An Update on Isocyanide-Based Multicomponent Reactions in Polymer Science

  • Audrey Llevot
  • Andreas C. Boukis
  • Stefan Oelmann
  • Katharina Wetzel
  • Michael A. R. MeierEmail author
Part of the following topical collections:
  1. Polymer Synthesis Based on Triple-bond Building Blocks


Developments and progress in polymer science are often inspired by organic chemistry. In recent years, multicomponent reactions—especially the Passerini and Ugi reactions—have become very important tools for macromolecular design, mainly due to their modular character. In this review, the versatility of the Passerini and Ugi reactions in polymer science is highlighted by discussing recent examples of their use for monomer synthesis, as polymerization techniques, and for postpolymerization modification, as well as their suitability for architecture control, sequence control, and sequence definition.


Passerini Ugi Multicomponent reaction Polymer chemistry Macromolecule Polymerization 


  1. 1.
    Zhu J, Bienaymé H (2006) Multicomponent reactions. John Wiley, New JerseyGoogle Scholar
  2. 2.
    Zhu J, Wang Q, Wang M (2014) Multicomponent reactions in organic synthesis. John Wiley, New JerseyCrossRefGoogle Scholar
  3. 3.
    Strecker A (1850) Liebigs Ann Chem 75:25Google Scholar
  4. 4.
    Strecker A (1854) Ueber einen neuen aus Aldehyd-Ammoniak und Blausäure entstehenden Körper. Justus Liebigs Annalen der Chemie 91:349CrossRefGoogle Scholar
  5. 5.
    Passerini M (1921) Isonitriles. II. Compounds with aldehydes or with ketones and monobasic organic acids. Gazz Chim Ital 51:181Google Scholar
  6. 6.
    Ugi I (1959) Versuche mit Isonitrilen. Angew Chem Int Ed 71:386Google Scholar
  7. 7.
    Passerini M, Simone L (1921) Sopra gli isonitrili (I). Composto del p-isonitril-azobenzolo con acetone ed acido acetico. Gazz Chim 51:126Google Scholar
  8. 8.
    Ugi I, Steinbrückner C (1960) Über ein neues Kondensations-Prinzip. Angew Chem 72:267CrossRefGoogle Scholar
  9. 9.
    Mumm O (1910) Umsetzung von Säureimidchloriden mit Salzen organischer Säuren und mit Cyankalium. Ber Dtsch Chem Ges 43:886CrossRefGoogle Scholar
  10. 10.
    Kreye O, Tóth T, Meier MAR (2011) Introducing multicomponent reactions to polymer science: Passerini reactions of renewable monomers. J Am Chem Soc 133:1790CrossRefGoogle Scholar
  11. 11.
    Jiang X, Feng C, Lu G, Huang X (2015) Application of named reactions in polymer synthesis. Sci China Chem 58:1695CrossRefGoogle Scholar
  12. 12.
    Yang B, Zhao Y, Wei Y, Fu C, Tao L (2015) The Ugi reaction in polymer chemistry: syntheses, applications and perspectives. Polym Chem 6:8233CrossRefGoogle Scholar
  13. 13.
    Sehlinger A, Meier MAR (2015) In: Theato P (ed) Multi-component and sequential reactions in polymer synthesis. Springer International, Cham, p 61Google Scholar
  14. 14.
    Kakuchi R (2014) Multicomponent reactions in polymer synthesis. Angew Chem Int Ed 53:46CrossRefGoogle Scholar
  15. 15.
    Rubinshtein M, James CR, Young JL, Ma YJ, Kobayashi Y, Gianneschi NC, Yang J (2010) Facile procedure for generating side chain functionalized poly(α-hydroxy acid) copolymers from aldehydes via a versatile Passerini-type condensation. Org Lett 12:3560CrossRefGoogle Scholar
  16. 16.
    Kreye O, Trefzger C, Sehlinger A, Meier MAR (2014) Multicomponent reactions with a convertible isocyanide: efficient and versatile grafting of ADMET-derived polymers. Macromol Chem Phys 215:2207CrossRefGoogle Scholar
  17. 17.
