Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Phosphorescent Neutral Iridium (III) Complexes for Organic Light-Emitting Diodes

Abstract

The development of transition metal complexes for application in light-emitting devices is currently attracting significant research interest. Among phosphorescent emitters, those involving iridium (III) complexes have proven to be exceedingly useful due to their relatively short triplet lifetime and high phosphorescence quantum yields. The emission wavelength of iridium (III) complexes significantly depends on the ligands, and changing the electronic nature and the position of the ligand substituents can control the properties of the ligands. In this chapter, we discuss recent developments of phosphorescent transition metal complexes for organic light-emitting diode applications focusing solely on the development of iridium metal complexes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

(Reprinted with permission from [33]. © American Chemical Society)

Fig. 3

(Reprinted with permission from [43]. © American Chemical Society)

Fig. 4

(Reprinted with permission from [47]. © American Chemical Society)

Fig. 5

(Reprinted with permission from [49]. © American Chemical Society)

Fig. 6

(Reprinted with permission from [50]. © American Chemical Society)

Fig. 7
Fig. 8

(Reprinted with permission from [33]. © American Chemical Society and Elsevier)

Fig. 9
Fig. 10

(Reprinted with permission from [86]. © The Royal Society of Chemistry)

Fig. 11
Fig. 12
Fig. 13

(Reproduced with permission from Ref. [93]. Copyright 2013 Elsevier)

Fig. 14

(Reproduced with permission from Ref. [6]. Copyright 2001 American Chemistry Society)

Fig. 15
Fig. 16

(Reproduced with permission from Ref. [11]. Copyright 2011 Wiley–VCH-Verlag)

Fig. 17
Fig. 18

(Reproduced with permission from Ref. [153,154,155]. Copyright 2006 American Chemical Society, and Wiley–VCH-Verlag, respectively)

References

  1. 1.

    Tang CW, VanSlyke SA (1987) Organic electroluminescent diodes. Appl. Phys. Lett. 51:913

  2. 2.

    Baldo M, O’Brien D, You Y, Shoustikov A, Sibley S, Thompson M, Forrest SR (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151–154

  3. 3.

    Burn PL, Lo SC, Samuel IDW (2007) The development of light-emitting dendrimers for displays. Adv. Mater. 19:1675–1688

  4. 4.

    Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428:911–918

  5. 5.

    Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lüssem B, Leo K (2009) White organic light-emitting diodes with fluorescent tube efficiency. Nature 459:234–238

  6. 6.

    Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Lee HE, Adachi C, Burrow PE, Forrest SR, Thompson ME (2001) Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diodes. J. Am. Chem. Soc. 123:4304–4312

  7. 7.

    Kim JJ, You Y, Park YS, Kim JJ, Park SY (2009) Dendritic Ir(III) complexes functionalized with triphenylsilylphenyl groups: synthesis, DFT calculation and comprehensive structure-property correlation. J. Mater. Chem. 19:8347–8359

  8. 8.

    Chen ZQ, Bian ZQ, Huang CH (2010) Functional IrIII complexes and their applications. Adv. Mater. 22:1534–1539

  9. 9.

    Chen SM, Tan GP, Wong WY, Kwok HS (2011) White organic light-emitting diodes with evenly separated red, green, and blue colors for efficiency/color-rendition trade-off optimization. Adv. Funct. Mater. 21:3785–3793

  10. 10.

    Fernández-Hernández JM, Yang CH, Beltrán JI, Lemaur V, Polo F, Fröhlich R, Cornil J, Cola LD (2011) Control of the mutual arrangement of cyclometalated ligands in cationic iridium(iii) complexes. synthesis, spectroscopy, and electroluminescence of the different isomers. J. Am. Chem. Soc. 133:10543–10558

  11. 11.

    Fan CH, Sun P, Su TH, Cheng CH (2011) Host and dopant materials for idealized deep-red organic electrophosphorescence devices. Adv. Mater. 23:2981–2985

  12. 12.

    Lu KY, Chou HH, Hsieh CH, Yang YHO, Tsai HR, Tsai HY, Hsu LC, Chen CY, Chen IC, Cheng CH (2011) Wide-range color tuning of iridium biscarbene complexes from blue to red by different N^N ligands: an alternative route for adjusting the emission colors. Adv. Mater. 23:4933–4937

  13. 13.

    Lee S, Kim SO, Shin H, Yun HJ, Yang K, Kwon SK, Kim JJ, Kim YH (2013) Deep-blue phosphorescence from perfluoro carbonyl-substituted iridium complexes. J. Am. Chem. Soc. 135:14321–14328

  14. 14.

    Yang XL, Sun N, Dang JS, Huang Z, Yao CL, Xu XB, Ho CL, Zhou GJ, Ma DG, Zhao X, Wong WY (2013) Versatile phosphorescent color tuning of highly efficient borylated iridium(III) cyclometalates by manipulating the electron-accepting capacity of the dimesitylboron group. J. Mater. Chem. C. 1:3317–3326

  15. 15.

    Sasabe H, Nakanishi H, Watanabe Y, Yano S, Hirasawa M, Pu YJ, Kido J (2013) Extremely low operating voltage green phosphorescent organic light-emitting devices. Adv. Funct. Mater. 23:5550–5555

  16. 16.

    Chou H-H, Li Y-K, Chen Y-H, Chang C-C, Liao C-Y, Cheng C-H (2013) New iridium dopants for white phosphorescent devices: enhancement of efficiency and color stability by an energy-harvesting layer. ACS Appl. Mater. Interfaces 5:6168–6175

  17. 17.

