Towards Rectifying Performance at the Molecular Scale
- 169 Downloads
- 1 Citations
Abstract
Molecular diode, proposed by Mark Ratner and Arieh Aviram in 1974, is the first single-molecule device investigated in molecular electronics. As a fundamental device in an electric circuit, molecular diode has attracted an enduring and extensive focus during the past decades. In this review, the theoretical and experimental progresses of both charge-based and spin-based molecular diodes are summarized. For the charge-based molecular diodes, the rectifying properties originated from asymmetric molecules including D–σ–A, D–π–A, D–A, and σ–π type compounds, asymmetric electrodes, asymmetric nanoribbons, and their combination are analyzed. Correspondingly, the rectification mechanisms are discussed in detail. Furthermore, a series of strategies for modulating rectification performance is figured out. Discussion on concept of molecular spin diode is also involved based on a magnetic co-oligomer. At the same time, the intrinsic mechanism as well as the modulation of the spin-current rectification performance is introduced. Finally, several crucial issues that need to be addressed in the future are given.
Keywords
Molecular electronics Molecular rectification Charge-current rectification Spin-current rectificationNotes
Acknowledgements
Support from the National Natural Science Foundation of China (Grant Nos. 11374195, and 11604122), the Natural Science Foundation of Shandong Province (Grant No. ZR2014AM017), and the Taishan Scholar Project of Shandong Province are gratefully acknowledged.
References
- 1.Metzger RM, Mattern DL (2011) Unimolecular electronic devices. Top Curr Chem 313:39CrossRefGoogle Scholar
- 2.Metzger RM (2015) Unimolecular electronics. Chem Rev 115:5056CrossRefGoogle Scholar
- 3.Xiang D, Wang X, Jia C, Lee T, Guo X (2016) Molecular-scale electronics: from concept to function. Chem Rev 116:4318CrossRefGoogle Scholar
- 4.Metzger RM (1999) The unimolecular rectifier: unimolecular electronic devices are coming. J Mater Chem 9:2027CrossRefGoogle Scholar
- 5.Metzger RM (1999) Electrical rectification by a molecule: the advent of unimolecular electronic devices. Acc Chem Res 32:950CrossRefGoogle Scholar
- 6.Metzger RM (2003) Unimolecular electrical rectifiers. Chem Rev 103:3803CrossRefGoogle Scholar
- 7.Metzger RM (2009) Unimolecular electronics and rectifiers. Synth Met 159:2277CrossRefGoogle Scholar
- 8.Metzger RM (2001) Rectification by a single molecule. Synth Met 124:107CrossRefGoogle Scholar
- 9.Lo W-Y, Zhang N, Cai Z, Li L, Yu L (2016) Beyond molecular wires: design molecular electronic functions based on dipolar effect. Acc Chem Res 49:1852CrossRefGoogle Scholar
- 10.Iwane M, Fujii S, Kiguchi M (2017) Molecular diode studies based on a highly sensitive molecular measurement technique. Sensors 17:956CrossRefGoogle Scholar
- 11.Liu H, Zhao J (2009) Experimental and theoretical study of molecular rectification. Prog Chem 21:1154Google Scholar
- 12.Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29:277CrossRefGoogle Scholar
- 13.Kushmerick JG, Holt DB, Yang JC, Naciri J, Moore MH, Shashidhar R (2002) Metal-molecule contacts and charge transport across monomolecular layers: measurement and theory. Phys Rev Lett 89:086802CrossRefGoogle Scholar
- 14.Dhirani A, Lin P-H, Guyot-Sionnest P, Zehner RW, Sita LR (1997) Self-assembled molecular rectifiers. J Chem Phys 106:5249CrossRefGoogle Scholar
- 15.Metzger RM et al (1997) Unimolecular electrical rectification in hexadecylquinolinium tricyanoquinodimethanide. J Am Chem Soc 119:10455CrossRefGoogle Scholar
- 16.Chen B, Metzger RM (1999) Rectification between 370 and 105 K in hexadecylquinolinium tricyanoquinodimethanide. J Phys Chem B 103:4447CrossRefGoogle Scholar
- 17.Ashwell GJ, Sambles JR, Martin AS, Parker WG, Szablewski M (1990) Rectifying characteristics of Mg|(C16H33–Q3CNQ LB film)|Pt structures. J Chem Soc Chem Commun 19:1374CrossRefGoogle Scholar