    Sehlinger A, de Espinosa LM, Meier MAR (2013) Synthesis of diverse asymmetric α,ω-dienes via the Passerini three-component reaction for head-to-tail ADMET polymerization. Macromol Chem Phys 214:2821CrossRefGoogle Scholar
  18. 18.
    Sehlinger A, Kreye O, Meier MAR (2013) Tunable polymers obtained from Passerini multicomponent reaction derived acrylate monomers. Macromolecules 46:6031CrossRefGoogle Scholar
  19. 19.
    Schmidt S, Koldevitz M, Noy J-M, Roth PJ (2015) Multicomponent isocyanide-based synthesis of reactive styrenic and (meth)acrylic monomers and their RAFT (co)polymerization. Polym Chem 6:44CrossRefGoogle Scholar
  20. 20.
    Noy J-M, Koldevitz M, Roth PJ (2015) Thiol-reactive functional poly(meth)acrylates: multicomponent monomer synthesis, RAFT (co)polymerization and highly efficient thiol-para-fluoro postpolymerization modification. Polym Chem 6:436CrossRefGoogle Scholar
  21. 21.
    Pei Y, Noy J-M, Roth PJ, Lowe AB (2015) Thiol-reactive Passerini-methacrylates and polymorphic surface functional soft matter nanoparticles via ethanolic RAFT dispersion polymerization and post-synthesis modification. Polym Chem 6:1928CrossRefGoogle Scholar
  22. 22.
    Pei Y, Dharsana NC, van Hensbergen JA, Burford RP, Roth PJ, Lowe AB (2014) RAFT dispersion polymerization of 3-phenylpropyl methacrylate with poly[2-(dimethylamino)ethyl methacrylate] macro-CTAs in ethanol and associated thermoreversible polymorphism. Soft Matter 10:5787CrossRefGoogle Scholar
  23. 23.
    von Czapiewski M, Kreye O, Mutlu H, Meier MAR (2013) Cross-metathesis versus palladium-catalyzed C-H activation: Acetoxy ester functionalization of unsaturated fatty acid methyl esters. Eur J Lipid Sci Technol 115:76CrossRefGoogle Scholar
  24. 24.
    von Czapiewski M, Gugau K, Todorovic L, Meier MAR (2016) Synthesis of polyacrylates from limonene by catalytic oxidation and multi-component reaction. Eur Polym J 83:359CrossRefGoogle Scholar
  25. 25.
    Sabitha G, Nayak S, Bhikshapathi M, Yadav JS (2011) Palladium hydroxide catalyzed isomerization of primary allylic alcohols to aldehydes: application to the formal synthesis of (−)-Brevisamide. Org Lett 13:382CrossRefGoogle Scholar
  26. 26.
    Sehlinger A, Ochsenreither K, Bartnick N, Meier MAR (2015) Potentially biocompatible polyacrylamides derived by the Ugi four-component reaction. Eur Polym J 65:313CrossRefGoogle Scholar
  27. 27.
    Galperin A, Long TJ, Ratner BD (2010) Degradable, thermo-sensitive poly(N-isopropyl acrylamide)-based scaffolds with controlled porosity for tissue engineering applications. Biomacromolecules 11:2583CrossRefGoogle Scholar
  28. 28.
    Kawaguchi H (2014) Thermoresponsive microhydrogels: preparation, properties and applications. Polym Int 63:925CrossRefGoogle Scholar
  29. 29.
    Vignaud T, Ennomani H, Théry M (2014) Polyacrylamide hydrogel micropatterning. Methods Cell Biol 120:93CrossRefGoogle Scholar
  30. 30.
    Algi MP, Okay O (2014) Highly stretchable self-healing poly(N,N-dimethylacrylamide) hydrogels. Eur Polym J 59:113CrossRefGoogle Scholar
  31. 31.
    Kienberger J, Kreutzwiesner E, Noormofidi N, Klarholz I, Harms C, Slugovc C (2012) Towards the antimicrobial finishing of poly(isoprene). Macromol Symposia 311:98CrossRefGoogle Scholar
  32. 32.
