Skip to main content
Log in

Modeling the Growth of Single-Wall Carbon Nanotubes

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

More than 20 years after their discovery, our understanding of the growth mechanisms of single-wall carbon nanotubes is still incomplete, in spite of a large number of investigations motivated by potential rewards in many possible applications. Among the many techniques used to solve this challenging puzzle, computer simulations can directly address an atomic scale that is hardly accessible by other experiments, and thereby support or invalidate different ideas, assumptions, or models. In this paper, we review some aspects of the computer simulation and theoretical approaches dedicated to the study of single-wall carbon nanotube growth, and suggest some ways towards a better control of the synthesis processes by chemical vapor deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Iijima S, Ichihashi T (1993) Nature 363:603–605

    Article  CAS  Google Scholar 

  3. Liu C, Cheng HM (2016) J Am Chem Soc 138:6690–6698

    Article  CAS  Google Scholar 

  4. Page AJ, Ding F, Irle S, Morokuma K (2015) Rep Prog Phys 78:36501

    Article  CAS  Google Scholar 

  5. Ding F, Harutyunyan AR, Yakobson BI (2009) Proc Natl Acad Sci 106:2506–2509

    Article  CAS  Google Scholar 

  6. Snoeck J, Froment GF, Fowles M (1997) J Catal 169:240–249

    Article  CAS  Google Scholar 

  7. Chiang W, Sankaran RM (2009) Nat Mater 8:882–886

    Article  CAS  Google Scholar 

  8. Chiang W-H, Sankaran RM (2012) Carbon NY. 50:1044–1050

    Article  CAS  Google Scholar 

  9. Bachilo SM, Balzano L, Herrera JE, Pompeo F, Resasco DE, Weisman RB (2003) J Am Chem Soc 125:11186–11187

    Article  CAS  Google Scholar 

  10. He M, Chernov AI, Fedotov PV, Obraztsova ED, Sainio J, Rikkinen E, Jiang H, Zhu Z, Tian Y, Kauppinen EI, Niemelä M, Krause AOI (2010) J Am Chem Soc 132:13994–13996

    Article  CAS  Google Scholar 

  11. Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Wei J, Wang J-Q, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F, Li Y (2014) Nature 510:522–524

    Article  CAS  Google Scholar 

  12. Nørskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen CJH (2002) J Catal 209:275–278

    Article  Google Scholar 

  13. Robertson J (2012) J Mater Chem 22:19858

    Article  CAS  Google Scholar 

  14. Amara H, Roussel J-M, Bichara C, Gaspard J-P, Ducastelle F (2009) Phys Rev B 79:14109

    Article  Google Scholar 

  15. Schwarz KJ (1977) Phys C Solid State Phys 10:195–210

    Article  CAS  Google Scholar 

  16. Deck C, Vecchio K (2006) Carbon NY 44:267–275

    Article  CAS  Google Scholar 

  17. Hofmann S, Sharma R, Ducati C, Du G, Mattevi C, Cepek C, Cantoro M, Pisana S, Parvez A, Cervantes-Sodi F, Ferrari AC, Dunin-Borkowski R, Lizzit S, Petaccia L, Goldoni A, Robertson J (2007) Nano Lett 7:602–608

    Article  CAS  Google Scholar 

  18. Hofmann S, Blume R, Wirth CT, Cantoro M, Sharma R, Ducati C, Hävecker M, Zafeiratos S, Schnoerch P, Oestereich A, Teschner D, Albrecht M, Knop-Gericke A, Schlögl R, Robertson J (2009) J Phys Chem C 113:1648–1656

    Article  CAS  Google Scholar 

  19. Rinaldi A, Tessonnier J-P, Schuster ME, Blume R, Girgsdies F, Zhang Q, Jacob T, Abd Hamid SB, Su DS, Schlögl R (2011) Angew Chem Int Ed Engl 50:3313–3317

    Article  CAS  Google Scholar 

  20. Teschner D, Borsodi J, Wootsch A, Révay Z, Hävecker M, Knop-Gericke A, Jackson SD, Schlögl R (2008) Science 320:86–89

