor RC, Wheland GW (1952) A note on the detection of free radicals by means of paramagnetic resonance absorption biradicals. J Chem Phys 20:1485CrossRefGoogle Scholar
  60. 60.
    Reitz DC, Weissman SI (1960) Spin exchange in biradicals. J Chem Phys 33:700CrossRefGoogle Scholar
  61. 61.
    McConnell HM (1960) The biradical paradox. J Chem Phys 33:1868CrossRefGoogle Scholar
  62. 62.
    Waring RK, Sloan GJ (1964) Association in biradical solutions. J Chem Phys 40:772CrossRefGoogle Scholar
  63. 63.
    Brauer H-D, Stieger H, Hyde JS, Kispert LD, Luckhurst GR (1969) ENDOR of biradicals. Mol Phys 17:457–471CrossRefGoogle Scholar
  64. 64.
    Montgomery LK, Huffman JC, Jurczak EA, Grendze MP (1986) The molecular structures of Thiele’s and Chichibabin’s hydrocarbons. J Am Chem Soc 108:6004–6011CrossRefGoogle Scholar
  65. 65.
    Cava MP, Schlessinger RH (1963) Reactive o-quinonoid aromatic hydrocarbons of the pleiadene Series. J Am Chem Soc 85:835–836CrossRefGoogle Scholar
  66. 66.
    Cava MP, Schlessinger RH (1965) Pleiadene systems—IV. Tetrahedron 21:3073–3081CrossRefGoogle Scholar
  67. 67.
    Kolc J, Michl J (1970) Photochemical synthesis of matrix-isolated pleiadene. J Am Chem Soc 92:4147–4148CrossRefGoogle Scholar
  68. 68.
    Downing J, Dvořák V, Kolc J, Manzara A, Michl J (1972) Direct observation of a doubly excited state of pleiadene. Chem Phys Lett 17:70–73CrossRefGoogle Scholar
  69. 69.
    Kolc J, Michl J (1973) π, π-Biradicaloid hydrocarbons. Pleiadene family. I. Photochemical preparation from cyclobutene precursors. J Am Chem Soc 95:7391–7401CrossRefGoogle Scholar
  70. 70.
    Müller E, Pfanz H (1941) Über biradikaloide Terphenylderivate. Ber Dtsch Chem Ges (A B Series) 74:1051–1074CrossRefGoogle Scholar
  71. 71.
    Schmidt R, Brauer H-D (1971) The energetic positions of the lowest singlet and triplet state of the Schlenk and of the Müller hydrocarbon. Angew Chem Int Ed Engl 10:506–507CrossRefGoogle Scholar
  72. 72.
    Zeng Z, Sung YM, Bao N, Tan D, Lee R, Zafra JL, Lee BS, Ishida M, Ding J, Navarrete JTL, Li Y, Zeng W, Kim D, Huang KW, Webster RD, Casado J, Wu J (2012) Stable tetrabenzo-Chichibabin’s hydrocarbons: tunable ground state and unusual transition between their closed-shell and open-shell resonance forms. J Am Chem Soc 134:14513–14525CrossRefGoogle Scholar
  73. 73.
    Lim Z, Zheng B, Huang K-W, Liu Y, Wu J (2015) Quinoidal oligo(9,10-anthryl)s with chain-length-dependent ground states: a balance between aromatic stabilization and steric strain release. Chem Eur J 21:18724–18729CrossRefGoogle Scholar
  74. 74.
    West R, Jorgenson JA, Stearley KL, Calabrese JC (1991) Synthesis, structure and semiconductivity of a p-terphenoquinone. J Chem Soc Chem Commun 1991:1234CrossRefGoogle Scholar
  75. 75.
    Rebmann A, Zhou J, Schuler P, Stegmann HB, Rieker A (1996) Synthesis, EPR spectroscopy and voltammetry of a p-quaterphenyl biradical/quinone. J Chem Res Synop 7:318–319Google Scholar
  76. 76.
    Rebmann A, Zhou J, Schuler P, Stegmann HB, Rieker A (1996) Synthesis, EPR, spectroscopy and voltammetry of a p-quaterphenyl biradical/quinone. J Chem Res Miniprint 7:1765–1783Google Scholar
  77. 77.
    Zhou J, Rieker A (1997) Electrochemical and spectroscopic properties of a series of tert-butyl-substituted para-extended quinones. J Chem Soc Perkin Trans 2:931–938CrossRefGoogle Scholar
  78. 78.