- 18.Geddes NJ, Sambles JR, Jarvis DJ, Parker WG, Sandman DJ (1990) Fabrication and investigation of asymmetric current–voltage characteristics of a metal/langmuir–blodgett monolayer/metal structure. Appl Phys Lett 56:1916CrossRefGoogle Scholar
- 19.Geddes NJ, Sambles JR, Jarvis DJ, Parker WG, Sandman DJ (1992) The electrical properties of metal-sandwiched Langmuir–Blodgett multilayers and monolayers of a redox-active organic molecular compound. J Appl Phys 71:756CrossRefGoogle Scholar
- 20.Martin AS, Sambles JR, Ashwell GJ (1993) Molecular rectifier. Phys Rev Lett 70:218CrossRefGoogle Scholar
- 21.Ng M-K, Lee D-C, Yu L (2002) Molecular diodes based on conjugated diblock co-oligomers. J Am Chem Soc 124:11862CrossRefGoogle Scholar
- 22.Ng M-K, Yu L (2002) Synthesis of amphiphilic conjugated diblock oligomers as molecular diodes. Angew Chem Int Ed 41:3598CrossRefGoogle Scholar
- 23.Jiang P, Morales GM, You W, Yu L (2004) Synthesis of diode molecules and their sequential assembly to control electron transport. Angew Chem Int Ed 43:4471CrossRefGoogle Scholar
- 24.Honciuc A, Jaiswal A, Gong A, Ashworth K, Spangler CW, Peterson IR, Dalton LR, Metzger RM (2005) Current rectification in a Langmuir–Schaefer monolayer of fullerene-bis-[4-diphenylamino-4″-(N-ethyl-N-2‴-ethyl) amino-1,4-diphenyl-1,3-butadiene] malonate between Au electrodes. J Phys Chem B 109:857CrossRefGoogle Scholar
- 25.Morales GM, Jiang P, Yuan S, Lee Y, Sanchez A, You W, Yu L (2005) Inversion of the rectifying effect in diblock molecular diodes by protonation. J Am Chem Soc 127:10456CrossRefGoogle Scholar
- 26.Wang B, Zhou Y, Ding X, Wang K, Wang X, Yang J, Hou JG (2006) Conduction mechanism of Aviram–Ratner rectifiers with single pyridine-σ-C60 oligomers. J Phys Chem B 110:24505CrossRefGoogle Scholar
- 27.Díez-Pérez I, Hihath J, Lee Y, Yu L, Adamska L, Kozhushner MA, Oleynik II, Tao N (2009) Rectification and stability of a single molecular diode with controlled orientation. Nat Chem 1:635CrossRefGoogle Scholar
- 28.Yuan L, Nerngchamnong N, Cao L, Hamoudi H, Del Barco E, Roemer M, Sriramula RK, Thompson D, Nijhuis CA (2015) Controlling the direction of rectification in a molecular diode. Nat Commun 6:6324CrossRefGoogle Scholar
- 29.Nerngchamnong N, Yuan L, Qi D-C, Li J, Thompson D, Nijhuis CA (2013) The role of van der Waals forces in the performance of molecular diodes. Nat Nanotechnol 8:113CrossRefGoogle Scholar
- 30.Zhang N, Lo W-Y, Cai Z, Li L, Yu L (2017) Molecular rectification tuned by through-space gating effect. Nano Lett 17:308CrossRefGoogle Scholar
- 31.Stokbro K, Taylor J, Brandbyge M (2003) Do Aviram–Ratner diodes rectify? J Am Chem Soc 125:3674CrossRefGoogle Scholar
- 32.Mujica V, Ratner MA, Nitzan A (2002) Molecular rectification: why is it so rare? Chem Phys 281:147CrossRefGoogle Scholar
- 33.Taylor J, Brandbyge M, Stokbro K (2002) Theory of rectification in tour wires: the role of electrode coupling. Phys Rev Lett 89:138301CrossRefGoogle Scholar
- 34.Troisi A, Ratner MA (2002) Molecular rectification through electric field induced conformational changes. J Am Chem Soc 124:14528CrossRefGoogle Scholar
- 35.Gasyna ZL, Morales GM, Sanchez A, Yu L (2006) Asymmetric current–voltage characteristics of molecular junctions containing bipolar molecules. Chem Phys Lett 417:401CrossRefGoogle Scholar
- 36.Krzeminski C, Delerue C, Allan G, Vuillaume D, Metzger RM (2001) Theory of electrical rectification in a molecular monolayer. Phys Rev B 64:085405CrossRefGoogle Scholar
- 37.Oleynik II, Kozhushner MA, Posvyanskii VS, Yu L (2006) Rectification mechanism in diblock oligomer molecular diodes. Phys Rev Lett 96:096803CrossRefGoogle Scholar
- 38.Hu GC, Wei JH, Xie SJ (2007) Bias-induced orbital hybridization in diblock co-oligomer diodes. Appl Phys Lett 91:142115CrossRefGoogle Scholar
- 39.Huang J, Li Q, Li Z, Yang J (2009) Rectifying effect in polar conjugated molecular junctions: a first-principles study. J Nanosci Nanotechnol 9:774CrossRefGoogle Scholar