    Xu X, Yang X, Dang J, Zhou G, Wu Y, Li H, Wong W-Y (2014) Trifunctional IrIII ppy-type asymmetric phosphorescent emitters with ambipolar features for highly efficient electroluminescent devices. Chem. Commun. 50:2473–2476

  18. 18.

    Yang X, Zhou G, Wong W-Y (2014) Recent design tactics for high performance white polymer light-emitting diodes. J. Mater. Chem. C. 2:1760–1778

  19. 19.

    Cao H, Sun H, Yin Y, Wen X, Shan G, Su Z, Zhong R, Xie W, Li P, Zhu D (2014) Iridium(III) complexes adopting 1,2-diphenyl-1H-benzoimidazole ligands for highly efficient organic light-emitting diodes with low efficiency roll-off and non-doped feature. J. Mater. Chem. C. 2:2150–2159

  20. 20.

    Rai VK, Nishiura M, Takimoto M, Hou Z (2014) Substituent effect on the electroluminescence efficiency of amidinate-ligated bis(pyridylphenyl) iridium(III) complexes. J. Mater. Chem. C. 2:5317–5326

  21. 21.

    Graf A, Liehm P, Murawski C, Hofmann S, Leo K, Gather MC (2014) Correlating the transition dipole moment orientation of phosphorescent emitter molecules in OLEDs with basic material properties. J. Mater. Chem. C. 2:10298–10304

  22. 22.

    Kalinowski J, Stampor W, Mezyk J, Cocchi M, Virgili D, Fattori V, Di Marco P (2002) Quenching effects in organic electrophosphorescence. Phys. Rev. B. 66:235321

  23. 23.

    Jeon WS, Park TJ, Kim SY, Pode R, Jang J, Kwon JH (2008) Low roll-off efficiency green phosphorescent organic light-emitting devices with simple double emissive layer structure. Appl. Phys. Lett. 93:063303

  24. 24.

    Fong HH, Lun KC, So SK (2002) Hole transports in molecularly doped triphenylamine derivative. Chem. Phys. Lett. 353:407–413

  25. 25.

    Peng T, Li GM, Ye KQ, Huang S, Wu Y, Liu Y, Wang Y (2013) Concentration-insensitive and low-driving-voltage OLEDs with high efficiency and little efficiency roll-off using a bipolar phosphorescent emitter. Org. Electron. 14:1649–1655

  26. 26.

    Peng T, Li GM, Ye KQ, Wang CG, Zhao SS, Liu Y, Hou Z, Wang Y (2013) Highly efficient phosphorescent OLEDs with host-independent and concentration-insensitive properties based on a bipolar iridium complex. J. Mater. Chem. C. 1:2920–2926

  27. 27.

    Li GM, Zhu DX, Peng T, Liu Y, Wang Y, Bryce MR (2014) Very high efficiency orange–red light-emitting devices with low roll-off at high luminance based on an ideal host–guest system consisting of two novel phosphorescent iridium complexes with bipolar transport. Adv. Funct. Mater. 24:7420–7426

  28. 28.

    Li GM, Feng YS, Peng T, Ye KQ, Liu Y, Wang Y (2015) Highly efficient, little efficiency roll-off orange-red electrophosphorescent devices based on a bipolar iridium complex. J. Mater. Chem. C. 3:1452–1456

  29. 29.

    Lee KH, Kang HJ, Kim SO, Lee SJ, Seo JH, Kim YK, Yoon SS (2010) Red phosphorescent iridium(iii) complexes containing 5-benzoyl-2-phenylpyridine derived ligands with electron-donating/-withdrawing moieties for organic light-emitting diodes. Mol. Cryst.Liq. Cryst. 530:186–195

  30. 30.

    Lee CL, Das RR, Kim JJ (2010) Synthesis and characterization of bis-orthometalated ir(iii) complex consisting of non-carbon-coordinating ligand. Mol. Cryst.Liq. Cryst. 531:40–46

  31. 31.

    Fang Y, Li Y, Wang S, Meng Y, Peng J, Wang B (2010) Synthesis, characterization and electroluminescence properties of iridium complexes based on pyridazine and phthalazine derivatives with C^N = N structure. Synt. Metal 160:2231–2238

  32. 32.

    Hung J-Y, Lin C-H, Chi Y, Chung M-W, Chen Y-J, Lee G-H, Chou P-T, Chen C-C, Wu C-C (2010) Phosphorescent Ir(III) complexes bearing double benzyldiphenylphosphine cyclometalates; strategic synthesis, fundamental and integration for white OLED fabrication. J. Mater. Chem. 20:7682–7693

  33. 33.

    Hofbeck T, Yersin H (2010) The triplet state of fac-Ir(ppy)3. Inorg. Chem. 49:9290–9299

  34. 34.

    Hay PJ (2002) Theoretical studies of the ground and excited electronic states in cyclometalated phenylpyridine Ir(III) complexes using density functional theory. J. Phys. Chem. A. 106:1634–1641

  35. 35.

    Nozaki K (2006) Theoretical studies on photophysical properties and mechanism of phosphorescence in [fac-Ir(2-phenylpyridine)3]. J. Chin. Chem. Soc. (Taipei) 53:101–102

  36. 36.

    Jansson E, Minaev B, Schrader S, Åagren H (2007) Time-dependent density functional calculations of phosphorescence parameters for fac-tris(2-phenylpyridine) iridium. Chem. Phys. 333:157–167

  37. 37.

    Obara S, Itabashi M, Okuda F, Tamaki S, Tanabe Y, Ishii Y, Nozaki K, M-a Haga (2006) Highly phosphorescent iridium complexes containing both tridentate bis(benzimidazolyl)-benzene or -pyridine and bidentate phenylpyridine: synthesis, photophysical properties, and theoretical study of ir-bis(benzimidazolyl)benzene complex. Inorg. Chem. 45:8907–8921

  38. 38.

    Matsushita T, Asada T, Koseki S (2007) Relativistic study on emission mechanism in tris(2-phenylpyridine)iridium. J. Phys. Chem. C. 111:6897–6903

  39. 39.

    Minaev B, Åagren H, De Angelis F (2009) Theoretical design of phosphorescence parameters for organic electro-luminescence devices based on iridium complexes. Chem. Phys. 358:245–257

  40. 40.

    Smith ARG, Riley MJ, Lo S-C, Burn PL, Gentle IR, Powell BJ (2011) Relativistic effects in a phosphorescent Ir(III) complex. Phys. Rev. B. 83:041105

  41. 41.

    Smith ARG, Burn PL, Powell BJ (2011) Spin-orbit coupling in phosphorescent iridium(III) complexes. ChemPhysChem 12:2429–2438

  42. 42.

    Smith ARG, Riley MJ, Burn PL, Gentle IR, Lo S-C, Powell BJ (2012) Effects of fluorination on iridium(III) complex phosphorescence: magnetic circular dichroism and relativistic time-dependent density functional theory. Inorg. Chem. 51:2821–2831

  43. 43.

    Gonzalez-Vazquez JP, Burn PL, Powell BJ (2015) Interplay of zero-field splitting and excited state geometry relaxation in fac-Ir(ppy)3. Inorg. Chem. 54:10457–10461

  44. 44.

    Baldo MA, Lamansky S, Burrows PE, Thompson ME, Forrest SR (1999) Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl. Phys. Lett. 75:4

  45. 45.

    Adachi C, Baldo MA, Forrest SR (2000) High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials. Appl. Phys. Lett. 77:904

  46. 46.

    Tamayo AB, Alleyne BD, Djurovich PI, Lamansky S, Tsyba I, Ho NN, Bau R, Thompson ME (2003) Synthesis and characterization of facial and meridional tris-cyclometalated iridium(III) complexes. J. Am. Chem. Soc. 125:7377–7387

  47. 47.

    Seo J, Kim S, Park SY (2004) Strong solvatochromic fluorescence from the intramolecular charge-transfer state created by excited-state intramolecular proton transfer. J. Am. Chem. Soc. 126:11154–11155

  48. 48.

    Chou P-T, Liu Y-I, Liu H-W, Yu W-S (2001) Dual excitation behavior of double proton transfer versus charge transfer in 4-(n-substituted amino)-1 h-pyrrolo[2,3-b]pyridines tuned by dielectric and hydrogen-bonding perturbation. J. Am. Chem. Soc. 123:12119–12120

  49. 49.

    Tsuboyama A, Iwawaki H, Furugori M, Mukaide T, Kamatani J, Igawa S, Moriyama T, Miura S, Takiguchi T, Okada S, Hoshino M, Ueno K (2003) Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light-emitting diode. J. Am. Chem. Soc. 125:12971–12979

  50. 50.

    Nazeeruddin MK, Humphry-Baker R, Berner D, Rivier S, Zuppiroli L, Grätzel M (2003) Highly phosphorescence iridium complexes and their application in organic light-emitting devices. J. Am. Chem. Soc. 125:8790–8797

  51. 51.

    Lo KK-M, Chung C-K, Lee TK-M, Lui L-H, Tsang KH-K, Zhu N (2003) New luminescent cyclometalated iridium(III) diimine complexes as biological labeling reagents. Inorg. Chem. 42:6886–6897

  52. 52.

    Huang W-S, Lin JT, Chien C-H, Tao Y-T, Sun S-S, Wen Y-S (2004) Highly phosphorescent bis-cyclometalated iridium complexes containing benzoimidazole-based ligands. Chem. Mater. 16:2480–2488

  53. 53.

    Yang C-H, Tai C-C, Sun I-W (2004) Synthesis of a high-efficiency red phosphorescent emitter for organic light-emitting diodes. J. Mater. Chem. 14:947–950

  54. 54.

    Coppo P, Plummer EA, De Cola L (2004) Tuning iridium(III) phenylpyridine complexes in the “almost blue” region. Chem. Commun. 30:1774–1775

  55. 55.

    Yeh S-J, Wu M-F, Chen C-T, Song Y-H, Chi Y, Ho M-H, Hsu S-F, Chen CH (2005) New dopant and host materials for blue-light-emitting phosphorescent organic electroluminescent devices. Adv. Mater. 17:285–289

  56. 56.

    Li J, Djurovich PI, Alleyne BD, Tsyba I, Ho NN, Bau R, Thompson ME (2004) Synthesis and characterization of cyclometalated Ir(III) complexes with pyrazolyl ancillary ligands. Polyhedron 23:419–428

  57. 57.

    Kwon T-H, Cho HS, Kim MK, Kim J-W, Kim J-J, Lee KH, Park SJ, Shin I-S, Kim H, Shin DM, Chung YK, Hong J-I (2005) Color tuning of cyclometalated iridium complexes through modification of phenylpyrazole derivatives and ancillary ligand based on ab initio calculations. Organometallics 24:1578–1585

  58. 58.

    Kappaun S, Sax S, Eder S, Möller KC, Waich K, Niedermair F, Saf R, Mereiter K, Jacob J, Müllen K, List EJW, Slugovc C (2007) 8-Quinolinolates as ligands for luminescent cyclometalated iridium complexes. Chem. Mater. 19:1209–1211

  59. 59.

    You Y, Park SY (2005) Inter-ligand energy transfer and related emission change in the cyclometalated heteroleptic iridium complex: facile and efficient color tuning over the whole visible range by the ancillary ligand structure. J. Am. Chem. Soc. 127:12438–12439

  60. 60.