    Canesi EV, Fazzi D, Colella L, Bertarelli C, Castiglioni C (2012) Tuning the quinoid versus biradicaloid character of thiophene-based heteroquaterphenoquinones by means of functional groups. J Am Chem Soc 134:19070–19083CrossRefGoogle Scholar
  79. 79.
    Zhang K, Huang K, Li J, Luo J, Chi C, Wu J (2009) A soluble and stable quinoidal bisanthene with NIR absorption and amphoteric redox behavior. Org Lett 11:4854–4857CrossRefGoogle Scholar
  80. 80.
    Ueda A, Nishida S, Fukui K, Ise T, Shiomi D, Sato K, Takui T, Nakasuji K, Morita Y (2010) Three-dimensional intramolecular exchange interaction in a curved and nonalternant π-conjugated system: corannulene with two phenoxyl radicals. Angew Chem Int Ed 49:1678–1682CrossRefGoogle Scholar
  81. 81.
    Schmidt D, Son M, Lim JM, Lin M-J, Krummenacher I, Braunschweig H, Kim D, Würthner F (2015) Perylene bisimide radicals and biradicals: synthesis and molecular properties. Angew Chem Int Ed 54:13980–13984CrossRefGoogle Scholar
  82. 82.
    Takahashi T, Matsuoka K, Takimiya K, Otsubo T, Aso Y (2005) Extensive quinoidal oligothiophenes with dicyanomethylene groups at terminal positions as highly amphoteric redox molecules. J Am Chem Soc 127:8928–8929CrossRefGoogle Scholar
  83. 83.
    Ponce Ortiz R, Casado J, Hernández V, López Navarrete JT, Viruela PM, Ortí E, Takimiya K, Otsubo T (2007) On the biradicaloid nature of long quinoidal oligothiophenes: experimental evidence guided by theoretical studies. Angew Chem Int Ed 46:9057–9061CrossRefGoogle Scholar
  84. 84.
    Zeng Z, Ishida M, Zafra JL, Zhu X, Sung YM, Bao N, Webster RD, Lee BS, Li R-W, Zeng W, Li Y, Chi C, Navarrete JTL, Ding J, Casado J, Kim D, Wu J (2013) Pushing extended p-quinodimethanes to the limit: stable tetracyano-oligo(N-annulated perylene)quinodimethanes with tunable ground states. J Am Chem Soc 135:6363–6371CrossRefGoogle Scholar
  85. 85.
    Zeng Z, Lee S, Son M, Fukuda K, Burrezo PM, Zhu X, Qi Q, Li R-W, Navarrete JTL, Ding J, Casado J, Nakano M, Kim D, Wu J (2015) Push-Pull type oligo(N-annulated perylene)quinodimethanes: chain length and solvent-dependent ground states and physical properties. J Am Chem Soc 137:8572–8583CrossRefGoogle Scholar
  86. 86.
    Zeng Z, Lee S, Zafra JL, Ishida M, Zhu X, Sun Z, Ni Y, Webster RD, Li R-W, López Navarrete JT, Chi C, Ding J, Casado J, Kim D, Wu J (2013) Tetracyanoquaterrylene and tetracyanohexarylenequinodimethanes with tunable ground states and strong near-infrared absorption. Angew Chem Int Ed 52:8561–8565CrossRefGoogle Scholar
  87. 87.
    Zhu X, Tsuji H, Nakabayashi K, Ohkoshi S, Nakamura E (2011) Air- and heat-stable planar tri-p-quinodimethane with distinct biradical characteristics. J Am Chem Soc 133:16342–16345CrossRefGoogle Scholar
  88. 88.
    Quinkert G, Wiersdorff W-W, Finke M, Opitz K, van de Haar F-G (1968) Lichtinduzierte Reaktionen, V. Darstellung und elektrocyclische Isomerisierungen des Tetraphenyl-o-chinodimethans. Chem Ber 101:2302–2325CrossRefGoogle Scholar
  89. 89.
    Iwashita S, Ohta E, Higuchi H, Kawai H, Fujiwara K, Ono K, Takenaka M, Suzuki T (2004) First stable 7,7,8,8-tetraaryl-o-quinodimethane: isolation, X-ray structure, electrochromic response of 9,10-bis(dianisylmethylene)-9,10-dihydrophenanthrene. Chem Commun 2076Google Scholar
  90. 90.
