Advertisement

Topics in Current Chemistry

, 375:17 | Cite as

Modulation and Control of Charge Transport Through Single-Molecule Junctions

  • Kun Wang
  • Bingqian Xu
Review
Part of the following topical collections:
  1. Molecular-Scale Electronics: Current Status and Perspective

Abstract

The ability to modulate and control charge transport though single-molecule junction devices is crucial to achieving the ultimate goal of molecular electronics: constructing real-world-applicable electronic components from single molecules. This review aims to highlight the progress made in single-molecule electronics, emphasizing the development of molecular junction electronics in recent years. Among many techniques that attempt to wire a molecule to metallic electrodes, the single-molecule break junction (SMBJ) technique is one of the most reliable and tunable experimental platforms for achieving metal–molecule–metal configurations. It also provides great freedom to tune charge transport through the junction. Soon after the SMBJ technique was introduced, it was extensively used to measure the conductances of individual molecules; however, different conductances were obtained for the same molecule, and it proved difficult to interpret this wide distribution of experimental data. This phenomenon was later found to be mainly due to a lack of precise experimental control and advanced data analysis methods. In recent years, researchers have directed considerable effort into advancing the SMBJ technique by gaining a deeper physical understanding of charge transport through single molecules and thus enhancing its potential applicability in functional molecular-scale electronic devices, such as molecular diodes and molecular transistors. In parallel with that research, novel data analysis methods and approaches that enable the discovery of hidden yet important features in the data are being developed. This review discusses various aspects of molecular junction electronics, from the initial goal of molecular electronics, the development of experimental techniques for creating single-molecule junctions and determining single-molecule conductance, to the characterization of functional current–voltage features and the investigation of physical properties other than charge transport. In addition, the development of advanced data analysis methods is considered, as they are critical to gaining detailed physical insight into the underlying transport mechanisms.

Keywords

Molecular electronics Single-molecule break junction Mechanical modulation Molecule–electrode interfaces Rectification Negative differential conductance Gating effect 

Notes

Acknowledgements

The authors thank the U.S. National Science Foundation for funding this work (ECCS 0823849, ECCS 1231967, ECCS 1609788).

References

  1. 1.
    Feynman RP (1960) Eng Sci 23:22Google Scholar
  2. 2.
    Vonhippel A (1956) Science 123:315CrossRefGoogle Scholar
  3. 3.
    Moore GE (1965) Electronics 38:114Google Scholar
  4. 4.
    Waldrop MM (2016) Nature 530:144CrossRefGoogle Scholar
  5. 5.
    McCreery RL, Yan H, Bergren AJ (1065) Phys Chem Chem Phys 2013:15Google Scholar
  6. 6.
    Aviram A, Ratner MA (1974) Chem Phys Lett 29:277CrossRefGoogle Scholar
  7. 7.
    Slowinski K, Chamberlain RV, Miller CJ, Majda M (1997) J Am Chem Soc 119:11910CrossRefGoogle Scholar
  8. 8.
    Gregory S (1990) Phys Rev Lett 64:689CrossRefGoogle Scholar
  9. 9.
    Chen J, Reed MA, Rawlett AM, Tour JM (1999) Science 286:1550CrossRefGoogle Scholar
  10. 10.
    Zhou C, Deshpande MR, Reed MA, Jones L, Tour JM (1997) Appl Phys Lett 71:611CrossRefGoogle Scholar
  11. 11.
    Fischer CM, Burghard M, Roth S, Vonklitzing K (1995) Appl Phys Lett 66:3331CrossRefGoogle Scholar
  12. 12.
    McCreery RL, Bergren AJ (2009) Adv Mater 21:4303CrossRefGoogle Scholar
  13. 13.
    Zhong ZH, Wang DL, Cui Y, Bockrath MW, Lieber CM (2003) Science 302:1377CrossRefGoogle Scholar
  14. 14.
    Hamill J, Wang K, Xu B (2014) Rep Electrochem 4:1Google Scholar
  15. 15.
    Ratner M (2013) Nat Nanotechnol 8:378CrossRefGoogle Scholar
  16. 16.
    Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Science 278:252CrossRefGoogle Scholar
  17. 17.