    You Y, Kim KS, Ahn TK, Kim D, Park SY (2007) Direct spectroscopic observation of interligand energy transfer in cyclometalated heteroleptic iridium(iii) complexes: a strategy for phosphorescence color tuning and white light generation. J. Phys. Chem. C 111:4052–4060

  61. 61.

    Volger A (1981) Intraligand charge transfer spectrum of biacetylbis-(mercaptoethylimine)-nickel(II). Inorg. Chim. Acta 54:L273–L274

  62. 62.

    Goldstein DC, Cheng YY, Schmidt TW, Bhadbhade M, Thordarson P (2011) Photophysical properties of a new series of water soluble iridium bisterpyridine complexes functionalised at the 4′ position. Dalton Trans. 40:2053–2061

  63. 63.

    Leslie W, Batsanov AS, Howard JAK, Williams JAG (2004) Cross-couplings in the elaboration of luminescent bis-terpyridyl iridium complexes: the effect of extended or inhibited conjugation on emission. Dalton Trans. 4:623–631

  64. 64.

    Liu T, Zhang H-X, Xia B-H (2008) Theoretical studies on structures and spectroscopic properties of bis-cyclometalated iridium complexes [Ir(ppy)2X2]-. J. Organomet. Chem. 693:947–956

  65. 65.

    Chen J-L, Wu Y-H, He L-H, Wen H-R, Liao J, Hong R (2010) Iridium(III) bis-tridentate complexes with 6-(5-trifluoromethylpyrazol-3-yl)-2,2′-bipyridine chelating ligands: synthesis, characterization, and photophysical properties. Organometallics 29:2882–2891

  66. 66.

    Zhao N, Wu Y-H, Wen H-M, Zhang X, Chen Z-N (2009) Conversion from ILCT to LLCT/MLCT excited state by heavy metal ion binding in iridium(III) complexes with functionalized 2,2′-bipyridyl ligands. Organometallics 28:5603–5611

  67. 67.

    Liu T, Zhang H-X, Xia B-H (2007) Theoretical studies on structures and spectroscopic properties of a series of novel cationic [trans-(C.cxa.N)2Ir(PH3)2] + (C.cxa.N = ppy, bzq, ppz, dfppy). J. Phys. Chem. A 111:8724–8730

  68. 68.

    Chen H-Y, Yang C-H, Chi Y, Cheng Y-M, Yeh Y-S, Chou P-T, Hsieh H-Y, Liu C-S, Peng SM, Lee G-H (2012) Room-temperature NIR phosphorescence of new iridium (III) complexes with ligands derived from benzoquinoxaline. Can. J. Chem. 84:309–318

  69. 69.

    Sun J, Wu W, Zhao J (2012) Long-lived room-temperature deep-red-emissive intraligand triplet excited state of naphthalimide in cyclometalated IrIII complexes and its application in triplet-triplet annihilation-based upconversion. Chem. Eur. J. 16:8100–8112

  70. 70.

    Tang K-C, Liu KL, Chen I-C (2004) Rapid intersystem crossing in highly phosphorescent iridium complexes. Chem. Phys. Lett. 386:437–441

  71. 71.

    Hedley GJ, Ruseckas A, Samuel IDW (2008) Ultrafast luminescence in Ir(ppy)3. Chem. Phys. Lett. 450:292–296

  72. 72.

    Hedley GJ, Ruseckas A, Samuel IDW (2011) Vibrational energy flow controls internal conversion in a transition metal complex. J. Phys. Chem. A 114:8961–8968

  73. 73.

    Kober EM, Meyer TJ (1982) Concerning the absorption spectra of the ions M(bpy)32 + (M = Fe, Ru, Os; bpy = 2,2′-bipyridine). Inorg. Chem. 21:3967–3977

  74. 74.

    Montalti M, Credi A, Prodi L, Gandolfi MT (2006) Handbook of photochemistry, 3rd edn. Talyer & Francis, New York

  75. 75.

    Fraga S, Karwowski J, Sexena KMS (1976) Handbook of atomic data. Physical Science Data, Elsevier

  76. 76.

    Finkenzeller WJ, Yersin H (2003) Emission of Ir(ppy)3. Temperature dependence, decay dynamics, and magnetic field properties. Chem. Phys. Lett. 377:299–305

  77. 77.

    Fan C, Yang C (2014) Yellow/orange emissive heavy-metal complexes as phosphors in monochromatic and white organic light-emitting devices. Chem. Soc. Rev. 43:6439–6469

  78. 78.

    Jacko AC, Powell BJ (2011) Electronic correlations in organometallic complexes. Chem Phys Lett 508:22–28

  79. 79.

    Li J, Djurovich PI, Alleyne BD, Yousufuddin M, Ho NN, Thomas JC, Peters JC, Bau R, Thompson ME (2005) Synthetic control of excited-state properties in cyclometalated Ir(III) complexes using ancillary ligands. Inorg. Chem. 44:1713–1727

  80. 80.

    Tamayo AB, Alleyne BD, Djurovich PI, Lamansky S, Tsyba I, Ho NN, Bau R, Thompson ME (2003) Synthesis and characterization of facial and meridional tris-cyclometalated iridium(III) complexes. J. Am. Chem. Soc. 125:7377–7387

  81. 81.

    You Y, Seo J, Kim SH, Kim KS, Ahn TK, Kim D, Park SY (2008) Highly phosphorescent iridium complexes with chromophoric 2-(2-hydroxyphenyl)oxazole-based ancillary ligands: interligand energy-harvesting phosphorescence. Inorg. Chem. 47:1476–1487

  82. 82.