    Kienberger J, Noormofidi N, Mühlbacher I, Klarholz I, Harms C, Slugovc C (2012) Antimicrobial equipment of poly(isoprene) applying thiol-ene chemistry. J Polym Sci 50:2236CrossRefGoogle Scholar
  33. 33.
    Deng X-X, Li L, Li Z-L, Lv A, Du F-S, Li Z-C (2012) Sequence regulated poly(ester-amide)s based on Passerini reaction. ACS Macro Lett 1:1300CrossRefGoogle Scholar
  34. 34.
    Wang Y-Z, Deng X-X, Li L, Li Z-L, Du F-S, Li Z-C (2013) One-pot synthesis of polyamides with various functional side groups via Passerini reaction. Polym Chem 4:444CrossRefGoogle Scholar
  35. 35.
    Zhang L-J, Deng X-X, Du F-S, Li Z-C (2013) Chemical synthesis of functional poly(4-hydroxybutyrate) with controlled degradation via intramolecular cyclization. Macromolecules 46:9554CrossRefGoogle Scholar
  36. 36.
    Sehlinger A, Schneider R, Meier MAR (2014) Passerini addition polymerization of an AB-type monomer—a convenient route to versatile polyesters. Eur Polym J 50:150CrossRefGoogle Scholar
  37. 37.
    Zhang J, Zhang M, Du F-S, Li Z-C (2016) Synthesis of functional polycaprolactones via Passerini multicomponent polymerization of 6-oxohexanoic acid and isocyanides. Macromolecules 49:2592CrossRefGoogle Scholar
  38. 38.
    Lin W, Guan X, Sun T, Huang Y, Jing X, Xie Z (2015) Reduction-sensitive amphiphilic copolymers made via multi-component Passerini reaction for drug delivery. Colloids Surf 126:217CrossRefGoogle Scholar
  39. 39.
    Sehlinger A, Dannecker P-K, Kreye O, Meier MAR (2014) Diversely substituted polyamides: macromolecular design using the Ugi four-component reaction. Macromolecules 47:2774CrossRefGoogle Scholar
  40. 40.
    Sehlinger A, Schneider R, Meier MA (2014) Ugi reactions with CO2: access to functionalized polyurethanes, polycarbonates, polyamides, and polyhydantoins. Macromol Rapid Commun 35:1866Google Scholar
  41. 41.
    Gangloff N, Nahm D, Döring L, Kuckling D, Luxenhofer R (2015) Polymerization via the Ugi-reaction using aromatic monomers. J Polym Sci 53:1680CrossRefGoogle Scholar
  42. 42.
    Hartweg M, Becer CR (2016) Direct polymerization of levulinic acid via Ugi multicomponent reaction. Green Chem 18:3272CrossRefGoogle Scholar
  43. 43.
    Zhang X, Wang S, Liu J, Xie Z, Luan S, Xiao C, Tao Y, Wang X (2016) Ugi reaction of natural amino acids: a general route toward facile synthesis of polypeptoids for bioapplications. ACS Macro Lett 5:1049CrossRefGoogle Scholar
  44. 44.
    Kreye O, Kugele D, Faust L, Meier MAR (2014) Divergent dendrimer synthesis via the Passerini three-component reaction and olefin cross-metathesis. Macromol Rapid Commun 35:317CrossRefGoogle Scholar
  45. 45.
    Deng X-X, Du F-S, Li Z-C (2014) Combination of orthogonal ABB and ABC multicomponent reactions toward efficient divergent synthesis of dendrimers with structural diversity. ACS Macro Lett 3:667CrossRefGoogle Scholar
  46. 46.
    Wessjohann L, Henze M, Kreye O, Rivera D (2013) WO Patent 134,607, 2011. European Patent 2563847Google Scholar
  47. 47.
    Jee J-A, Spagnuolo LA, Rudick JG (2012) Convergent synthesis of dendrimers via the Passerini three-component reaction. Org Lett 14:3292CrossRefGoogle Scholar
  48. 48.
    Jee J-A, Song S, Rudick JG (2015) Enhanced reactivity of dendrons in the Passerini three-component reaction. Chem Commun 51:5456CrossRefGoogle Scholar
  49. 49.