    Suzuki T, Sakano Y, Iwai T, Iwashita S, Miura Y, Katoono R, Kawai H, Fujiwara K, Tsuji Y, Fukushima T (2013) 7,7,8,8-Tetraaryl-o-quinodimethane stabilized by dibenzo annulation: a helical π-electron system that exhibits electrochromic and unique chiroptical properties. Chem Eur J 19:117–123CrossRefGoogle Scholar
  91. 91.
    Ghereg D, El Kettani SE-C, Lazraq M, Ranaivonjatovo H, Schoeller WW, Escudié J, Gornitzka H (2009) An isolable o-quinodimethane and its fixation of molecular oxygen to give an endoperoxide. Chem Commun 5:4821CrossRefGoogle Scholar
  92. 92.
    Shimizu A, Tobe Y (2011) Indeno[2,1-a]fluorene: an air-stable ortho-quinodimethane derivative. Angew Chem Int Ed 50:6906–6910CrossRefGoogle Scholar
  93. 93.
    Sato C, Suzuki S, Kozaki M, Okada K (2016) 2,11-Dibromo-13,14-dimesityl-5,8-dioxapentaphene: a stable and twisted polycyclic system containing the o-quinodimethane skeleton. Org Lett 18:1052–1055CrossRefGoogle Scholar
  94. 94.
    Banerjee M, Lindeman SV, Rathore R (2007) Structural characterization of quaterphenyl cation radical: X-ray crystallographic evidence of quinoidal charge delocalization in poly-p-phenylene cation radicals. J Am Chem Soc 129:8070–8071CrossRefGoogle Scholar
  95. 95.
    Banerjee M, Shukla R, Rathore R (2009) Synthesis, optical, and electronic properties of soluble poly-p-phenylene oligomers as models for molecular wires. J Am Chem Soc 131:1780–1786CrossRefGoogle Scholar
  96. 96.
    Kayahara E, Kouyama T, Kato T, Yamago S (2016) Synthesis and characterization of [n]CPP (n = 5, 6, 8, 10, and 12) radical cation and dications: size-dependent absorption, spin, and charge delocalization. J Am Chem Soc 138:338–344CrossRefGoogle Scholar
  97. 97.
    Kayahara E, Kouyama T, Kato T, Takaya H, Yasuda N, Yamago S (2013) Isolation and characterization of the cycloparaphenylene radical cation and dication. Angew Chem Int Ed 52:13722–13726CrossRefGoogle Scholar
  98. 98.
    Toriumi N, Muranaka A, Kayahara E, Yamago S, Uchiyama M (2015) In-plane aromaticity in cycloparaphenylene dications: a magnetic circular dichroism and theoretical study. J Am Chem Soc 137:82–85CrossRefGoogle Scholar
  99. 99.
    Kothe G, Denkel K, Sümmermann W (1970) Schlenk’s biradical—a molecule in the triplet ground state. Angew Chem Int Ed Engl 9:906–907CrossRefGoogle Scholar
  100. 100.
    Rajca A, Utamapanya S, Xu J (1991) Control of magnetic interactions in polyarylmethyl triplet diradicals using steric hindrance. J Am Chem Soc 113:9235–9241CrossRefGoogle Scholar
  101. 101.
    Rajca A, Utamapanya S (1992) π-Conjugated systems with unique electronic structure: a case of “planarized” 1,3-connected polyarylmethyl carbodianion and stable triplet hydrocarbon diradical. J Org Chem 57:1760–1767CrossRefGoogle Scholar
  102. 102.
    Rajca A (1990) A polyarylmethyl quintet tetraradical. J Am Chem Soc 112:5890–5892CrossRefGoogle Scholar
  103. 103.
    Rajca A (1990) A polyarylmethyl carbotetraanion. J Am Chem Soc 112:5889–5890CrossRefGoogle Scholar
  104. 104.
    Utamapanya S, Rajca A (1991) Topological control of electron localization in π-conjugated polyarylmethyl carbopolyanions and radical anions. J Am Chem Soc 113:9242–9251CrossRefGoogle Scholar
  105. 105.
    Rajca A, Utamapanya S, Thayumanavan S (1992) Poly(arylmethyl) Octet (S = 7/2) heptaradical and undecet (s = 5) decaradical. J Am Chem Soc 114:1884–1885CrossRefGoogle Scholar
  106. 106.
    Rajca A, Utamapanya S (1993) Poly(arylmethyl) quartet triradicals and quintet tetraradicals. J Am Chem Soc 115:2396–2401CrossRefGoogle Scholar
  107. 107.