    D’Andrade BW, Brooks J, Adamovich V, Thompson ME, Forrest SR (2002) White light emission using triplet excimers in electrophosphorescent organic light-emitting devices. Adv. Mater. 14:1032–1036

  83. 83.

    D’Andrade BW, Forrest SR (2003) Formation of triplet excimers and dimers in amorphous organic thin films and light emitting devices. Chem. Phys. 286:321–335

  84. 84.

    Fleetham T, Ecton J, Wang Z, Bakken N, Li J (2013) Single-doped white organic light-emitting device with an external quantum efficiency over 20%. Adv. Mater. 25:2573–2576

  85. 85.

    Li G, Fleetham T, Li J (2014) Efficient and stable white organic light-emitting diodes employing a single emitter. Adv. Mater. 26:2931–2936

  86. 86.

    Zhao Q, Li L, Li F, Yu M, Liu Z, Yi T, Huang C (2008) Aggregation-induced phosphorescent emission (AIPE) of iridium(III) complexes. Chem. Commun. 6:685–687

  87. 87.

    Shan G-G, Zhu D-X, Li H-B, Li P, Su Z-M, Liao Y (2011) Creation of cationic iridium(III) complexes with aggregation-induced phosphorescent emission (AIPE) properties by increasing rotation groups on carbazole peripheries. Dalton Trans. 40:2947–2953

  88. 88.

    Shan G-G, Zhang L-Y, Li H-B, Wang S, Zhu D-X, Li P, Wang C-G, Su Z-M, Liao Y (2012) A cationic iridium(III) complex showing aggregation-induced phosphorescent emission (AIPE) in the solid state: synthesis, characterization and properties. Dalton Trans. 41:523–530

  89. 89.

    Albrecht M (2010) Cyclometalation using d-block transition metals: fundamental aspects and recent trends. Chem. Rev. 110:576–623

  90. 90.

    Tamayo AB, Alleyne BD, Djurovic PI, Lamansky S, Tysba I, Ho NN, Bau R, Thompson ME (2003) Phosphorescence quenching by conjugated polymers. J. Am. Chem. Soc. 125:7796–7797

  91. 91.

    McDonald AR, Lutz M, Chrzanowski LSV, Klink GPMV, Spek AL, Koten GV (2008) Probing the mer- to fac-isomerization of tris-cyclometallated homo- and heteroleptic (C, N)3 iridium (III) complexes. Inorg. Chem. 47:6681–6691

  92. 92.

    Dedeian K, Djurovic PI, Garces FO, Carlson G, Watts RJ (1991) A new synthetic route to the preparation of a series of strong photoreducing agents: fac-tris-ortho-metalated complexes of iridium(III) with substituted 2-phenylpyridines. Inorg. Chem. 30:1685–1687

  93. 93.

    Ho CL, Wong WY (2013) Charge and energy transfers in functional metallophosphors and metallopolyynes. Coord. Chem. Rev. 257:1614–1649

  94. 94.

    Adachi C, Kwong RC, Djurovich P, Adamovich V, Baldo MA, Thompson ME, Forrest SR (2001) A mechanism for generating very efficient high-energy phosphorescent emission in organic materials. Appl. Phys. Lett. 79:2082–2084

  95. 95.

    Ma YG, Gu X, Fei T, Zhang HY, Xu H, Yang B, Ma YG, Liu XD (2009) Tuning the emission color of iridium(III) complexes with ancillary ligands: a combined experimental and theoretical study. Eur. J. Inorg. Chem. 16:2407–2414

  96. 96.

    Liu J, Xie ZY, Cheng YX, Geng YH, Wang LX, Jing XB, Wang FS (2007) Molecular design on highly efficient white electroluminescence from a single polymer system with simultaneous blue, green and red emission. Adv. Mater. 19:531–535

  97. 97.

    Li JY, Liu D, Ma CW, Lengyel O, Lee CS, Tung CH, Lee ST (2004) White-light emission from a single-emitting-component organic electroluminescent device. Adv. Mater. 16:1538–1541

  98. 98.

    Zhou GJ, Ho CL, Wong WY, Wang Q, Ma DG, Wang LX, Lin ZY, Marder TB, Beeby A (2008) Manipulating charge-transfer character with electron-withdrawing main-group moieties for the color tuning of iridium electrophosphors. Adv. Funct. Mater. 18:499–511

  99. 99.

    Thompson, M., Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Kwong, R., Forrest, S., Baldo, M., Burrows, P. US Patent 20020034656A1

  100. 100.

    Grushin V, Herron N, Lecloux D, Marshall W, Petrov V, Wang Y (2001) New, efficient electroluminescent materials based on organometallic Ir complexes. Chem. Commun. 16:1494–1495

  101. 101.

    Chang W, Hu A, Duan J, Rayabarapu D, Cheng C (2004) Color tunable phosphorescent light-emitting diodes based on iridium complexes with substituted 2-phenylbenzothiozoles as the cyclometalated ligands. Organomet. J. Chem. 689:4882–4888

  102. 102.

    Watanabe S, Ide N, Kido J (2007) High-efficiency green phosphorescent organic light-emitting devices with chemically doped layers. Jpn. J. Appl. Phys. Part 1(46):1186–1188

  103. 103.

    Tanaka DK, Sasabe H, Li YJ, Su SJ, Takeda TS, Kido J (2007) Ultra high efficiency green organic light-emitting devices. Jpn. J. Appl. Phys. Part 2 Lett. Express Lett. 46(1–3):L10–L12

  104. 104.

    Chi Y, Chou P-T (2007) Contemporary progresses on neutral, highly emissive Os(II) and Ru(II) complexes. Chem. Soc. Rev. 36:1421–1431

  105. 105.