    Deng X-X, Cui Y, Wang Y-Z, Du F-S, Li Z-C (2014) Graft copolymers with polyamide backbones via combination of Passerini multicomponent polymerization and controlled chain-growth polymerization. Aust J Chem 67:555CrossRefGoogle Scholar
  50. 50.
    Li L, Kan X-W, Deng X-X, Song C-C, Du F-S, Li Z-C (2013) Simultaneous dual end-functionalization of PEG via the Passerini three-component reaction for the synthesis of ABC miktoarm terpolymers. J Polym Sci 51:865CrossRefGoogle Scholar
  51. 51.
    Oelmann S, Solleder SC, Meier MAR (2016) Controlling molecular weight and polymer architecture during the Passerini three component step-growth polymerization. Polym Chem 7:1857CrossRefGoogle Scholar
  52. 52.
    Mutlu H, Lutz J-F (2014) Reading polymers: sequencing of natural and synthetic macromolecules. Angew Chem Int Ed 53:13010CrossRefGoogle Scholar
  53. 53.
    Badi N, Lutz J-F (2009) Sequence control in polymer synthesis. Chem Soc Rev 38:3383CrossRefGoogle Scholar
  54. 54.
    Qu C, He J (2015) Recent developments in the synthesis of sequence controlled polymers. Sci China Chem 58:1651CrossRefGoogle Scholar
  55. 55.
    Colquhoun H, Lutz J-F (2014) Information-containing macromolecules. Nat Chem 6:455CrossRefGoogle Scholar
  56. 56.
    Hartmann L, Häfele S, Peschka-Süss R, Antonietti M, Börner HG (2008) Tailor-made poly(amidoamine)s for controlled complexation and condensation of DNA. Chemistry 14:2025CrossRefGoogle Scholar
  57. 57.
    Terashima T, Mes T, De Greef TFA, Gillissen MAJ, Besenius P, Palmans ARA, Meijer EW (2011) Single-chain folding of polymers for catalytic systems in water. J Am Chem Soc 133:4742CrossRefGoogle Scholar
  58. 58.
    Yang L, Zhang Z, Cheng B, You Y, Wu D, Hong C (2015) Two tandem multicomponent reactions for the synthesis of sequence-defined polymers. Sci China Chem 58:1734CrossRefGoogle Scholar
  59. 59.
    Solleder SC, Meier MAR (2014) Sequence control in polymer chemistry through the Passerini three-component reaction. Angew Chem Int Ed 53:711CrossRefGoogle Scholar
  60. 60.
    Solleder SC, Wetzel KS, Meier MAR (2015) Dual side chain control in the synthesis of novel sequence-defined oligomers through the Ugi four-component reaction. Polym Chem 6:3201CrossRefGoogle Scholar
  61. 61.
    Solleder SC, Zengel D, Wetzel KS, Meier MAR (2016) A scalable and high-yield strategy for the synthesis of sequence-defined macromolecules. Angew Chem Int Ed 55:1204CrossRefGoogle Scholar
  62. 62.
    Sehlinger A, Verbraeken B, Meier MAR, Hoogenboom R (2015) Versatile side chain modification via isocyanide-based multicomponent reactions: tuning the LCST of poly(2-oxazoline)s. Polym Chem 6:3828CrossRefGoogle Scholar
  63. 63.
    Xue L, Xiong X, Chen K, Luan Y, Chen G, Chen H (2016) Modular synthesis of glycopolymers with well-defined sugar units in the side chain via Ugi reaction and click chemistry: hetero vs. homo. Polym Chem 7:4263CrossRefGoogle Scholar
  64. 64.
    Yang B, Zhao Y, Fu C, Zhu C, Zhang Y, Wang S, Wei Y, Tao L (2014) Introducing the Ugi reaction into polymer chemistry as a green click reaction to prepare middle-functional block copolymers. Polym Chem 5:2704CrossRefGoogle Scholar
  65. 65.
    Wu H, Yang B, Zhao Y, Wei Y, Wang Z, Wang X, Tao L (2016) Fluorescent protein-reactive polymers via one-pot combination of the Ugi reaction and RAFT polymerization. Polym Chem 7:4867CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Materialwissenschaftliches Zentrum MZEKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations