Skip to main content
Log in

Modulation and Control of Charge Transport Through Single-Molecule Junctions

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

The ability to modulate and control charge transport though single-molecule junction devices is crucial to achieving the ultimate goal of molecular electronics: constructing real-world-applicable electronic components from single molecules. This review aims to highlight the progress made in single-molecule electronics, emphasizing the development of molecular junction electronics in recent years. Among many techniques that attempt to wire a molecule to metallic electrodes, the single-molecule break junction (SMBJ) technique is one of the most reliable and tunable experimental platforms for achieving metal–molecule–metal configurations. It also provides great freedom to tune charge transport through the junction. Soon after the SMBJ technique was introduced, it was extensively used to measure the conductances of individual molecules; however, different conductances were obtained for the same molecule, and it proved difficult to interpret this wide distribution of experimental data. This phenomenon was later found to be mainly due to a lack of precise experimental control and advanced data analysis methods. In recent years, researchers have directed considerable effort into advancing the SMBJ technique by gaining a deeper physical understanding of charge transport through single molecules and thus enhancing its potential applicability in functional molecular-scale electronic devices, such as molecular diodes and molecular transistors. In parallel with that research, novel data analysis methods and approaches that enable the discovery of hidden yet important features in the data are being developed. This review discusses various aspects of molecular junction electronics, from the initial goal of molecular electronics, the development of experimental techniques for creating single-molecule junctions and determining single-molecule conductance, to the characterization of functional current–voltage features and the investigation of physical properties other than charge transport. In addition, the development of advanced data analysis methods is considered, as they are critical to gaining detailed physical insight into the underlying transport mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Feynman RP (1960) Eng Sci 23:22

    Google Scholar 

  2. Vonhippel A (1956) Science 123:315

    Article  CAS  Google Scholar 

  3. Moore GE (1965) Electronics 38:114

    Google Scholar 

  4. Waldrop MM (2016) Nature 530:144

    Article  CAS  Google Scholar 

  5. McCreery RL, Yan H, Bergren AJ (1065) Phys Chem Chem Phys 2013:15

    Google Scholar 

  6. Aviram A, Ratner MA (1974) Chem Phys Lett 29:277

    Article  CAS  Google Scholar 

  7. Slowinski K, Chamberlain RV, Miller CJ, Majda M (1997) J Am Chem Soc 119:11910

    Article  CAS  Google Scholar 

  8. Gregory S (1990) Phys Rev Lett 64:689

    Article  CAS  Google Scholar 

  9. Chen J, Reed MA, Rawlett AM, Tour JM (1999) Science 286:1550

    Article  CAS  Google Scholar 

  10. Zhou C, Deshpande MR, Reed MA, Jones L, Tour JM (1997) Appl Phys Lett 71:611

    Article  CAS  Google Scholar 

  11. Fischer CM, Burghard M, Roth S, Vonklitzing K (1995) Appl Phys Lett 66:3331

    Article  CAS  Google Scholar 

  12. McCreery RL, Bergren AJ (2009) Adv Mater 21:4303

    Article  CAS  Google Scholar 

  13. Zhong ZH, Wang DL, Cui Y, Bockrath MW, Lieber CM (2003) Science 302:1377

    Article  CAS  Google Scholar 

  14. Hamill J, Wang K, Xu B (2014) Rep Electrochem 4:1

    Google Scholar 

  15. Ratner M (2013) Nat Nanotechnol 8:378

    Article  CAS  Google Scholar 

  16. Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Science 278:252

    Article  CAS  Google Scholar 

  17. Park H, Lim AKL, Alivisatos AP, Park J, McEuen PL (1999) Appl Phys Lett 75:301

    Article  CAS  Google Scholar 

  18. Joachim C, Gimzewski JK, Aviram A (2000) Nature 408:541

    Article  CAS  Google Scholar 

  19. Nitzan A (2001) Annu Rev Phys Chem 52:681

    Article  CAS  Google Scholar 

  20. Jia C, Ma B, Xin N, Guo X (2015) Acc Chem Res 48:2565

    Article  CAS  Google Scholar 

  21. Guo X, Small JP, Klare JE, Wang Y, Purewal MS, Tam IW, Hong BH, Caldwell R, Huang L, Brien S, Yan J, Breslow R, Wind SJ, Hone J, Kim P, Nuckolls C (2006) Science 311:356