    Chou P-T, Chi Y (2007) Phosphorescent dyes for organic light-emitting diodes. Chem. Eur. J. 13:380–395

  106. 106.

    Chi Y, Tong B, Chou P-T (2014) Metal complexes with pyridyl azolates: design, preparation and applications. Coord. Chem. Rev. 281:1–25

  107. 107.

    Wilkinson AJ, Puschmann H, Howard JAK, Foster CE, Williams JAG (2006) Luminescent complexes of iridium(III) containing N^C^N-coordinating terdentate ligands. Inorg. Chem. 45:8685–8699

  108. 108.

    Yutaka T, Obara S, Ogawa S, Nozaki K, Ikeda N, Ohno T, Ishii Y, Sakai K, Haga M (2005) Syntheses and properties of emissive iridium(III) complexes with tridentate benzimidazole derivatives. Inorg. Chem. 44:4737–4746

  109. 109.

    Obara S, Itabashi M, Okuda F, Tamaki S, Tanabe Y, Ishii Y, Nozaki K, Haga M (2006) Highly phosphorescent iridium complexes containing both tridentate bis(benzimidazolyl)-benzene or -pyridine and bidentate phenylpyridine: synthesis, photophysical properties, and theoretical study of Ir-bis(benzimidazolyl)benzene complex. Inorg. Chem. 45:8907–8921

  110. 110.

    Yang L, Okuda F, Kobayashi K, Nozaki K, Tanabe Y, Ishii Y, Haga M (2008) Syntheses and phosphorescent properties of blue emissive iridium complexes with tridentate pyrazolyl ligands. Inorg. Chem. 47:7154–7165

  111. 111.

    Ashizawa M, Yang L, Kobayashi K, Sato H, Yamagishi A, Okuda F, Harada T, Kuroda R, Haga M (2009) Syntheses and photophysical properties of optical-active blue-phosphorescent iridium complexes bearing asymmetric tridentate ligands. Dalton Trans. 10:1700–1702

  112. 112.

    Kuwabara J, Namekawa T, Haga M, Kanbara T (2012) Luminescent Ir(III) complexes containing benzothiazole-based tridentate ligands: synthesis, characterization, and application to organic light-emitting diodes. Dalton Trans. 41:44–46

  113. 113.

    Williams JAG, Wilkinson AJ, Whittle VL (2008) Light-emitting iridium complexes with tridentate ligands. Dalton Trans. 16:2081–2099

  114. 114.

    Zhang GL, Liu ZH, Guo HQ (2004) Chin. Chem. Lett. 15:1349–1352

  115. 115.

    Fujii H, Sakurai H, Tani K, Wakisaka K, Hirao T (2005) Bright and ultimately pure red electrophosphorescence diode bearing diphenyl-quinoxaline. IEICE Electron Express 2:260–266

  116. 116.

    Gao J, You H, Fang J, Ma D, Wang L, Jing X, Wang F (2005) Pure red electrophosphorescent organic light-emitting diodes based on a new iridium complex. Synth. Met. 155:168–171

  117. 117.

    Han KD, Sung CN, Yun OH, Hwan YJ, Sik JW, Soo PJ, Chul SM, Hyuk KJ (2011) Highly efficient red phosphorescent dopants in organic light-emitting devices. Adv. Mater. 23:2721–2726

  118. 118.

    Jeon WS, Park TJ, Kim SY, Pode R, Jang J, Kwon JH (2009) Ideal host and guest system in phosphorescent OLEDs. Org. Electron 10:240–246

  119. 119.

    Chien C-H, Hsu F-M, Shu C-F, Chi Y (2009) Efficient red electrophosphorescence from a fluorene-based bipolar host material. Org. Electron 10:871–876

  120. 120.

    Caspar JV, Meyer TJ (1983) Application of the energy gap law to nonradiative, excited-state decay. J. Phys. Chem. 87:952–957

  121. 121.

    Tao Y, Wang Q, Ao L, Zhong C, Qin J, Yang C, Ma D (2010) Molecular design of host materials based on triphenylamine/oxadiazole hybrids for excellent deep-red phosphorescent organic light-emitting diodes. J. Mater. Chem. 20:1759–1765

  122. 122.

    Chou H-H, Cheng C-H (2010) A highly efficient universal bipolar host for blue, green, and red phosphorescent OLEDs. Adv. Mater. 22:2468–2471

  123. 123.

    Su S-J, Cai C-, Kido J (2011) RGB phosphorescent organic light-emitting diodes by using host materials with heterocyclic cores: effect of nitrogen atom orientations. Chem. Mater. 23:274–284

  124. 124.

    Duan J-P, Sun P-P, Cheng C-H (2003) New iridium complexes as highly efficient orange–red emitters in organic light-emitting diodes. Adv. Mater. 15:224–228

  125. 125.

    Rayabarapu DK, Paulose BMJS, Duan J-P, Cheng C-H (2005) New iridium complexes with cyclometalated alkenylquinoline ligands as highly efficient saturated red-light emitters for organic light-emitting diodes. Adv. Mater. 17:349–353

  126. 126.

    Malacara D (2002) Color vision and colorimetry: theory and applications. SPIE Press, Bellingham

  127. 127.

    Lai S-L, Tao S-L, Chan M-Y, Lo M-F, Ng T-W, Lee S-T, Zhao W-M, Lee C-S (2011) Iridium(III) bis[2-(2-naphthyl)pyridine] (acetylacetonate)-based yellow and white phosphorescent organic light-emitting devices. J. Mater. Chem. 21:4983–4988

  128. 128.

    Peng T, Yang Y, Bi H, Liu Y, Hou Z, Wang Y (2011) Highly efficient white organic electroluminescence device based on a phosphorescent orange material doped in a blue host emitter. J Mater Chem 21:3551–3553

  129. 129.