- 40.Zhang G-P, Hu G-C, Li Z-L, Wang C-K (2012) Theoretical studies on protonation-induced inversion of the rectifying direction in dipyrimidinyl–diphenyl diblock molecular junctions. J Phys Chem C 116:3773CrossRefGoogle Scholar
- 41.Zhang G-P, Hu G-C, Song Y, Li Z-L, Wang C-K (2012) Modulation of rectification in diblock co-oligomer diodes by adjusting anchoring groups for both symmetric and asymmetric electrodes. J Phys Chem C 116:22009CrossRefGoogle Scholar
- 42.Nakamura H, Asai Y, Hihath J, Bruot C, Tao N (2011) Switch of conducting orbital by bias-induced electronic contact asymmetry in a bipyrimidinyl-biphenyl diblock molecule: mechanism to achieve a pn directional molecular diode. J Phys Chem C 115:19931CrossRefGoogle Scholar
- 43.Hu G, Zhang G, Li Y, Ren J, Wang C (2014) Proportion effect in diblock co-oligomer molecular diodes. Chem Phys Lett 614:207CrossRefGoogle Scholar
- 44.Zhang G-P, Xie Z, Song Y, Hu G-C, Wang C-K (2014) Molecular-length induced inversion of rectification in diblock pyrimidinyl-phenyl molecular junctions. Chem Phys Lett 591:296CrossRefGoogle Scholar
- 45.Wang S, Wei M-Z, Hu G-C, Wang C-K, Zhang G-P (2017) Mechanisms of the odd–even effect and its reversal in rectifying performance of ferrocenyl-n-alkanethiolate molecular diodes. Org Electron 49:76CrossRefGoogle Scholar
- 46.Zhang G-P, Wang S, Wei M-Z, Hu G-C, Wang C-K (2017) Tuning the direction of rectification by adjusting the location of the bipyridyl group in alkanethiolate molecular diodes. J Phys Chem C 121:7643CrossRefGoogle Scholar
- 47.Liu H, Li P, Zhao J, Yin X, Zhang H (2008) Theoretical investigation on molecular rectification on the basis of asymmetric substitution and proton transfer reaction. J Chem Phys 129:224704CrossRefGoogle Scholar
- 48.Hihath J, Bruot C, Nakamura H, Asai Y, Díez-Pérez I, Lee Y, Yu L, Tao N (2011) Inelastic transport and low-bias rectification in a single-molecule diode. ACS Nano 5:8331CrossRefGoogle Scholar
- 49.Yoon HJ, Liao K-C, Lockett MR, Kwok SW, Baghbanzadeh M, Whitesides GM (2014) Rectification in tunneling junctions: 2,2′-bipyridyl-terminated n-alkanethiolates. J Am Chem Soc 136:17155CrossRefGoogle Scholar
- 50.Zhao J, Yu C, Wang N, Liu H (2010) Molecular rectification based on asymmetrical molecule-electrode contact. J Phys Chem C 114:4135CrossRefGoogle Scholar
- 51.Xue Y, Ratner MA (2003) Microscopic study of electrical transport through individual molecules with metallic contacts. II. Effect of the interface structure. Phys Rev B 68:115407CrossRefGoogle Scholar
- 52.Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666CrossRefGoogle Scholar
- 53.Koski KJ, Cui Y (2013) The new skinny in two-dimensional nanomaterials. ACS Nano 7:3739CrossRefGoogle Scholar
- 54.Feng B et al (2016) Experimental realization of two-dimensional boron sheets. Nat Chem 8:563CrossRefGoogle Scholar
- 55.Dávila ME, Xian L, Cahangirov S, Rubio A, Lay GL (2014) Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J Phys 16:095002CrossRefGoogle Scholar
- 56.Zhu F, Chen W, Xu Y, Gao C, Guan D, Liu C, Qian D, Zhang S, J-f Jia (2015) Epitaxial growth of two-dimensional stanene. Nat Mater 14:1020CrossRefGoogle Scholar
- 57.Coleman JN et al (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568CrossRefGoogle Scholar
- 58.Sanvito S, Rocha AR (2006) Molecular-spintronics: the art of driving spin through molecules. J Comput Theor Nanosci 3:624CrossRefGoogle Scholar
- 59.Sanvito S (2011) Molecular spintronics. Chem Soc Rev 40:3336CrossRefGoogle Scholar
- 60.Dediu VA, Hueso LE, Bergenti I, Taliani C (2009) Spin routes in organic semiconductors. Nat Mater 8:707CrossRefGoogle Scholar
- 61.Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, Von Molnar S, Roukes ML, Chtchelkanova AY, Treger DM (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488CrossRefGoogle Scholar