    Article  CAS  Google Scholar 

  21. Yazyev OV, Pasquarello A (2008) Phys Rev Lett 100:1–4

    Google Scholar 

  22. Hu X, Björkman T, Lipsanen H, Sun L, Krasheninnikov AV (2015) J Phys Chem Lett 6:3263–3268

    Article  CAS  Google Scholar 

  23. Ding F, Larsson P, Larsson JA, Ahuja R, Duan H, Rosén A, Bolton K (2008) Nano Lett 8:463–468

    Article  CAS  Google Scholar 

  24. Silvearv F, Larsson P, Jones SLT, Ahuja R, Larsson JAJ (2015) Mater Chem C 3:3422–3427

    Article  CAS  Google Scholar 

  25. Fan X, Buczko R, Puretzky A, Geohegan DB, Howe J, Pantelides S, Pennycook S (2003) Phys Rev Lett 90

  26. Yuan Q, Gao J, Shu H, Zhao J, Chen X, Ding F (2012) J Am Chem Soc 134:2970–2975

    Article  CAS  Google Scholar 

  27. Reich S, Li L, Robertson J (2006) Chem Phys Lett 421:469–472

    Article  CAS  Google Scholar 

  28. Zhang S, Kang L, Wang X, Tong L, Yang L, Wang Z, Qi K, Deng S, Li Q, Bai X, Ding F, Zhang J (2017) Nature 543:234–238