    Park H, Lim AKL, Alivisatos AP, Park J, McEuen PL (1999) Appl Phys Lett 75:301CrossRefGoogle Scholar
  18. 18.
    Joachim C, Gimzewski JK, Aviram A (2000) Nature 408:541CrossRefGoogle Scholar
  19. 19.
    Nitzan A (2001) Annu Rev Phys Chem 52:681CrossRefGoogle Scholar
  20. 20.
    Jia C, Ma B, Xin N, Guo X (2015) Acc Chem Res 48:2565CrossRefGoogle Scholar
  21. 21.
    Guo X, Small JP, Klare JE, Wang Y, Purewal MS, Tam IW, Hong BH, Caldwell R, Huang L, Brien S, Yan J, Breslow R, Wind SJ, Hone J, Kim P, Nuckolls C (2006) Science 311:356CrossRefGoogle Scholar
  22. 22.
    Jia C, Migliore A, Xin N, Huang S, Wang J, Yang Q, Wang S, Chen H, Wang D, Feng B, Liu Z, Zhang G, Qu D-H, Tian H, Ratner MA, Xu HQ, Nitzan A, Guo X (2016) Science 352:1443CrossRefGoogle Scholar
  23. 23.
    Xiang D, Wang X, Jia C, Lee T, Guo X (2016) Chem Rev 116:4318CrossRefGoogle Scholar
  24. 24.
    Jia C, Guo X (2013) Chem Soc Rev 42:5642CrossRefGoogle Scholar
  25. 25.
    Aradhya SV, Venkataraman L (2013) Nat Nanotechnol 8:399CrossRefGoogle Scholar
  26. 26.
    Salomon A, Cahen D, Lindsay S, Tomfohr J, Engelkes VB, Frisbie CD (1881) Adv Mater 2003:15Google Scholar
  27. 27.
    Lindsay SM, Ratner MA (2007) Adv Mater 19:23CrossRefGoogle Scholar
  28. 28.
    Dunlap DD, Garcia R, Schabtach E, Bustamante C (1993) Proc Natl Acad Sci USA 90:7652CrossRefGoogle Scholar
  29. 29.
    Porath D, Bezryadin A, de Vries S, Dekker C (2000) Nature 403:635CrossRefGoogle Scholar
  30. 30.
    Fink HW, Schonenberger C (1999) Nature 398:407CrossRefGoogle Scholar
  31. 31.
    Kasumov AY, Kociak M, Gueron S, Reulet B, Volkov VT, Klinov DV, Bouchiat H (2001) Science 291:280CrossRefGoogle Scholar
  32. 32.
    Xu BQ, Tao NJ (2003) Science 301:1221CrossRefGoogle Scholar
  33. 33.
    Haiss W, van Zalinge H, Higgins SJ, Bethell D, Hobenreich H, Schiffrin DJ, Nichols RJ (2003) J Am Chem Soc 125:15294CrossRefGoogle Scholar
  34. 34.
    Haiss W, Nichols RJ, van Zalinge H, Higgins SJ, Bethell D, Schiffrin DJ (2004) Phys Chem Chem Phys 6:4330CrossRefGoogle Scholar
  35. 35.
    Nichols RJ, Haiss W, Higgins SJ, Leary E, Martin S, Bethell D (2010) Phys Chem Chem Phys 12:2801CrossRefGoogle Scholar
  36. 36.
    Muller CJ, Vanruitenbeek JM, Dejongh LJ (1992) Physica C 191:485CrossRefGoogle Scholar
  37. 37.
    Agrait N, Yeyati AL, van Ruitenbeek JM (2003) Phys Rep 377:81CrossRefGoogle Scholar
  38. 38.
    Lörtscher E, Ciszek JW, Tour J, Riel H (2006) Small 2:973CrossRefGoogle Scholar
  39. 39.
    Xiang D, Jeong H, Lee T, Mayer D (2013) Adv Mater 25:4845CrossRefGoogle Scholar
  40. 40.
    Guo C, Wang K, Zerah-Harush E, Hamill J, Wang B, Dubi Y, Xu B (2016) Nat Chem 8:484CrossRefGoogle Scholar
  41. 41.
    Capozzi B, Xia J, Adak O, Dell EJ, Liu Z-F, Taylor JC, Neaton JB, Campos LM, Venkataraman L (2015) Nat Nanotechnol 10:522CrossRefGoogle Scholar
  42. 42.
    Diez-Perez I, Hihath J, Lee Y, Yu L, Adamska L, Kozhushner MA, Oleynik II, Tao N (2009) Nat Chem 1:635CrossRefGoogle Scholar
  43. 43.
    Zhou J, Samanta S, Guo C, Locklin J, Xu B (2013) Nanoscale 5:5715CrossRefGoogle Scholar
  44. 44.
    Perrin ML, Frisenda R, Koole M, Seldenthuis JS, GilJose AC, Valkenier H, Hummelen JC, Renaud N, Grozema FC, Thijssen JM, Dulić D, van der ZantHerre SJ (2014) Nat Nanotechnol 9:830CrossRefGoogle Scholar
  45. 45.
    Xiao X, Nagahara LA, Rawlett AM, Tao N (2005) J Am Chem Soc 127:9235CrossRefGoogle Scholar
  46. 46.
    Scott GD, Natelson D, Kirchner S, Muñoz E (2013) Phys Rev B 87:241104CrossRefGoogle Scholar
  47. 47.
    Frisenda R, Gaudenzi R, Franco C, Mas-Torrent M, Rovira C, Veciana J, Alcon I, Bromley ST, Burzurí E, van der Zant HSJ (2015) Nano Lett 15:3109CrossRefGoogle Scholar
  48. 48.
    Rakhmilevitch D, Korytár R, Bagrets A, Evers F, Tal O (2014) Phys Rev Lett 113:236603CrossRefGoogle Scholar
  49. 49.
    Li Z, Li H, Chen S, Froehlich T, Yi C, Schönenberger C, Calame M, Decurtins S, Liu S-X, Borguet E (2014) J Am Chem Soc 136:8867CrossRefGoogle Scholar
  50. 50.
    Baghernejad M, Zhao X, Baruël Ørnsø K, Füeg M, Moreno-García P, Rudnev AV, Kaliginedi V, Vesztergom S, Huang C, Hong W, Broekmann P, Wandlowski T, Thygesen KS, Bryce MR (2014) J Am Chem Soc 136:17922CrossRefGoogle Scholar
  51. 51.
    Osorio HM, Catarelli S, Cea P, Gluyas JBG, Hartl F, Higgins SJ, Leary E, Low PJ, Martín S, Nichols RJ, Tory J, Ulstrup J, Vezzoli A, Milan DC, Zeng Q (2015) J Am Chem Soc 137:14319CrossRefGoogle Scholar
  52. 52.
    Schwöbel J, Fu Y, Brede J, Dilullo A, Hoffmann G, Klyatskaya S, Ruben M, Wiesendanger R (2012) Nat Commun 3:953CrossRefGoogle Scholar
  53. 53.
    Xie Z, Markus TZ, Cohen SR, Vager Z, Gutierrez R, Naaman R (2011) Nano Lett 11:4652CrossRefGoogle Scholar
  54. 54.
    Mondal PC, Fontanesi C, Waldeck DH, Naaman R (2016) Acc Chem Res 49:2560. doi: 10.1021/acs.accounts.6b00446
  55. 55.
    Schmaus S, Bagrets A, Nahas Y, Yamada TK, Bork A, Bowen M, Beaurepaire E, Evers F, Wulfhekel W (2011) Nat Nanotechnol 6:185CrossRefGoogle Scholar
  56. 56.
    Chang WB, Mai C-K, Kotiuga M, Neaton JB, Bazan GC, Segalman RA (2014) Chem Mater 26:7229CrossRefGoogle Scholar
  57. 57.
    Kim Y, Jeong W, Kim K, Lee W, Reddy P (2014) Nat Nanotechnol 9:881CrossRefGoogle Scholar
  58. 58.
    Evangeli C, Matt M, Rincón-García L, Pauly F, Nielaba P, Rubio-Bollinger G, Cuevas JC, Agraït N (1006) Nano Lett 2015:15Google Scholar
  59. 59.
    Li Y, Xiang L, Palma JL, Asai Y, Tao N (2016) Nat Commun 7:11294CrossRefGoogle Scholar
  60. 60.
    Vazquez H, Skouta R, Schneebeli S, Kamenetska M, Breslow R, Venkataraman L, Hybertsen MS (2012) Nat Nanotechnol 7:663CrossRefGoogle Scholar
  61. 61.
    Vezzoli A, Grace I, Brooke C, Wang K, Lambert CJ, Xu B, Nichols RJ, Higgins SJ (2015) Nanoscale 7:18949CrossRefGoogle Scholar
  62. 62.
    Nichols RJ, Higgins SJ (2012) Nat Nanotech 7:281Google Scholar
  63. 63.
    Akkerman HB, de Boer B (2008) J Phys Condens Matter 20:013001CrossRefGoogle Scholar
  64. 64.
    Tachibana M, Yoshizawa K, Ogawa A, Fujimoto H, Hoffmann R (2002) J Phys Chem B 106:12727CrossRefGoogle Scholar
  65. 65.
    Engelkes VB, Beebe JM, Frisbie CD (2004) J Am Chem Soc 126:14287CrossRefGoogle Scholar
  66. 66.
    Li X, He J, Hihath J, Xu B, Lindsay SM, Tao N (2006) J Am Chem Soc 128:2135CrossRefGoogle Scholar
  67. 67.
    Akkerman HB, Naber RCG, Jongbloed B, van Hal PA, Blom PWM, de Leeuw DM, de Boer B (2007) Proc Natl Acad Sci USA 104:11161CrossRefGoogle Scholar
  68. 68.
    Kaun C-C, Seideman T (2008) Phys Rev B 77:033414CrossRefGoogle Scholar
  69. 69.
    Li C, Pobelov I, Wandlowski T, Bagrets A, Arnold A, Evers F (2008) J Am Chem Soc 130:318CrossRefGoogle Scholar
  70. 70.
    Paulsson M, Krag C, Frederiksen T, Brandbyge M (2009) Nano Lett 9:117CrossRefGoogle Scholar
  71. 71.
    Wang K, Xu B (2016) Phys Chem Chem Phys 18:9569CrossRefGoogle Scholar
  72. 72.
    Wang K, Hamill JM, Zhou J, Xu B (2014) J Am Chem Soc 136:17406CrossRefGoogle Scholar
  73. 73.
    Zhou J, Chen F, Xu B (2009) J Am Chem Soc 131:10439CrossRefGoogle Scholar
  74. 74.
    Dhungana KB, Mandal S, Pati R (2012) J Phys Chem C 116:17268CrossRefGoogle Scholar
  75. 75.
    Demir F, Kirczenow G (2012) J Chem Phys 136:014703CrossRefGoogle Scholar
  76. 76.
    Guo S, Hihath J, Diez-Perez I, Tao N (2011) J Am Chem Soc 133:19189CrossRefGoogle Scholar
  77. 77.
    Joshua H, Nongjian T (2014) Semicond Sci Technol 29:054007CrossRefGoogle Scholar
  78. 78.
    Quek SY, Venkataraman L, Choi HJ, Louie SG, Hybertsen MS, Neaton JB (2007) Nano Lett 7:3477CrossRefGoogle Scholar
  79. 79.
    Zhou J, Guo C, Xu B (2012) J Phys Condens Matter 24(16):164209Google Scholar
  80. 80.
    Park YS, Whalley AC, Kamenetska M, Steigerwald ML, Hybertsen MS, Nuckolls C, Venkataraman L (2007) J Am Chem Soc 129:15768CrossRefGoogle Scholar
  81. 81.
    Chen F, Li X, Hihath J, Huang Z, Tao N (2006) J Am Chem Soc 128:15874CrossRefGoogle Scholar
  82. 82.
    Kiguchi M, Miura S, Hara K, Sawamura M, Murakoshi K (2007) Appl Phys Lett 91:053110CrossRefGoogle Scholar
  83. 83.
    Patrone L, Palacin S, Bourgoin JP, Lagoute J, Zambelli T, Gauthier S (2002) Chem Phys 281:325CrossRefGoogle Scholar
  84. 84.
    Parameswaran R, Widawsky JR, Vázquez H, Park YS, Boardman BM, Nuckolls C, Steigerwald ML, Hybertsen MS, Venkataraman L (2010) J Phys Chem Lett 1:2114CrossRefGoogle Scholar
  85. 85.
    Hines T, Díez-Pérez I, Nakamura H, Shimazaki T, Asai Y, Tao N (2013) J Am Chem Soc 135:3319CrossRefGoogle Scholar
  86. 86.
    Hong W, Li H, Liu S-X, Fu Y, Li J, Kaliginedi V, Decurtins S, Wandlowski T (2012) J Am Chem Soc 134:19425CrossRefGoogle Scholar
  87. 87.
    Moreno-García P, Gulcur M, Manrique DZ, Pope T, Hong W, Kaliginedi V, Huang C, Batsanov AS, Bryce MR, Lambert C, Wandlowski T (2013) J Am Chem Soc 135:12228CrossRefGoogle Scholar
  88. 88.
    Yelin T, Korytar R, Sukenik N, Vardimon R, Kumar B, Nuckolls C, Evers F, Tal O (2016) Nat Mater 15:444CrossRefGoogle Scholar
  89. 89.
    Xiang L, Hines T, Palma JL, Lu X, Mujica V, Ratner MA, Zhou G, Tao N (2016) J Am Chem Soc 138:679CrossRefGoogle Scholar
  90. 90.
    Martin CA, Ding D, Sørensen JK, Bjørnholm T, van Ruitenbeek JM, van der Zant HSJ (2008) J Am Chem Soc 130:13198CrossRefGoogle Scholar
  91. 91.
    Adak O, Korytár R, Joe AY, Evers F, Venkataraman L (2015) Nano Lett 15:3716CrossRefGoogle Scholar
  92. 92.
    Beebe JM, Kim B, Frisbie CD, Kushmerick JG (2008) ACS Nano 2:827CrossRefGoogle Scholar
  93. 93.
    Ko C-H, Huang M-J, Fu M-D, Chen C-H (2010) J Am Chem Soc 132:756CrossRefGoogle Scholar
  94. 94.
    Zhou J, Chen G, Xu B (2010) J Phys Chem C 114:8587CrossRefGoogle Scholar
  95. 95.
    Xu B (2007) Small 3:2061CrossRefGoogle Scholar
  96. 96.
    Wang K, Hamill JM, Wang B, Guo C, Jiang S, Huang Z, Xu B (2014) Chem Sci 5:3425CrossRefGoogle Scholar
  97. 97.
    Rascón-Ramos H, Artés JM, Li Y, Hihath J (2015) Nat Mater 14:517CrossRefGoogle Scholar
  98. 98.
    Quek SY, Kamenetska M, Steigerwald ML, Choi HJ, Louie SG, Hybertsen MS, Neaton JB, Venkataraman L (2009) Nat Nanotechnol 4:230CrossRefGoogle Scholar
  99. 99.
    Chen F, Hihath J, Huang Z, Li X, Tao NJ (2007) Annu Rev Phys Chem 58:535CrossRefGoogle Scholar
  100. 100.
    Zhou X, Peng Z, Sun Y, Wang L, Niu Z, Zhou X (2013) Nanotechnology 24:465204CrossRefGoogle Scholar
  101. 101.
    Zhou X-S, Wei Y-M, Liu L, Chen Z-B, Tang J, Mao B-W (2008) J Am Chem Soc 130:13228CrossRefGoogle Scholar
  102. 102.
    Wilson NR, Macpherson JV (2009) Nat Nanotechnol 4:483CrossRefGoogle Scholar
  103. 103.
    Bumm LA, Arnold JJ, Cygan MT, Dunbar TD, Burgin TP, Jones L, Allara DL, Tour JM, Weiss PS (1996) Science 271:1705CrossRefGoogle Scholar
  104. 104.
    Clément N, Patriarche G, Smaali K, Vaurette F, Nishiguchi K, Troadec D, Fujiwara A, Vuillaume D (2011) Small 7:2607CrossRefGoogle Scholar
  105. 105.
    Smaali K, Clément N, Patriarche G, Vuillaume D (2012) ACS Nano 6:4639CrossRefGoogle Scholar
  106. 106.
    Cui XD, Primak A, Zarate X, Tomfohr J, Sankey OF, Moore AL, Moore TA, Gust D, Harris G, Lindsay SM (2001) Science 294:571CrossRefGoogle Scholar
  107. 107.
    Tour JM, Reinerth WA, Jones L, Burgin TP, Zhou C-W, Muller CJ, Deshpande MR, Reed MA (1998) Ann NY Acad Sci 852:197CrossRefGoogle Scholar
  108. 108.
    Moreno-García P, La Rosa A, Kolivoška V, Bermejo D, Hong W, Yoshida K, Baghernejad M, Filippone S, Broekmann P, Wandlowski T, Martín N (2015) J Am Chem Soc 137:2318CrossRefGoogle Scholar
  109. 109.
    Dell EJ, Capozzi B, Xia J, Venkataraman L, Campos LM (2015) Nat Chem 7:209CrossRefGoogle Scholar
  110. 110.
    Su TA, Li H, Steigerwald ML, Venkataraman L, Nuckolls C (2015) Nat Chem 7:215CrossRefGoogle Scholar
  111. 111.
    Li H, Su TA, Zhang V, Steigerwald ML, Nuckolls C, Venkataraman L (2015) J Am Chem Soc 137:5028CrossRefGoogle Scholar
  112. 112.
    Makk P, Tomaszewski D, Martinek J, Balogh Z, Csonka S, Wawrzyniak M, Frei M, Venkataraman L, Halbritter A (2012) ACS Nano 6:3411CrossRefGoogle Scholar
  113. 113.
    Hamill JM, Wang K, Xu B (2014) Nanoscale 6:5657CrossRefGoogle Scholar
  114. 114.
    Büttiker M, Imry Y, Landauer R, Pinhas S (1985) Phys Rev B 31:6207CrossRefGoogle Scholar
  115. 115.
    Briechle BM, Kim Y, Ehrenreich P, Erbe A, Sysoiev D, Huhn T, Groth U, Scheer E (2012) Beilstein J Nanotechnol 3:798CrossRefGoogle Scholar
  116. 116.
    Simmons JG (1963) J Appl Phys 34:1793CrossRefGoogle Scholar
  117. 117.
    Cui B, Xu Y, Ji G, Wang H, Zhao W, Zhai Y, Li D, Liu D (2014) Org Electron 15:484CrossRefGoogle Scholar
  118. 118.
    Wang K, Zhou J, Hamill JM, Xu B (2014) J Chem Phys 141:054712CrossRefGoogle Scholar
  119. 119.
    Beebe JM, Kim B, Gadzuk JW, Frisbie CD, Kushmerick JG (2006) Phys Rev Lett 97:026801CrossRefGoogle Scholar
  120. 120.
    Jia C, Wang J, Yao C, Cao Y, Zhong Y, Liu Z, Liu Z, Guo X (2013) Angew Chem Int Ed 52:8666CrossRefGoogle Scholar
  121. 121.
    Xie Z, Bâldea I, Smith CE, Wu Y, Frisbie CD (2015) ACS Nano 9:8022CrossRefGoogle Scholar
  122. 122.
    Bâldea I (2012) Phys Rev B 85:035442CrossRefGoogle Scholar
  123. 123.
    Chen J, Markussen T, Thygesen KS (2010) Phys Rev B 82:121412CrossRefGoogle Scholar
  124. 124.
    Wang G, Kim Y, Na S-I, Kahng YH, Ku J, Park S, Jang YH, Kim D-Y, Lee T (2011) J Phys Chem C 115:17979CrossRefGoogle Scholar
  125. 125.
    Nijhuis CA, Reus WF, Whitesides GM (2010) J Am Chem Soc 132:18386CrossRefGoogle Scholar
  126. 126.
    Kornilovitch PE, Bratkovsky AM, Williams RS (2002) Phys Rev B 66:165436CrossRefGoogle Scholar
  127. 127.
    Liu R, Ke SH, Yang WT, Baranger HU (2006) J Chem Phys 124:024718CrossRefGoogle Scholar
  128. 128.
    Yee SK, Sun J, Darancet P, Tilley TD, Majumdar A, Neaton JB, Segalman RA (2011) ACS Nano 5:9256CrossRefGoogle Scholar
  129. 129.
    Hihath J, Bruot C, Nakamura H, Asai Y, Diez-Perez I, Lee Y, Yu L, Tao N (2011) ACS Nano 5:8331CrossRefGoogle Scholar
  130. 130.
    Zhao J, Yu C, Wang N, Liu H (2010) J Phys Chem C 114:4135CrossRefGoogle Scholar
  131. 131.
    Armstrong N, Hoft RC, McDonagh A, Cortie MB, Ford MJ (2007) Nano Lett 7:3018CrossRefGoogle Scholar
  132. 132.
    Stadler R, Geskin V, Cornil J (2008) J Phys Condens Matter 20:374105CrossRefGoogle Scholar
  133. 133.
    Chen J, Wang W, Reed MA, Rawlett AM, Price DW, Tour JM (2000) Appl Phys Lett 77:1224CrossRefGoogle Scholar
  134. 134.
    Fan F-RF, Yang J, Cai L, Price DW, Dirk SM, Kosynkin DV, Yao Y, Rawlett AM, Tour JM, Bard AJ (2002) J Am Chem Soc 124:5550CrossRefGoogle Scholar
  135. 135.
    Kratochvilova I, Kocirik M, Zambova A, Mbindyo J, Mallouk TE, Mayer TS (2002) J Mater Chem 12:2927CrossRefGoogle Scholar
  136. 136.
    Rawlett AM, Hopson TJ, Nagahara LA, Tsui RK, Ramachandran GK, Lindsay SM (2002) Appl Phys Lett 81:3043CrossRefGoogle Scholar
  137. 137.
    Xue Y, Datta S, Hong S, Reifenberger R, Henderson JI, Kubiak CP (1999) Phys Rev B 59:R7852CrossRefGoogle Scholar
  138. 138.
    Ying H, Zhou W-X, Chen K-Q, Zhou G (2014) Comput Mater Sci 82:33CrossRefGoogle Scholar
  139. 139.
    Mentovich ED, Belgorodsky B, Kalifa I, Richter S (2010) Adv Mater 22:2182CrossRefGoogle Scholar
  140. 140.
    Chang LL, Esaki L, Tsu R (1974) Appl Phys Lett 24:593CrossRefGoogle Scholar
  141. 141.
    Esaki L (1958) Phys Rev 109:603CrossRefGoogle Scholar
  142. 142.
    Guisinger NP, Basu R, Greene ME, Baluch AS, Hersam MC (2004) Nanotechnology 15:S452CrossRefGoogle Scholar
  143. 143.
    Guisinger NP, Greene ME, Basu R, Baluch AS, Hersam MC (2003) Nano Lett 4:55CrossRefGoogle Scholar
  144. 144.
    Hallbäck A-S, Poelsema B, Zandvliet HJW (2007) Appl Surf Sci 253:4066CrossRefGoogle Scholar
  145. 145.
    Lu ZH, Khangura RS, Dharma-wardana MWC, Zgierski MZ, Ritchie D (2004) Appl Phys Lett 85:323CrossRefGoogle Scholar
  146. 146.
    Pitters JL, Wolkow RA (2006) Nano Lett 6:390CrossRefGoogle Scholar
  147. 147.
    Rakshit T, Liang GC, Ghosh AW, Hersam MC, Datta S (2005) Phys Rev B 72:125305CrossRefGoogle Scholar
  148. 148.
    Rakshit T, Liang G-C, Ghosh AW, Datta S (1803) Nano Lett 2004:4Google Scholar
  149. 149.
    Le JD, He Y, Hoye TR, Mead CC, Kiehl RA (2003) Appl Phys Lett 83:5518CrossRefGoogle Scholar
  150. 150.
    Migliore A, Nitzan A (2011) ACS Nano 5:6669CrossRefGoogle Scholar
  151. 151.
    Bürkle M, Viljas JK, Vonlanthen D, Mishchenko A, Schön G, Mayor M, Wandlowski T, Pauly F (2012) Phys Rev B 85:075417CrossRefGoogle Scholar
  152. 152.
    Kang N, Erbe A, Scheer E (2010) Appl Phys Lett 96:023701CrossRefGoogle Scholar
  153. 153.
    Mentovich ED, Kalifa I, Tsukernik A, Caster A, Rosenberg-Shraga N, Marom H, Gozin M, Richter S (2008) Small 4:55CrossRefGoogle Scholar
  154. 154.
    Bingqian X, Yonatan D (2015) J Phys Condens Matter 27:263202CrossRefGoogle Scholar
  155. 155.
    Zhou JF, Guo CL, Xu BQ (2012) J Phys Condens Matter 24:164029Google Scholar
  156. 156.
    Zhou JF, Xu BQ (2011) Appl Phys Lett 99:042104CrossRefGoogle Scholar
  157. 157.
    Galperin M, Ratner MA, Nitzan A (2004) Nano Lett 5:125CrossRefGoogle Scholar
  158. 158.
    Yeganeh S, Galperin M, Ratner MA (2007) J Am Chem Soc 129:13313CrossRefGoogle Scholar
  159. 159.
    Zazunov A, Feinberg D, Martin T (2006) Phys Rev B 73:115405Google Scholar
  160. 160.
    Galperin M, Ratner M, Nitzan A (2005) Nano Lett 5:125CrossRefGoogle Scholar
  161. 161.
    Han JE (2010) Phys Rev B 81:113106CrossRefGoogle Scholar
  162. 162.
    Song H, Kim Y, Jang YH, Jeong H, Reed MA, Lee T (1039) Nature 2009:462Google Scholar
  163. 163.
    Xiang D, Jeong H, Kim D, Lee T, Cheng Y, Wang Q, Mayer D (2013) Nano Lett 13:2809CrossRefGoogle Scholar
  164. 164.
    Baghernejad M, Manrique DZ, Li C, Pope T, Zhumaev U, Pobelov I, Moreno-Garcia P, Kaliginedi V, Huang C, Hong W, Lambert C, Wandlowski T (2014) Chem Commun 50:15975CrossRefGoogle Scholar
  165. 165.
    Capozzi B, Chen Q, Darancet P, Kotiuga M, Buzzeo M, Neaton JB, Nuckolls C, Venkataraman L (2014) Nano Lett 14:1400CrossRefGoogle Scholar
  166. 166.
    Huang C, Rudnev AV, Hong W, Wandlowski T (2015) Chem Soc Rev 44:889CrossRefGoogle Scholar
  167. 167.
    Li C, Stepanenko V, Lin M-J, Hong W, Würthner F, Wandlowski T (2013) Phys Status Solidi B 250:2458CrossRefGoogle Scholar
  168. 168.
    Kay NJ, Higgins SJ, Jeppesen JO, Leary E, Lycoops J, Ulstrup J, Nichols RJ (2012) J Am Chem Soc 134:16817CrossRefGoogle Scholar
  169. 169.
    Darwish N, Díez-Pérez I, Da Silva P, Tao N, Gooding JJ, Paddon-Row MN (2012) Angew Chem Int Ed 51:3203CrossRefGoogle Scholar
  170. 170.
    Bruot C, Hihath J, Tao N (2012) Nat Nanotechnol 7:35CrossRefGoogle Scholar
  171. 171.
    Bruot C, Palma JL, Xiang L, Mujica V, Ratner MA, Tao N (2015) Nat Commun 6:8032Google Scholar
  172. 172.
    Galperin M, Nitzan A (2012) Phys Chem Chem Phys 14:9421CrossRefGoogle Scholar
  173. 173.
    Battacharyya S, Kibel A, Kodis G, Liddell PA, Gervaldo M, Gust D, Lindsay S (2011) Nano Lett 11:2709CrossRefGoogle Scholar
  174. 174.
    Aragonès AC, Aravena D, Cerdá JI, Acís-Castillo Z, Li H, Real JA, Sanz F, Hihath J, Ruiz E, Díez-Pérez I (2016) Nano Lett 16:218CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Physics and Astronomy and NanoSECUniversity of GeorgiaAthensUSA
  2. 2.College of Engineering and NanoSECUniversity of GeorgiaAthensUSA

Personalised recommendations