- 62.Dalgleish H, Kirczenow G (2006) Spin-current rectification in molecular wires. Phys Rev B 73:235436CrossRefGoogle Scholar
- 63.Braunecker B, Feldman DE, Li F (2007) Spin current and rectification in one-dimensional electronic systems. Phys Rev B 76:085119CrossRefGoogle Scholar
- 64.Hu G, He K, Xie S, Saxena A (2008) Spin-current rectification in an organic magnetic/nonmagnetic device. J Chem Phys 129:234708CrossRefGoogle Scholar
- 65.Zeng M, Shen L, Zhou M, Zhang C, Feng Y (2011) Graphene-based bipolar spin diode and spin transistor: rectification and amplification of spin-polarized current. Phys Rev B 83:115427CrossRefGoogle Scholar
- 66.Miller JS (2002) Organic magnets-a history. Adv Mater 14:1105CrossRefGoogle Scholar
- 67.Jain R, Kabir K, Gilroy JB, Mitchell KAR, Wong K, Hicks RG (2007) High-temperature metal-organic magnets. Nature 445:291CrossRefGoogle Scholar
- 68.Veciana J, Iwamura H (2000) Organic magnets. MRS Bull 25:41CrossRefGoogle Scholar
- 69.Hu G-C, Wang H, Ren J-F (2011) Effect of proportion on rectification in organic co-oligomer spin rectifiers. Chin Phys B 20:077306CrossRefGoogle Scholar
- 70.Hu G-C, Zhang Z, Li Y, Ren J-F, Wang C-K (2016) Length dependence of rectification in organic co-oligomer spin rectifiers. Chin Phys B 25:057308CrossRefGoogle Scholar
- 71.Hu GC, Zhang Z, Zhang GP, Ren JF, Wang CK (2016) Inversion of spin-current rectification in magnetic co-oligomer diodes. Org Electron 37:485CrossRefGoogle Scholar
- 72.Hu G-C, Zuo M-Y, Li Y, Zhang Z, Ren J-F, Wang C-K (2015) Effect of interfacial coupling on rectification in organic spin rectifiers. Chin Phys B 24:077308CrossRefGoogle Scholar
- 73.Zuo M-Y, Hu G-C, Li Y, Ren J-F, Wang C-K (2014) Spin-excited states and rectification in an organic spin rectifier. Chin Phys B 23:087306CrossRefGoogle Scholar
- 74.Metzger R, Panetta C (1983) Progress in cohesive energies, and in building organic un imolecular rectifiers. J Phys Colloq 44:1605CrossRefGoogle Scholar
- 75.Metzger R, Panetta C, Miura Y, Torres E (1987) Progress towards organic single-monolayer rectifiers. Synth Met 18:797CrossRefGoogle Scholar
- 76.Metzger RM, Panetta CA (1988) Rectification in Langmuir–Blodgett monolayers of organic D–σ–A molecules. J Chim Phys 85:1125CrossRefGoogle Scholar
- 77.Metzger RM, Panetta CA (1989) Possible rectification in Langmuir–Blodgett monolayers of organic D–σ–A molecules. Synth Met 28:807CrossRefGoogle Scholar
- 78.Metzger RM et al (2003) Electrical rectification in a Langmuir–Blodgett monolayer of dimethyanilinoazafullerene sandwiched between gold electrodes. J Phys Chem B 107:1021CrossRefGoogle Scholar
- 79.Shumate WJ, Mattern DL, Jaiswal A, Dixon DA, White TR, Burgess J, Honciuc A, Metzger RM (2006) Spectroscopy and rectification of three donor–sigma–acceptor compounds, consisting of a one-electron donor (pyrene or ferrocene), a one-electron acceptor (perylenebisimide), and a C19 swallowtail. J Phys Chem B 110:11146CrossRefGoogle Scholar
- 80.Ho G, Heath JR, Kondratenko M, Perepichka DF, Arseneault K, Pézolet M, Bryce MR (2005) The first studies of a tetrathiafulvalene–σ–acceptor molecular rectifier. Chem Eur J 11:2914CrossRefGoogle Scholar
- 81.Metzger RM, Xu T, Peterson IR (2001) Electrical rectification by a monolayer of hexadecylquinolinium tricyanoquinodimethanide measured between macroscopic gold electrodes. J Phys Chem B 105:7280CrossRefGoogle Scholar
- 82.Ashwell GJ, Tyrrell WD, Whittam AJ (2003) Molecular Rectification: self-assembled monolayers of a donor–(π-bridge)–acceptor chromophore connected via a truncated Au–S–(CH2)3 bridge. J Mater Chem 13:2855CrossRefGoogle Scholar
- 83.Jaiswal A, Amaresh RR, Lakshmikantham M, Honciuc A, Cava MP, Metzger RM (2003) Electrical rectification in a monolayer of zwitterions assembled by either physisorption or chemisorption. Langmuir 19:9043CrossRefGoogle Scholar
- 84.Lörtscher E, Gotsmann B, Lee Y, Yu L, Rettner C, Riel H (2012) Transport properties of a single-molecule diode. ACS Nano 6:4931CrossRefGoogle Scholar