    Article  CAS  Google Scholar 

  29. Li M, Liu X, Zhao X, Yang F, Wang X, Li Y (2017) Top Curr Chem 375:29

    Article  Google Scholar 

  30. Shibuta Y, Arifin R, Shimamura K, Oguri T, Shimojo F, Yamaguchi S (2013) Chem Phys Lett 565:92–97

    Article  CAS  Google Scholar 

  31. Oguri T, Shimamura K, Shibuta Y, Shimojo F, Yamaguchi S (2014) Chem Phys Lett 595–596:185–191

    Article  Google Scholar 

  32. Takagi D, Hibino H, Suzuki S, Kobayashi Y, Homma Y (2007) Nano Lett 7:2272–2275

    Article  CAS  Google Scholar 

  33. Liu B, Ren W, Gao L, Li S, Pei S, Liu C, Jiang C, Cheng H-M (2009) J Am Chem Soc 131:2082–2083

    Article  CAS  Google Scholar 

  34. Takagi D, Kobayashi Y, Homma Y (2009) J Am Chem Soc 131:6922–6923

    Article  CAS  Google Scholar 

  35. Ding F, Bolton K, Rosén A (2004) J Phys Chem B 108:17369–17377

    Article  CAS  Google Scholar 

  36. Martinez-Limia A, Zhao J, Balbuena PB (2007) J Mol Model 13:595–600

    Article  CAS  Google Scholar 

  37. Neyts EC, Shibuta Y, van Duin ACT, Bogaerts A (2010) ACS Nano 4:6665–6672

    Article  CAS  Google Scholar 

  38. Page AJ, Ohta Y, Irle S, Morokuma K (2010) Acc Chem Res 43:1375–1385

    Article  CAS  Google Scholar 

  39. Ohta Y, Okamoto Y, Irle S, Morokuma K (2008) ACS Nano 2:1437–1444

    Article  CAS  Google Scholar 

  40. Page AJ, Minami S, Ohta Y, Irle S, Morokuma K (2010) Carbon NY 48:3014–3026

    Article  CAS  Google Scholar 

  41. Page AJ, Saha S, Li H-B, Irle S, Morokuma K (2015) J Am Chem Soc 137:9281–9288

    Article  CAS  Google Scholar 

  42. Khalilov U, Bogaerts A, Neyts EC (2015) Nat Commun 6:10306

    Article  CAS  Google Scholar 

  43. Burgos JC, Jones E, Balbuena PB (2011) J Phys Chem C 115:7668–7675

    Article  CAS  Google Scholar 

  44. Growth SCN, Diego AG, Gómez-Gualdrón DA, McKenzie G, Alvarado JF, Balbuena PB (2012) ACS Nano 6:720–735

    Article  Google Scholar 

  45. Gomez-Ballesteros JL, Burgos JC, Lin PA, Sharma R, Balbuena PB (2015) RSC Adv 5:106377–106386

    Article  CAS  Google Scholar 

  46. Yoshikawa R, Maruyama S (private communication)

  47. Lin M, Ying Tan JP, Boothroyd C, Loh KP, Tok ES, Foo Y-L (2006) Nano Lett 6:449–452

    Article  CAS  Google Scholar 

  48. Batzill M (2012) Surf Sci Rep 67:83–115

    Article  CAS  Google Scholar 

  49. Moors M, Amara H, Visart De Bocarmé T, Bichara C, Ducastelle F, Kruse N, Charlier J-C (2009) ACS Nano 3:511–516

    Article  CAS  Google Scholar 

  50. Benayad A, Li X (2013) J Phys Chem C 117:4727–4733

    Article  CAS  Google Scholar 

  51. Weatherup RS, Amara H, Blume R, Dlubak B, Bayer BC, Diarra M, Bahri M, Cabrero-Vilatela A, Caneva S, Kidambi PR, Martin M, Deranlot C, Seneor P, Schlögl R, Ducastelle F, Bichara C, Hofmann S (2014) J Am Chem Soc 136:13698–13708

    Article  CAS  Google Scholar 

  52. Ribas MA, Ding F, Balbuena PB, Yakobson BI (2009) J Chem Phys 131:224501

    Article  Google Scholar 

  53. Naidich YV, Perevertailo VM, Nevodnik GM (1971) Powder Met Met Ceram 10:45–47

    Article  Google Scholar 

  54. Diarra M, Zappelli A, Amara H, Ducastelle F, Bichara C (2012) Phys Rev Lett 109:185501

    Article  CAS  Google Scholar 

  55. Riikonen S, Krasheninnikov AV, Nieminen R (2010) Phys Rev B 82:1–13

    Article  Google Scholar 

  56. Honeycutt JD, Andersen HC (1984) Chem Phys Lett 108:535–538

    Article  CAS  Google Scholar 

  57. van Duijneveldt JS, Frenkel D (1992) J Chem Phys 96:4655

    Article  Google Scholar 

  58. Picher M, Lin PA, Gomez-Ballesteros JL, Balbuena PB, Sharma R (2014) Nano Lett 14:6104–6108

    Article  CAS  Google Scholar 

  59. Fiawoo M-FC, Bonnot A-M, Amara H, Bichara C, Thibault-Pénisson J, Loiseau A (2012) Phys Rev Lett 108:195503

    Article  Google Scholar 

  60. Neyts EC, van Duin ACT, Bogaerts A (2011) J Am Chem Soc 133:17225–17231

    Article  CAS  Google Scholar 

  61. Raty J-Y, Gygi F, Galli G (2005) Phys Rev Lett 95:96103

    Article  Google Scholar 

  62. Ohta Y, Okamoto Y, Irle S, Morokuma K, Page AJ, Wang Y (2009) Nano Res 2:755–767

    Article  Google Scholar 

  63. Page AJ, Yamane H, Ohta Y, Irle S, Morokuma K (2010) J Am Chem Soc 132:15699–15707

    Article  CAS  Google Scholar 

  64. Amara H, Bichara C, Ducastelle F (2008) Phys Rev Lett 100:56105

    Article  CAS  Google Scholar 

  65. Penev ES, Artyukhov VI, Yakobson BI (2014) ACS Nano 8:1899–1906

    Article  CAS  Google Scholar 

  66. Gomez-gualdron DA, Balbuena PB (2009) J Phys Chem C 113:698–709

    Article  CAS  Google Scholar 

  67. Wang Q, Yang S-W, Yang Y, Chan-Park MB, Chen Y (2011) J Phys Chem Lett 2:1009–1014

    Article  CAS  Google Scholar 

  68. Wirth CT, Hofmann S, Robertson J (2009) Diam Relat Mater 18:940–945

    Article  CAS  Google Scholar 

  69. Jiang A, Awasthi N, Kolmogorov A, Setyawan W, Börjesson A, Bolton K, Harutyunyan AR, Curtarolo S (2007) Phys Rev B 75:1–12