    Latif IA, Hansda S, Datta SN (2012) High magnetic exchange coupling constants: a density functional theory based study of substituted Schlenk diradicals. J Phys Chem A 116:8599–8607CrossRefGoogle Scholar
  108. 108.
    Clar E (1972) Aromatic sextet. Wiley, LondonGoogle Scholar
  109. 109.
    Ovchinnikov AA (1978) Multiplicity of the ground state of large alternant organic molecules with conjugated bonds—(Do Organic Ferromagnetics Exist?). Theor Chim Acta 47:297–304CrossRefGoogle Scholar
  110. 110.
    Borden WT, Davidson ER (1977) Effects of electron repulsion in conjugated hydrocarbon diradicals. J Am Chem Soc 99:4587–4594CrossRefGoogle Scholar
  111. 111.
    Morita Y, Suzuki S, Sato K, Takui T (2011) Synthetic organic spin chemistry for structurally well-defined open-shell graphene fragments. Nat Chem 3:197–204CrossRefGoogle Scholar
  112. 112.
    Inoue J, Fukui K, Kubo T, Nakazawa S, Sato K, Shiomi D, Morita Y, Yamamoto K, Takui T, Nakasuji K (2001) The first detection of a Clar’s hydrocarbon, 2,6,10-tri-tert-butyltriangulene: a ground-state triplet of non-Kekulé polynuclear benzenoid hydrocarbon. J Am Chem Soc 123:12702–12703CrossRefGoogle Scholar
  113. 113.
    Li Y, Huang K-W, Sun Z, Webster RD, Zeng Z, Zeng W, Chi C, Furukawa K, Wu J (2014) A kinetically blocked 1,14:11,12-dibenzopentacene: a persistent triplet diradical of a non-Kekulé polycyclic benzenoid hydrocarbon. Chem Sci 5:1908CrossRefGoogle Scholar
  114. 114.
    Clar E (1964) Polycyclic hydrocarbons: v.1, and v.2. Academic Press Inc., LondonCrossRefGoogle Scholar
  115. 115.
    Bendikov M, Duong HM, Starkey K, Houk KN, Carter EA, Wudl F (2004) Oligoacenes: theoretical prediction of open-shell singlet diradical ground states. J Am Chem Soc 126:7416–7417CrossRefGoogle Scholar
  116. 116.
    Mondai R, Shah BK, Neckers DC (2006) Photogeneration of heptacene in a polymer matrix. J Am Chem Soc 128:9612–9613CrossRefGoogle Scholar
  117. 117.
    Tönshoff C, Bettinger HF (2010) Photogeneration of octacene and nonacene. Angew Chem Int Ed 49:4125–4128CrossRefGoogle Scholar
  118. 118.
    Einholz R, Fang T, Berger R, Grüninger P, Früh A, Chassé T, Fink RF, Bettinger HF (2017) Heptacene: characterization in solution, in the solid state, and in films. J Am Chem Soc 139:4435–4442CrossRefGoogle Scholar
  119. 119.
    Payne MM, Parkin SR, Anthony JE (2005) Functionalized higher acenes: hexacene and heptacene. J Am Chem Soc 127:8028–8029CrossRefGoogle Scholar
  120. 120.
    Purushothaman B, Bruzek M, Parkin SR, Miller A-F, Anthony JE (2011) Synthesis and structural characterization of crystalline nonacenes. Angew Chem Int Ed 50:7013–7017CrossRefGoogle Scholar
  121. 121.
    Pavliček N, Mistry A, Majzik Z, Moll N, Meyer G, Fox DJ, Gross L (2017) Synthesis and characterization of triangulene. Nat Nanotechnol 12:308–311CrossRefGoogle Scholar
  122. 122.
    Zugermeier M, Gruber M, Schmid M, Klein BP, Ruppenthal L, Müller P, Einholz R, Hieringer W, Berndt R, Bettinger HF, Gottfried JM (2017) On-surface synthesis of heptacene and its interaction with a metal surface. Nanoscale. doi: 10.1039/C7NR04157H Google Scholar
  123. 123.
    Urgel JI, Hayashi H, Di Giovannantonio M, Pignedoli CA, Mishra S, Deniz O, Yamashita M, Dienel T, Ruffieux P, Yamada H, Fasel R (2017) On-surface synthesis of heptacene organometallic complexes. J Am Chem Soc. doi: 10.1021/jacs.7b05192 Google Scholar
  124. 124.
    Zuzak R, Dorel R, Krawiec M, Such B, Kolmer M, Szymonski M, Echavarren AM, Godlewski S (2017) Nonacene generated by on-surface dehydrogenation. ACS Nano. doi: 10.1021/acsnano.7b04728 Google Scholar
  125. 125.
    Krüger J, García F, Eisenhut F, Skidin D, Alonso JM, Guitián E, Pérez D, Cuniberti G, Moresco F, Peña D (2017) Decacene: on-surface generation. Angew Chem Int Ed. doi: 10.1002/anie.201706156 Google Scholar
  126. 126.
    Jiang D, Sumpter BG, Dai S (2007) First principles study of magnetism in nanographenes. J Chem Phys 127:124703CrossRefGoogle Scholar
  127. 127.
    Hod O, Barone V, Scuseria GE (2008) Half-metallic graphene nanodots: a comprehensive first-principles theoretical study. Phys Rev B 77:1–6CrossRefGoogle Scholar
  128. 128.
    Moscardó F, San-Fabián E (2009) On the existence of a spin-polarized state in the n-periacene molecules. Chem Phys Lett 480:26–30CrossRefGoogle Scholar
  129. 129.
    Jiang DE, Dai S (2008) Circumacenes versus periacenes: HOMO–LUMO gap and transition from nonmagnetic to magnetic ground state with size. Chem Phys Lett 466:72–75CrossRefGoogle Scholar
  130. 130.
    Plasser F, Pašalić H, Gerzabek MH, Libisch F, Reiter R, Burgdörfer J, Müller T, Shepard R, Lischka H (2013) The multiradical character of one- and two-dimensional graphene nanoribbons. Angew Chem Int Ed 52:2581–2584CrossRefGoogle Scholar
  131. 131.
    Yamaguchi K (1990) Self-Consistent Field: Theory and Applications. In: Carbo R, Klobukowski M (eds) Instability chemical bonding. Elsevier, Amsterdam, pp 727–823Google Scholar
  132. 132.
    Yamanaka S, Okumura M, Nakano M, Yamaguchi K (1994) EHF theory of chemical reactions Part 4. UNO CASSCF, UNO CASPT2 and R(U)HF coupled-cluster (CC) wavefunctions. J Mol Struct (Theochem) 310:205–218Google Scholar
  133. 133.
    Yamaguchi K, Kawakami T, Takano Y, Kitagawa Y, Yamashita Y, Fujita H (2002) Analytical and ab initio studies of effective exchange interactions, polyradical character, unpaired electron density, and information entropy in radical clusters (R)N: allyl radical cluster (N = 2–10) and hydrogen radical cluster (N = 50). Int J Quantum Chem 90:370–385CrossRefGoogle Scholar
  134. 134.
    Shimizu A, Hirao Y, Kubo T, Nakano M, Botek E, Champagne B (2012) Theoretical consideration of singlet open-shell character of polyperiacenes using Clar’s aromatic sextet valence bond model and quantum chemical calculations. In: AIP conference proceedings American Institute of Physics, p 399–405Google Scholar
  135. 135.
    Glukhovtsev MN, Bach RD, Laiter S (1997) Isodesmic and homodesmotic stabilization energies of [n]annulenes and their relevance to aromaticity and antiaromaticity: is absolute antiaromaticity possible? J Mol Struct (Theochem) 417:123–129CrossRefGoogle Scholar
  136. 136.
    Slayden SW, Liebman JF (2001) The energetics of aromatic hydrocarbons: an experimental thermochemical perspective. Chem Rev 101:1541–1566CrossRefGoogle Scholar
  137. 137.
    Douglas J (1955) Kinetics of the thermal Cis-Trans isomerization of dideuteroethylene. J Chem Phys 23:315CrossRefGoogle Scholar
  138. 138.
    Roberson LB, Kowalik J, Tolbert LM, Kloc C, Zeis R, Chi X, Fleming R, Wilkins C (2005) Pentacene disproportionation during sublimation for field-effect transistors. J Am Chem Soc 127:3069–3075CrossRefGoogle Scholar
  139. 139.
    Rogers C, Chen C, Pedramrazi Z, Omrani AA, Tsai H, Jung HS, Lin S, Crommie MF, Fischer FR (2015) Closing the nanographene gap: surface-assisted synthesis of peripentacene from 6,6′-bipentacene precursors. Angew Chem Int Ed 54:15143–15146CrossRefGoogle Scholar
  140. 140.
    Zhang X, Li J, Qu H, Chi C, Wu J (2010) Fused bispentacenequinone and its unexpected michael addition. Org Lett 12:3946–3949CrossRefGoogle Scholar
  141. 141.
    Matsumoto A, Suzuki M, Kuzuhara D, Hayashi H, Aratani N, Yamada H (2015) Tetrabenzoperipentacene: stable five-electron donating ability and a discrete triple-layered β-graphite form in the solid State. Angew Chem Int Ed 54:8175–8178CrossRefGoogle Scholar
  142. 142.
    Dorel R, Manzano C, Grisolia M, Soe W-H, Joachim C, Echavarren AM (2015) Tetrabenzocircumpyrene: a nanographene fragment with an embedded peripentacene core. Chem Commun 51:6932–6935CrossRefGoogle Scholar
  143. 143.
    Zöphel L, Berger R, Gao P, Enkelmann V, Baumgarten M, Wagner M, Müllen K (2013) Toward the peri-pentacene framework. Chem Eur J 19:17821–17826CrossRefGoogle Scholar
  144. 144.
    Liu J, Ravat P, Wagner M, Baumgarten M, Feng X, Müllen K (2015) Tetrabenzo[a, f, j, o]perylene: a polycyclic aromatic hydrocarbon with an open-shell singlet biradical ground state. Angew Chem Int Ed 54:12442–12446CrossRefGoogle Scholar
  145. 145.
    Scholl R, Meyer K (1934) Der blaue aromatische Grundkohlenwasserstoff des meso-Naphtho-dianthrons und seine Überführung durch Maleinsäure-anhydrid in Anthro-dianthren. Ber Dtsch Chem Ges (A B Series) 67:1236–1238CrossRefGoogle Scholar
  146. 146.
    Li J, Zhang K, Zhang X, Huang KW, Chi C, Wu J (2010) meso-Substituted bisanthenes as soluble and stable near-infrared dyes. J Org Chem 75:856–863CrossRefGoogle Scholar
  147. 147.
    Fort EH, Donovan PM, Scott LT (2009) Diels–Alder reactivity of polycyclic aromatic hydrocarbon bay regions: implications for metal-free growth of single-chirality carbon nanotubes. J Am Chem Soc 131:16006–16007CrossRefGoogle Scholar
  148. 148.
    Hirao Y, Konishi A, Matsumoto K, Kurata H, Kubo T, Simos TE, Maroulis G (2012) Synthesis and electronic structure of bisanthene: a small molecular-sized graphene with zigzag edges. In: AIP conference proceedings American Institute of Physics, pp. 863–866Google Scholar
  149. 149.
    Konishi A, Hirao Y, Nakano M, Shimizu A, Botek E, Champagne B, Shiomi D, Sato K, Takui T, Matsumoto K, Kurata H, Kubo T (2010) Synthesis and characterization of teranthene: a singlet biradical polycyclic aromatic hydrocarbon having Kekulé structures. J Am Chem Soc 132:11021–11023CrossRefGoogle Scholar
  150. 150.
    Kruszewski J, Krygowski TM (1972) Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Lett 13:3839–3842CrossRefGoogle Scholar
  151. 151.
    Krygowski TM (1993) Crystallographic studies of inter- and intramolecular interactions reflected in aromatic character of π-electron systems. J Chem Inf Model 33:70–78CrossRefGoogle Scholar
  152. 152.
    Angeli C, Pastore M, Cimiraglia R (2007) New perspectives in multireference perturbation theory: the n-electron valence state approach. Theor Chem Acc 117:743–754CrossRefGoogle Scholar
  153. 153.
    Di Motta S, Negri F, Fazzi D, Castiglioni C, Canesi EV (2010) Biradicaloid and polyenic character of quinoidal oligothiophenes revealed by the presence of a low-lying double-exciton state. J Phys Chem Lett 1:3334–3339CrossRefGoogle Scholar
  154. 154.
    Konishi A, Hirao Y, Matsumoto K, Kurata H, Kishi R, Shigeta Y, Nakano M, Tokunaga K, Kamada K, Kubo T (2013) Synthesis and characterization of quarteranthene: elucidating the characteristics of the edge state of graphene nanoribbons at the molecular level. J Am Chem Soc 135:1430–1437CrossRefGoogle Scholar
  155. 155.
    Pan M, Girão EC, Jia X, Bhaviripudi S, Li Q, Kong J, Meunier V, Dresselhaus MS (2012) Topographic and spectroscopic characterization of electronic edge states in CVD grown graphene nanoribbons. Nano Lett 12:1928–1933CrossRefGoogle Scholar
  156. 156.