- 85.Chiechi RC, Weiss EA, Dickey MD, Whitesides GM (2008) Eutectic gallium–indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers. Angew Chem Int Ed 47:142CrossRefGoogle Scholar
- 86.Nijhuis CA, Reus WF, Whitesides GM (2009) Molecular rectification in Metal–SAM–Metal oxide–metal junctions. J Am Chem Soc 131:17814CrossRefGoogle Scholar
- 87.Nijhuis CA, Reus WF, Barber JR, Dickey MD, Whitesides GM (2010) Charge transport and rectification in arrays of SAM-based tunneling junctions. Nano Lett 10:3611CrossRefGoogle Scholar
- 88.Nijhuis CA, Reus WF, Whitesides GM (2010) Mechanism of rectification in tunneling junctions based on molecules with asymmetric potential drops. J Am Chem Soc 132:18386CrossRefGoogle Scholar
- 89.Nijhuis CA, Reus WF, Siegel AC, Whitesides GM (2011) A molecular half-wave rectifier. J Am Chem Soc 133:15397CrossRefGoogle Scholar
- 90.Reus WF, Thuo MM, Shapiro ND, Nijhuis CA, Whitesides GM (2012) The SAM, not the electrodes, dominates charge transport in metal-monolayer//Ga2O3/gallium–indium eutectic junctions. ACS Nano 6:4806CrossRefGoogle Scholar
- 91.Mentovich ED, Rosenberg-Shraga N, Kalifa I, Gozin M, Mujica V, Hansen T, Richter S (2013) Gated-Controlled rectification of a self-assembled monolayer-based transistor. J Phys Chem C 117:8468CrossRefGoogle Scholar
- 92.Jiang L, Yuan L, Cao L, Nijhuis CA (2014) Controlling leakage currents: the role of the binding group and purity of the precursors for self-assembled monolayers in the performance of molecular diodes. J Am Chem Soc 136:1982CrossRefGoogle Scholar
- 93.Yuan L, Jiang L, Thompson D, Nijhuis CA (2014) On the remarkable role of surface topography of the bottom electrodes in blocking leakage currents in molecular diodes. J Am Chem Soc 136:6554CrossRefGoogle Scholar
- 94.Yuan L, Breuer R, Jiang L, Schmittel M, Nijhuis CA (2015) A molecular diode with a statistically robust rectification ratio of three orders of magnitude. Nano Lett 15:5506CrossRefGoogle Scholar
- 95.Nerngchamnong N, Thompson D, Cao L, Yuan L, Jiang L, Roemer M, Nijhuis CA (2015) Nonideal electrochemical behavior of ferrocenyl–alkanethiolate SAMs maps the microenvironment of the redox unit. J Phys Chem C 119:21978CrossRefGoogle Scholar
- 96.Thompson D, Nijhuis CA (2016) Even the odd numbers help: failure modes of SAM-based tunnel junctions probed via odd-even effects revealed in synchrotrons and supercomputers. Acc Chem Res 49:2061CrossRefGoogle Scholar
- 97.Song P, Yuan L, Roemer M, Jiang L, Nijhuis CA (2016) Supramolecular vs electronic structure: the effect of the tilt angle of the active group in the performance of a molecular diode. J Am Chem Soc 138:5769CrossRefGoogle Scholar
- 98.Chabinyc ML et al (2002) Molecular rectification in a metal–insulator–metal junction based on self-assembled monolayers. J Am Chem Soc 124:11730CrossRefGoogle Scholar
- 99.Jeong H et al (2014) Redox-induced asymmetric electrical characteristics of ferrocene–alkanethiolate molecular devices on rigid and flexible substrates. Adv Funct Mater 24:2472CrossRefGoogle Scholar
- 100.Jeong H, Jang Y, Kim D, Hwang W-T, Kim J-W, Lee T (2016) An in-depth study of redox-induced conformational changes in charge transport characteristics of a ferrocene–alkanethiolate molecular electronic junction: temperature-dependent transition voltage spectroscopy analysis. J Phys Chem C 120:3564CrossRefGoogle Scholar
- 101.Mantooth BA, Weiss PS (2003) Fabrication, assembly, and characterization of molecular electronic components. Proc IEEE 91:1785CrossRefGoogle Scholar
- 102.Wang W, Lee T, Reed MA (2005) Electron tunnelling in self-assembled monolayers. Rep Prog Phys 68:523CrossRefGoogle Scholar
- 103.Park J, Pasupathy AN, Goldsmith JI, Chang C (2002) Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417:722CrossRefGoogle Scholar
- 104.Xiang J, Liu B, Wu ST, Ren B, Yang FZ, Mao BW, Chow YL, Tian ZQ (2005) A controllable electrochemical fabrication of metallic electrodes with a nanometer/angstrom-sized gap using an electric double layer as feedback. Angew Chem Int Ed 44:1265CrossRefGoogle Scholar