    Shih P-I, Shu C-F, Tung Y-L, Chi Y (2006) Efficient white-light-emitting diodes based on poly(N-vinylcarbazole) doped with blue fluorescent and orange phosphorescent materials. Appl. Phys. Lett. 88:251110

  130. 130.

    Chen P, Xie WF, Li J, Guan T, Duan Y, Zhao Y, Liu SY, Ma CS, Zhang LY, Li B (2007) White organic light-emitting devices with a bipolar transport layer between blue fluorescent and orange phosphorescent emitting layers. Appl. Phys. Lett. 91:023505

  131. 131.

    Lamansky S, Djurovich P, Murphy D, Razzaq FA, Kwong R, Tsyba I, Bortz M, Mui B, Bau R, Thompson ME (2001) Synthesis and characterization of phosphorescent cyclometalated iridium complexes. Inorg. Chem. 40:1704–1711

  132. 132.

    Chang CJ, Yang CH, Chen K, Chi Y, Shu CF, Ho ML, Yeh YS, Chou PT (2007) Color tuning associated with heteroleptic cyclometalated Ir(III) complexes: influence of the ancillary ligand. Dalton Trans. 19:1881–1890

  133. 133.

    Chao K, Shao K, Peng T, Zhu D, Wang Y, Liu Y, Su Z, Bryce MR (2013) New oxazoline- and thiazoline-containing heteroleptic iridium(III) complexes for highly-efficient phosphorescent organic light-emitting devices (PhOLEDs): colour tuning by varying the electroluminescence bandwidth. J. Mater. Chem. C 1:6800–6806

  134. 134.

    Wang RJ, Liu D, Ren HC, Zhang T, Wang XZ, Li JY (2011) Homoleptic tris-cyclometalated iridium complexes with 2-phenylbenzothiazole ligands for highly efficient orange OLEDs. J. Mater. Chem. 21:15494–15500

  135. 135.

    Holmes RJ, Forrest SR, Tung Y-J, Kwong RC, Brown JJ, Garon S, Thompson ME (2003) Blue organic electrophosphorescence using exothermic host–guest energy transfer. Appl. Phys. Lett. 82:2422

  136. 136.

    Tokito S, Iijima T, Suzuri Y, Kita H, Tsuzuki T, Sato F (2003) Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices. Appl. Phys. Lett. 83:569

  137. 137.

    Holmes RJ, D’Andrade BW, Forrest SR, Ren X, Li J, Thompson ME (2003) Efficient, deep-blue organic electrophosphorescence by guest charge trapping. Appl. Phys. Lett. 83:3818

  138. 138.

    Ren XF, Li J, Holmes RJ, Djurovich PI, Forrest SR, Thompson ME (2004) Ultrahigh energy gap hosts in deep blue organic electrophosphorescent devices. Chem. Mater. 16:4743–4747

  139. 139.

    Stagni S, Colella S, Palazzi A, Valenti G, Zacchini S, Paolucci F, Marcaccio M, Albuquerque RQ, De Cola L (2008) Essential role of the ancillary ligand in the color tuning of iridium tetrazolate complexes. Inorg. Chem. 47:10509–10521

  140. 140.

    Seo H-L, Yoo K-M, Song M, Park JS, Jin S-H, Kim YI, Kim J-J (2010) Deep-blue phosphorescent iridium complexes with picolinic acid N-oxide as the ancillary ligand for high efficiency organic light-emitting diodes. Org. Electron 11:564–572

  141. 141.

    Dedeian K, Shi JM, Shepherd N, Forsythe E, Morton DC (2005) Photophysical and electrochemical properties of heteroleptic tris-cyclometalated Iridium(III) complexes. Inorg. Chem. 44:4445–4447

  142. 142.

    Sajoto T, Djurovich PI, Tamayo AB, Oxgaard J, Goddard WA, Thompson ME (2008) Temperature dependence of blue phosphorescent cyclometalated Ir(III) complexes. J. Am. Chem. Soc. 131:9813–9822

  143. 143.

    Chiu Y-C, Chi Y, Hung J-Y, Cheng Y-M, Yu Y-C, Chung M-W, Lee G-H, Chou P-T, Chen C-C, Wu C-C, Hsieh H-Y (2009) Blue to true-blue phosphorescent IrIII complexes bearing a nonconjugated ancillary phosphine chelate: strategic synthesis, photophysics, and device integration. ACS Appl. Mater. Interfaces 1:433–442

  144. 144.

    Chiu Y-C, Hung J-Y, Chi Y, Chen C-C, Chang C-H, Wu C-C, Cheng Y-M, Yu Y-C, Lee G-H, Chou P-T (2009) En route to high external quantum efficiency (12%), organic true-blue-light-emitting diodes employing novel design of iridium (iii) phosphors. Adv. Mater. 21:2221–2225

  145. 145.

    Hung J-Y, Chi Y, Pai I-H, Yu Y-C, Lee G-H, Chou P-T, Wong K-T, Chen C-C, Wu C-C (2009) Blue-emitting Ir(III) phosphors with ancillary 4,6-difluorobenzyl diphenylphosphine based cyclometalate. Dalton Trans. 33:6472–6475

  146. 146.

    Yang C-H, Cheng Y-M, Chi Y, Hsu C-J, Fang F-C, Wong K-T, Chou P-T, Chang C-H, Tsai M-H, Wu C-C (2007) Blue-emitting heteroleptic iridium(iii) complexes suitable for high-efficiency phosphorescent OLEDs. Angew Chem Int Ed 46:2418–2421

  147. 147.

    Chang C-H, Chen C-C, Wu C-C, Yang C-H, Chi Y (2009) Efficient iridium(III) based, true-blue emitting phosphorescent OLEDS employing both double emission and double buffer layers. Org Electron 10:1364

  148. 148.

    Chang C-F, Cheng Y-M, Chi Y, Chiu Y-C, Lin C-C, Lee G-H, Chou P-T, Chen C-C, Chang C-H, Wu C-C (2008) Blue and orange phosphorescent iridium complexes and their application in OLEDs. Angew Chem Int Ed 120:4618–4621

  149. 149.

    Sasabe H, Takamatsu J, Motoyama T, Watanabe S, Wagenblast G, Langer N, Molt O, Fuchs E, Lennartz C, Kido J (2010) High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex. Adv Mater 22:5003–5007

  150. 150.

    Sajoto T, Djurovich PI, Tamayo A, Yousufuddin M, Bau R, Thompson ME, Holmes RJ, Forrest SR (2005) Blue and near-UV phosphorescence from iridium complexes with cyclometalated pyrazolyl or n-heterocyclic carbene ligands. Inorg Chem 44:7992–8003

  151. 151.

    Erk P, Bold M, Egen M, Fuchs E, Geßner T, Kahle K, Lennartz C, Molt O, Nord S, Reichelt H, Schildknecht C, Johannes H-H, Kowalsky W (2006) Efficient deep blue triplet emitters for OLEDs. SID Dig. 37:131–134

  152. 152.

    Hsieh C-H, Wu F-I, Fan C-H, Huang M-J, Lu K-Y, Chou P-Y, Ou Yang Y-H, Wu S-H, Chen I-C, Chou S-H, Wong K-T, Cheng C-H (2011) Design and synthesis of iridium bis(carbene) complexes for efficient blue electrophosphorescence. Chem Eur J 17:9180–9187

  153. 153.

    Farag AM, Mayhoub AS, Barakat SE, Bayomi AH (2008) Synthesis of new N-phenylpyrazole derivatives with potent antimicrobial activity. Bioorganic & Medicinal Chemistry 16:4569–4578

  154. 154.

    Lo S-C, Shipley CP, Bera RN, Harding RE, Cowley AR, Burn PL, Samuel IDW (2006) Blue phosphorescence from iridium(iii) complexes at room temperature. Chem Mater 18:5119–5129

  155. 155.

    Yeh Y-S, Cheng Y-M, Chou P-T, Lee G-H, Yang C-H, Chi Y, Shu C-F, Wang C-H (2006) A new family of homoleptic ir(iii) complexes: tris-pyridyl azolate derivatives with dual phosphorescence. ChemPhysChem 7:2294–2297

  156. 156.

    Tsai, J-.Y., Yager, W., Brooks, J., Beers, S., Kottas, G.S., Barron, E., Kwang, R.: Universal Display Corporation, USA US2010/0148663 A1 (2010)

  157. 157.

    Stoessel, P., Heil, H., Jooseten, D., Pflumm, C., Gerhard, A., Bueuning, E.: (Merck, Germany) WO2010/086089 A1 (2010)

  158. 158.

    Lee SJ, Park K-M, Yang K, Kang Y (2009) Blue Phosphorescent Ir(III) Complex with High Color Purity: fac-Tris(2′,6′-difluoro-2,3′-bipyridinato-N, C4′)iridium(III). Inorg. Chem. 48:1030–1037

  159. 159.

    Yook KS, Jeon SO, Joo CW, Lee JY (2009) High efficiency deep blue phosphorescent organic light-emitting diodes. Org. Electron. 10:170–173

  160. 160.

    Jeon SO, Yook KS, Joo CW, Lee JY (2009) Phenylcarbazole-based phosphine oxide host materials for high efficiency in deep blue phosphorescent organic light-emitting diodes. Adv. Funct. Mater. 19:3644–3649

  161. 161.

    Kim SH, Jang J, Lee SJ, Lee JY (2008) Deep blue phosphorescent organic light-emitting diodes using a Si based wide bandgap host and an Ir dopant with electron withdrawing substituents. Thin Solid Films 517:722–726

  162. 162.

    Jeon SO, Jang SE, Son HS, Lee JY (2011) External quantum efficiency above 20% in deep blue phosphorescent organic light-emitting diodes. Adv. Mater. 23:1436–1441

  163. 163.

    Tanaka D, Takeda T, Chiba T, Watanabe S, Kido J (2007) Novel electron-transport material containing boron atom with a high triplet excited energy level. Chem. Lett. 36:262–263

  164. 164.

    Park HR, Lim DH, Kim YK, Ha Y (2012) The new iridium complexes involving pyridylpyridine derivatives for the saturated blue emission. J. Nanosci. Nanotechnol. 12:668–673

Download references

Acknowledgments

This work was supported by the Swiss Federal Office for Energy, and the European Commission H2020-ICT-2014-1, SOLEDLIGHT project, Grant agreement No: 643791 and the Swiss State Secretariat for Education, Research and Innovation (SERI).

Author information

Correspondence to Mohammad Khaja Nazeeruddin.

Additional information

This article is part of the topical collection “Photoluminescent Materials and Electroluminescent Devices”: edited by Nicola Amaroli and Henk Bolink.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bin Mohd Yusoff, A.R., Huckaba, A.J. & Nazeeruddin, M.K. Phosphorescent Neutral Iridium (III) Complexes for Organic Light-Emitting Diodes. Top Curr Chem (Z) 375, 39 (2017). https://doi.org/10.1007/s41061-017-0126-7

Download citation

Keywords

  • Organic light-emitting diodes
  • Fluorescence
  • Phosphorescence
  • Iridium
  • Triplet emitters
  • Transition metal complexes