    Google Scholar 

  70. Ding F, Bolton K, Rosén A (2004) J Vac Sci Technol A Vac Surf Film 22:1471

    Article  CAS  Google Scholar 

  71. Engelmann Y, Bogaerts A, Neyts EC (2014) Nanoscale 6:11981–11987

    Article  CAS  Google Scholar 

  72. Magnin Y, Zappelli A, Amara H, Ducastelle F, Bichara C (2015) Phys Rev Lett 205502:1–5

    Google Scholar 

  73. Diarra M, Amara H, Ducastelle F, Bichara C (2012) Phys Status Solidi 249:2629–2634

    Article  CAS  Google Scholar 

  74. Gavillet J, Loiseau A, Journet C, Willaime F, Ducastelle F, Charlier J-C (2001) Phys Rev Lett 87:275504

    Article  CAS  Google Scholar 

  75. Page AJ, Irle S, Morokuma K (2010) J Phys Chem C 114:8206–8211

    Article  CAS  Google Scholar 

  76. Xu Z, Yan T, Ding F (2015) Chem Sci 6:4704–4711

    Article  CAS  Google Scholar 

  77. Page AJ, Ohta Y, Okamoto Y, Irle S, Morokuma K (2009) J Phys Chem C 113:20198–20207

    Article  CAS  Google Scholar 

  78. Karoui S, Amara H, Bichara C, Ducastelle F (2010) ACS Nano 4:6114–6120

    Article  CAS  Google Scholar 

  79. Diarra M, Amara H, Bichara C, Ducastelle F (2012) Phys Rev B 85:245446

    Article  Google Scholar 

  80. Yuan Q, Xu Z, Yakobson BI, Ding F (2012) Phys Rev Lett 108:245505

    Article  Google Scholar 

  81. Rao R, Liptak D, Cherukuri T, Yakobson BI, Maruyama B (2012) Nat Mater 11:1–4

    Article  Google Scholar 

  82. Lolli G, Zhang L, Balzano L, Sakulchaicharoen N, Tan Y, Resasco DE (2006) J Phys Chem B 110:2108–2115

    Article  CAS  Google Scholar 

  83. Wang B, Poa CHP, Wei L, Yang Y, Chen Y (2007) J Am Chem Soc 129:9014–9019

    Article  CAS  Google Scholar 

  84. He M, Jiang H, Kauppinen EI, Lehtonen J (2012) Nanoscale 4:7394

    Article  CAS  Google Scholar 

  85. Artyukhov VI, Penev ES, Yakobson BI (2014) Nat Commun 5:4892

    Article  CAS  Google Scholar 

  86. Li J, Ke CT, Liu K, Li P, Liang S, Finkelstein G, Wang F, Liu J (2014) ACS Nano 8:8564–8572

    Article  CAS  Google Scholar 

  87. Yao Y, Li Q, Zhang J, Liu R, Jiao L, Zhu YT, Liu Z (2007) Nat Mater 6:293–296

    Article  Google Scholar 

  88. He M, Magnin Y, Amara H, Jiang H, Cui H, Fossard F, Castan A, Kauppinen E, Loiseau A, Bichara C (2017) Carbon 113:231–236

    Article  CAS  Google Scholar 

  89. Aguiar-Hualde J-M, Magnin Y, Amara H, Bichara C, submitted to Carbon. http://arxiv.org/abs/1702.06742

  90. He M, Amara H, Jiang H, Hassinen J, Bichara C, Ras RHA, Lehtonen J, Kauppinen EI, Loiseau A (2015) Nanoscale 7:20284–20289

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 604472 (IRENA project) and French Research Funding Agency under Grant No. ANR-13-BS10-0015-01 (SYNAPSE project). Drs. M. He, Y. Magnin and J.-M. Aguiar-Hualde are gratefully acknowledged for making some of their results available prior to publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Bichara.

Additional information

This article is part of the Topical Collection “Single-Walled Carbon Nanotubes: Preparation, Property and Application”; edited by Yan Li, Shigeo Maruyama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amara, H., Bichara, C. Modeling the Growth of Single-Wall Carbon Nanotubes. Top Curr Chem (Z) 375, 55 (2017). https://doi.org/10.1007/s41061-017-0141-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-017-0141-8

Keywords

Navigation