- 105.Bonifas AP, McCreery RL (2010) “Soft” Au, Pt and Cu contacts for molecular junctions through surface-diffusion-mediated deposition. Nat Nanotechnol 5:612CrossRefGoogle Scholar
- 106.Reed MA, Zhou C, Muller C, Burgin T, Tour J (1997) Conductance of a molecular junction. Science 278:252CrossRefGoogle Scholar
- 107.Xiang D, Jeong H, Lee T, Mayer D (2013) Mechanically controllable break junctions for molecular electronics. Adv Mater 25:4845CrossRefGoogle Scholar
- 108.Xiang D, Jeong H, Kim D, Lee T, Cheng Y, Wang Q, Mayer D (2013) Three-terminal single-molecule junctions formed by mechanically controllable break junctions with side gating. Nano Lett 13:2809CrossRefGoogle Scholar
- 109.Wang L, Wang L, Zhang L, Xiang D (2017) Advance of mechanically controllable break junction for molecular electronics. Top Curr Chem 375:61CrossRefGoogle Scholar
- 110.Chen X, Yeganeh S, Qin L, Li S, Xue C, Braunschweig AB, Schatz GC, Ratner MA, Mirkin CA (2009) Chemical fabrication of heterometallic nanogaps for molecular transport junctions. Nano Lett 9:3974CrossRefGoogle Scholar
- 111.Fu X-X, Zhang R-Q, Zhang G-P, Li Z-L (2014) Rectifying properties of oligo(phenylene ethynylene) heterometallic molecular junctions: molecular length and side group effects. Sci Rep 4:6357CrossRefGoogle Scholar
- 112.Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110:132CrossRefGoogle Scholar
- 113.Novoselov KS, Fal VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192CrossRefGoogle Scholar
- 114.Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless dirac fermions in graphene. Nature 438:197CrossRefGoogle Scholar
- 115.Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569CrossRefGoogle Scholar
- 116.Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385CrossRefGoogle Scholar
- 117.Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the Quantum Hall Effect and Berry’s phase in graphene. Nature 438:201CrossRefGoogle Scholar
- 118.Zhang GP, Fang XW, Yao YX, Wang CZ, Ding ZJ, Ho KM (2011) Electronic structure and transport of a carbon chain between graphene nanoribbon leads. J Phys Condens Matter 23:025302CrossRefGoogle Scholar
- 119.Son Y-W, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97:216803CrossRefGoogle Scholar
- 120.Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54:17954CrossRefGoogle Scholar
- 121.Brey L, Fertig HA (2006) Electronic states of graphene nanoribbons studied with the dirac equation. Phys Rev B 73:235411CrossRefGoogle Scholar
- 122.Martin I, Blanter YM (2009) Transport in disordered graphene nanoribbons. Phys Rev B 79:235132CrossRefGoogle Scholar
- 123.Li J, Zhang ZH, Kwong G, Tian W, Fan ZQ, Deng XQ (2013) A new exploration on the substantial improvement of rectifying behaviors for a donor–acceptor molecular diode by graphene electrodes. Carbon 61:284CrossRefGoogle Scholar
- 124.Song Y, Xie Z, Zhang G-P, Ma Y, Wang C-K (2013) Bias dependence of rectifying direction in a diblock co-oligomer molecule with asymmetric graphene nanoribbon electrodes. J Phys Chem C 117:20951CrossRefGoogle Scholar
- 125.Ervasti MM, Fan Z, Uppstu A, Krasheninnikov AV, Harju A (2015) Silicon and silicon–nitrogen impurities in graphene: structure, energetics, and effects on electronic transport. Phys Rev B 92:235412CrossRefGoogle Scholar
- 126.Zhou Y-C, Zhang H-L, Deng W-Q (2013) A 3n rule for the electronic properties of doped graphene. Nanotechnology 24:225705CrossRefGoogle Scholar
- 127.Zheng Y, Jiao Y, Ge L, Jaroniec M, Qiao SZ (2013) Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew Chem Int Ed 52:3110CrossRefGoogle Scholar
- 128.Zhao P, Liu DS, Li SJ, Chen G (2013) Modulation of rectification and negative differential resistance in graphene nanoribbon by nitrogen doping. Phys Lett A 377:1134CrossRefGoogle Scholar
- 129.Yao W, Yao KL, Gao GY, Fu HH, Zhu SC (2013) Boron-doping controlled peculiar transport properties of graphene nanoribbon p–n junctions. Solid State Commun 153:46CrossRefGoogle Scholar
- 130.Liang J, Jiao Y, Jaroniec M, Qiao SZ (2012) Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew Chem Int Ed 51:11496CrossRefGoogle Scholar
- 131.Zeng J, Chen K-Q, He J, Fan Z-Q, Zhang X-J (2011) Nitrogen doping-induced rectifying behavior with large rectifying ratio in graphene nanoribbons device. J Appl Phys 109:124502CrossRefGoogle Scholar
- 132.Yu SS, Zheng WT, Wen QB, Jiang Q (2008) First principle calculations of the electronic properties of nitrogen-doped carbon nanoribbons with zigzag edges. Carbon 46:537CrossRefGoogle Scholar
- 133.Zhang DH, Yao KL, Gao GY (2011) The peculiar transport properties in pn junctions of doped graphene nanoribbons. J Appl Phys 110:013718CrossRefGoogle Scholar
- 134.Song Y, Xie Z, Ma Y, Li Z-L, Wang C-K (2014) Giant rectification ratios of azulene-like dipole molecular junctions induced by chemical doping in armchair-edged graphene nanoribbon electrodes. J Phys Chem C 118:18713CrossRefGoogle Scholar
- 135.Xie Z, Zuo X, Zhang G-P, Li Z-L, Wang C-K (2016) Detecting CO, NO and NO2 gases by boron-doped graphene nanoribbon molecular devices. Chem Phys Lett 657:18CrossRefGoogle Scholar
- 136.Cao C, Chen L-N, Long M-Q, Xu H (2013) Rectifying performance in zigzag graphene nanoribbon heterojunctions with different edge hydrogenations. Phys Lett A 377:1905CrossRefGoogle Scholar
- 137.Khoo KH, Neaton JB, Son YW, Cohen ML, Louie SG (2008) Negative differential resistance in carbon atomic wire-carbon nanotube junctions. Nano Lett 8:2900CrossRefGoogle Scholar
- 138.Yuzvinsky TD, Mickelson W, Aloni S, Begtrup GE, Kis A, Zettl A (2006) Shrinking a carbon nanotube. Nano Lett 6:2718CrossRefGoogle Scholar
- 139.Cumings J, Zettl A (2004) Localization and nonlinear resistance in telescopically extended nanotubes. Phys Rev Lett 93:086801CrossRefGoogle Scholar
- 140.Cook BG, French WR, Varga K (2012) Electron transport properties of carbon nanotube-graphene contacts. Appl Phys Lett 101:153501CrossRefGoogle Scholar
- 141.Yan Q, Zhou G, Hao S, Wu J, Duan W (2006) Mechanism of nanoelectronic switch based on telescoping carbon nanotubes. Appl Phys Lett 88:173107CrossRefGoogle Scholar
- 142.Czerw R et al (2001) Identification of electron donor states in N-doped carbon nanotubes. Nano Lett 1:457CrossRefGoogle Scholar
- 143.Cheng C, Hu H, Wei Y, Zhang Z, Wang X, Zhao J, Peng P (2013) Rectifying behaviors introduced by nitrogen–vacancy complex in spiral chirality single walled carbon nanotube device. J Appl Phys 114:083711CrossRefGoogle Scholar
- 144.Zanolli Z, Leghrib R, Felten A, Pireaux J-J, Llobet E, Charlier J-C (2011) Gas sensing with Au-decorated carbon nanotubes. ACS Nano 5:4592CrossRefGoogle Scholar
- 145.He J, Chen K-Q (2012) Humidity effects on the electronic transport properties in carbon based nanoscale device. Phys Lett A 376:869CrossRefGoogle Scholar
- 146.Wu J, Hagelberg F, Dinadayalane TC, Leszczynska D, Leszczynski J (2011) Do stone-wales defects alter the magnetic and transport properties of single-walled carbon nanotubes? J Phys Chem C 115:22232CrossRefGoogle Scholar
- 147.Cheng C, Hu H, Zhang Z, Zhang H (2016) Perfect rectifying behavior induced by AA–P2 dopants in armchair silicene nanoribbon devices. RSC Adv 6:7042CrossRefGoogle Scholar
- 148.Sun J, Lin N, Ren H, Tang C, Yang L, Zhao X (2016) Gas adsorption on MoS2/WS2 in-plane heterojunctions and the I–V response: a first principles study. RSC Adv 6:17494CrossRefGoogle Scholar
- 149.Yu Z, Hu ML, Zhang CX, He CY, Sun LZ, Zhong J (2011) Transport properties of hybrid zigzag graphene and boron nitride nanoribbons. J Phys Chem C 115:10836CrossRefGoogle Scholar
- 150.Song Y-L, Zhang J-M, Lu D-B, Xu K-W (2013) Structural and electronic properties of a single C chain doped zigzag silicene nanoribbon. Phys E 53:173CrossRefGoogle Scholar
- 151.Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D, Lu J (2012) Tunable bandgap in silicene and germanene. Nano Lett 12:113CrossRefGoogle Scholar
- 152.Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699CrossRefGoogle Scholar
- 153.Song Y, Su Y, Zhang G-P, Wang C-K, Chen G (2017) Hydrogenation-induced giant rectifying behaviors in silicene and germanene heterojunctions. Comput Mater Sci 129:37CrossRefGoogle Scholar
- 154.Liu L et al (2014) Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 343:163CrossRefGoogle Scholar
- 155.Jung J, Qiao Z, Niu Q, MacDonald AH (2012) Transport properties of graphene nanoroads in boron nitride sheets. Nano Lett 12:2936CrossRefGoogle Scholar
- 156.Modarresi M, Roknabadi MR, Shahtahmasbi N (2011) Transport properties of an armchair boron–nitride nanoribbon embedded between two graphene electrodes. Phys E 43:1751CrossRefGoogle Scholar
- 157.Bernardi M, Palummo M, Grossman JC (2012) Optoelectronic properties in monolayers of hybridized graphene and hexagonal boron nitride. Phys Rev Lett 108:226805CrossRefGoogle Scholar
- 158.Qiu M, Liew KM (2011) Transport properties of a single layer armchair h-BNC heterostructure. J Appl Phys 110:064319CrossRefGoogle Scholar
- 159.Zhang Z, Zhang J, Kwong G, Li J, Fan Z, Deng X, Tang G (2013) All-Carbon sp–sp 2 hybrid structures: geometrical properties, current rectification, and current amplification. Sci Rep 3:2575CrossRefGoogle Scholar
- 160.Ji X-L, Xie Z, Zuo X, Zhang G-P, Li Z-L, Wang C-K (2016) Giant rectification in graphene nanoflake molecular devices with asymmetric graphene nanoribbon electrodes. Phys Lett A 380:3198CrossRefGoogle Scholar
- 161.Lee Y, Carsten B, Yu L (2009) Understanding the anchoring group effect of molecular diodes on rectification. Langmuir 25:1495CrossRefGoogle Scholar
- 162.Hu GC, Zhang GP, Ren JF, Wang CK, Xie SJ (2011) Length-dependent inversion of rectification in diblock co-oligomer diodes. Appl Phys Lett 99:082105CrossRefGoogle Scholar
- 163.Zhang G-P, Hu G-C, Song Y, Xie Z, Wang C-K (2013) Stretch or contraction induced inversion of rectification in diblock molecular junctions. J Chem Phys 139:094702CrossRefGoogle Scholar
- 164.Bruot C, Hihath J, Tao N (2012) Mechanically controlled molecular orbital alignment in single molecule junctions. Nat Nanotechnol 7:35CrossRefGoogle Scholar
- 165.Yuan L, Thompson D, Cao L, Nerngchangnong N, Nijhuis CA (2015) One carbon matters: the origin and reversal of odd–even effects in molecular diodes with self-assembled monolayers of ferrocenyl–alkanethiolates. J Phys Chem C 119:17910CrossRefGoogle Scholar
- 166.Korshak YV, Medvedeva TV, Ovchinnikov AA, Spector VN (1987) Organic polymer ferromagnet. Nature 326:370CrossRefGoogle Scholar
- 167.Moth-Poulsen K, Bjørnholm T (2009) molecular electronics with single molecules in solid-state devices. Nat Nanotechnol 4:551CrossRefGoogle Scholar
- 168.Ratner M (2013) A brief history of molecular electronics. Nat Nanotechnol 8:378CrossRefGoogle Scholar
- 169.Guo X (2014) Molecular electronics: challenges and opportunities. AIMS Mater Sci 1:11CrossRefGoogle Scholar
- 170.Lörtscher E (2013) Wiring molecules into circuits. Nat Nanotechnol 8:381CrossRefGoogle Scholar
- 171.Jia C, Guo X (2013) Molecule-electrode interfaces in molecular electronic devices. Chem Soc Rev 42:5642CrossRefGoogle Scholar
- 172.Yu X, Lovrinčić R, Kraynis O, Man G, Ely T, Zohar A, Toledano T, Cahen D, Vilan A (2014) Fabrication of reproducible, integration-compatible hybrid molecular/Si electronics. Small 10:5151Google Scholar
- 173.Aragonès AC, Darwish N, Ciampi S, Sanz F, Gooding JJ, Díez-Pérez I (2017) Single-molecule electrical contacts on silicon electrodes under ambient conditions. Nat Commun 8:15056CrossRefGoogle Scholar
- 174.Hybertsen MS, Venkataraman L, Klare JE, Whalley AC, Steigerwald ML, Nuckolls C (2008) Amine-linked single-molecule circuits: systematic trends across molecular families. J Phys Condens Matter 20:374115CrossRefGoogle Scholar