    Tao C, Jiao L, Yazyev OV, Chen Y-C, Feng J, Zhang X, Capaz RB, Tour JM, Zettl A, Louie SG, Dai H, Crommie MF (2011) Spatially resolving edge states of chiral graphene nanoribbons. Nat Phys 7:616–620CrossRefGoogle Scholar
  157. 157.
    Hou Z, Wang X, Ikeda T, Huang S-F, Terakura K, Boero M, Oshima M, Kakimoto M, Miyata S (2011) Effect of hydrogen termination on carbon K-edge X-ray absorption spectra of nanographene. J Phys Chem C 115:5392–5403CrossRefGoogle Scholar
  158. 158.
    Suenaga K, Koshino M (2010) Atom-by-atom spectroscopy at graphene edge. Nature 468:1088–1090CrossRefGoogle Scholar
  159. 159.
    Joly VLJ, Kiguchi M, Hao S-J, Takai K, Enoki T, Sumii R, Amemiya K, Muramatsu H, Hayashi T, Kim YA, Endo M, Campos-Delgado J, López-Urías F, Botello-Méndez A, Terrones H, Terrones M, Dresselhaus MS (2010) Observation of magnetic edge state in graphene nanoribbons. Phys Rev B 81:245428CrossRefGoogle Scholar
  160. 160.
    Sugawara K, Sato T, Souma S, Takahashi T, Suematsu H (2006) Fermi surface and edge-localized states in graphite studied by high-resolution angle-resolved photoemission spectroscopy. Phys Rev B 73:45124CrossRefGoogle Scholar
  161. 161.
    Kobayashi Y, Fukui K, Enoki T, Kusakabe K (2006) Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy. Phys Rev B 73:125415CrossRefGoogle Scholar
  162. 162.
    Niimi Y, Matsui T, Kambara H, Tagami K, Tsukada M, Fukuyama H (2005) Scanning tunneling microscopy and spectroscopy studies of graphite edges. Appl Surf Sci 241:43–48CrossRefGoogle Scholar
  163. 163.
    Kobayashi Y, Fukui K, Enoki T, Kusakabe K, Kaburagi Y (2005) Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys Rev B 71:193406CrossRefGoogle Scholar
  164. 164.
    Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54:17954–17961CrossRefGoogle Scholar
  165. 165.
    Fujita M, Wakabayashi K, Nakada K, Kusakabe K (1996) Peculiar localized state at zigzag graphite edge. J Phys Soc Jpn 65:1920–1923CrossRefGoogle Scholar
  166. 166.
    Tanaka K, Yamashita S, Yamabe H, Yamabe T (1987) Electronic properties of one-dimensional graphite family. Synth Met 17:143–148CrossRefGoogle Scholar
  167. 167.
    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473CrossRefGoogle Scholar
  168. 168.
    Bieri M, Treier M, Cai J, Aït-Mansour K, Ruffieux P, Gröning O, Gröning P, Kastler M, Rieger R, Feng X, Müllen K, Fasel R (2009) Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem Commun 6919Google Scholar
  169. 169.
    Bieri M, Nguyen M-T, Gröning O, Cai J, Treier M, Aït-Mansour K, Ruffieux P, Pignedoli CA, Passerone D, Kastler M, Müllen K, Fasel R (2010) Two-dimensional polymer formation on surfaces: insight into the roles of precursor mobility and reactivity. J Am Chem Soc 132:16669–16676CrossRefGoogle Scholar
  170. 170.
    Narita A, Feng X, Müllen K (2015) Bottom-up synthesis of chemically precise graphene nanoribbons. Chem Rec 15:295–309CrossRefGoogle Scholar
  171. 171.
    Talirz L, Söde H, Cai J, Ruffieux P, Blankenburg S, Jafaar R, Berger R, Feng X, Müllen K, Passerone D, Fasel R, Pignedoli CA (2013) Termini of bottom-up fabricated graphene nanoribbons. J Am Chem Soc 135:2060–2063CrossRefGoogle Scholar
  172. 172.
    Wang S, Talirz L, Pignedoli CA, Feng X, Müllen K, Fasel R, Ruffieux P (2016) Giant edge state splitting at atomically precise graphene zigzag edges. Nat Commun 7:11507CrossRefGoogle Scholar
  173. 173.
    Ruffieux P, Wang S, Yang B, Sánchez-Sánchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli CA, Passerone D, Dumslaff T, Feng X, Müllen K, Fasel R (2016) On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531:489–492CrossRefGoogle Scholar
  174. 174.
    Hu P, Wu J (2017) Modern zethrene chemistry. Can J Chem 95:223–233CrossRefGoogle Scholar
  175. 175.
    Sun Z, Zeng Z, Wu J (2014) Zethrenes, extended p-quinodimethanes, and periacenes with a singlet biradical ground state. Acc Chem Res 47:2582–2591CrossRefGoogle Scholar
  176. 176.
    Nakano M, Kishi R, Takebe A, Nate M, Takahashi H, Kubo T, Kamada K, Ohta K, Champagne B, Botek E (2007) Second hyperpolarizability of zethrenes. Comput Lett 3:333–338CrossRefGoogle Scholar
  177. 177.
    Minami T, Nakano M (2012) Diradical character view of singlet fission. J Phys Chem Lett 3:145–150CrossRefGoogle Scholar
  178. 178.
    Clar E, Lang KF, Schulz-Kiesow H (1955) Aromatische Kohlenwasserstoffe, LXX. Mitteil. 1): zethren (1.12; 6.7-dibenztetracen). Chem Ber 88:1520–1527CrossRefGoogle Scholar
  179. 179.
    Wu T-C, Chen C-H, Hibi D, Shimizu A, Tobe Y, Wu Y-T (2010) Synthesis, structure, and photophysical properties of dibenzo[de, mn]naphthacenes. Angew Chem Int Ed 49:7059–7062CrossRefGoogle Scholar
  180. 180.
    Umeda R, Hibi D, Miki K, Tobe Y (2009) Tetradehydrodinaphtho[10]annulene: a hitherto unknown dehydroannulene and a viable precursor to stable zethrene derivatives. Org Lett 11:4104–4106CrossRefGoogle Scholar
  181. 181.
    Clar E, Macpherson IA (1962) The significance of Kekulé structures for the stability of aromatic systems—II. Tetrahedron 18:1411–1416CrossRefGoogle Scholar
  182. 182.
    Li Y, Heng W-K, Lee BS, Aratani N, Zafra JL, Bao N, Lee R, Sung YM, Sun Z, Huang K-W, Webster RD, López Navarrete JT, Kim D, Osuka A, Casado J, Ding J, Wu J (2012) Kinetically blocked stable heptazethrene and octazethrene: closed-shell or open-shell in the ground state? J Am Chem Soc 134:14913–14922CrossRefGoogle Scholar
  183. 183.
    Sun Z, Huang K-W, Wu J (2011) Soluble and stable heptazethrenebis(dicarboximide) with a singlet open-shell ground state. J Am Chem Soc 133:11896–11899CrossRefGoogle Scholar
  184. 184.
    Huang R, Phan H, Herng TS, Hu P, Zeng W, Dong S, Das S, Shen Y, Ding J, Casanova D, Wu J (2016) Higher-order π-conjugated polycyclic hydrocarbons with open-shell singlet ground state: nonazethrene versus nonacene. J Am Chem Soc 138:10323–10330CrossRefGoogle Scholar
  185. 185.
    Sun Z, Lee S, Park KH, Zhu X, Zhang W, Zheng B, Hu P, Zeng Z, Das S, Li Y, Chi C, Li R-W, Huang K-W, Ding J, Kim D, Wu J (2013) Dibenzoheptazethrene isomers with different biradical characters: an exercise of Clar’s aromatic sextet rule in singlet biradicaloids. J Am Chem Soc 135:18229–18236CrossRefGoogle Scholar
  186. 186.
    Yadav P, Das S, Phan H, Herng TS, Ding J, Wu J (2016) Kinetically blocked stable 5,6:12,13-dibenzozethrene: a laterally π-extended zethrene with enhanced diradical character. Org Lett 18:2886–2889CrossRefGoogle Scholar
  187. 187.
    Sun Z, Zheng B, Hu P, Huang K-W, Wu J (2014) Highly twisted 1,2:8,9-dibenzozethrenes: synthesis, ground state, and physical properties. ChemPlusChem 79:1549–1553CrossRefGoogle Scholar
  188. 188.
    Zeng W, Sun Z, Herng TS, Gonçalves TP, Gopalakrishna TY, Huang K-W, Ding J, Wu J (2016) Super-heptazethrene. Angew Chem Int Ed 55:8615–8619CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Graduate School of EngineeringOsaka UniversitySuitaJapan
  2. 2.Department of Chemistry, Graduate School of ScienceOsaka UniversityToyonakaJapan

Personalised recommendations