    Article  CAS  Google Scholar 

  22. Jia C, Migliore A, Xin N, Huang S, Wang J, Yang Q, Wang S, Chen H, Wang D, Feng B, Liu Z, Zhang G, Qu D-H, Tian H, Ratner MA, Xu HQ, Nitzan A, Guo X (2016) Science 352:1443

    Article  CAS  Google Scholar 

  23. Xiang D, Wang X, Jia C, Lee T, Guo X (2016) Chem Rev 116:4318

    Article  CAS  Google Scholar 

  24. Jia C, Guo X (2013) Chem Soc Rev 42:5642

    Article  CAS  Google Scholar 

  25. Aradhya SV, Venkataraman L (2013) Nat Nanotechnol 8:399

    Article  CAS  Google Scholar 

  26. Salomon A, Cahen D, Lindsay S, Tomfohr J, Engelkes VB, Frisbie CD (1881) Adv Mater 2003:15

    Google Scholar 

  27. Lindsay SM, Ratner MA (2007) Adv Mater 19:23

    Article  CAS  Google Scholar 

  28. Dunlap DD, Garcia R, Schabtach E, Bustamante C (1993) Proc Natl Acad Sci USA 90:7652

    Article  CAS  Google Scholar 

  29. Porath D, Bezryadin A, de Vries S, Dekker C (2000) Nature 403:635

    Article  CAS  Google Scholar 

  30. Fink HW, Schonenberger C (1999) Nature 398:407

    Article  CAS  Google Scholar 

  31. Kasumov AY, Kociak M, Gueron S, Reulet B, Volkov VT, Klinov DV, Bouchiat H (2001) Science 291:280

    Article  CAS  Google Scholar 

  32. Xu BQ, Tao NJ (2003) Science 301:1221

    Article  CAS  Google Scholar 

  33. Haiss W, van Zalinge H, Higgins SJ, Bethell D, Hobenreich H, Schiffrin DJ, Nichols RJ (2003) J Am Chem Soc 125:15294

    Article  CAS  Google Scholar 

  34. Haiss W, Nichols RJ, van Zalinge H, Higgins SJ, Bethell D, Schiffrin DJ (2004) Phys Chem Chem Phys 6:4330

    Article  CAS  Google Scholar 

  35. Nichols RJ, Haiss W, Higgins SJ, Leary E, Martin S, Bethell D (2010) Phys Chem Chem Phys 12:2801

    Article  CAS  Google Scholar 

  36. Muller CJ, Vanruitenbeek JM, Dejongh LJ (1992) Physica C 191:485

    Article  Google Scholar 

  37. Agrait N, Yeyati AL, van Ruitenbeek JM (2003) Phys Rep 377:81

    Article  CAS  Google Scholar 

  38. Lörtscher E, Ciszek JW, Tour J, Riel H (2006) Small 2:973

    Article  CAS  Google Scholar 

  39. Xiang D, Jeong H, Lee T, Mayer D (2013) Adv Mater 25:4845

    Article  CAS  Google Scholar 

  40. Guo C, Wang K, Zerah-Harush E, Hamill J, Wang B, Dubi Y, Xu B (2016) Nat Chem 8:484

    Article  CAS  Google Scholar 

  41. Capozzi B, Xia J, Adak O, Dell EJ, Liu Z-F, Taylor JC, Neaton JB, Campos LM, Venkataraman L (2015) Nat Nanotechnol 10:522

    Article  CAS  Google Scholar 

  42. Diez-Perez I, Hihath J, Lee Y, Yu L, Adamska L, Kozhushner MA, Oleynik II, Tao N (2009) Nat Chem 1:635

    Article  CAS  Google Scholar 

  43. Zhou J, Samanta S, Guo C, Locklin J, Xu B (2013) Nanoscale 5:5715

    Article  CAS  Google Scholar 

  44. Perrin ML, Frisenda R, Koole M, Seldenthuis JS, GilJose AC, Valkenier H, Hummelen JC, Renaud N, Grozema FC, Thijssen JM, Dulić D, van der ZantHerre SJ (2014) Nat Nanotechnol 9:830

    Article  CAS  Google Scholar 

  45. Xiao X, Nagahara LA, Rawlett AM, Tao N (2005) J Am Chem Soc 127:9235

    Article  CAS  Google Scholar 

  46. Scott GD, Natelson D, Kirchner S, Muñoz E (2013) Phys Rev B 87:241104

    Article  CAS  Google Scholar 

  47. Frisenda R, Gaudenzi R, Franco C, Mas-Torrent M, Rovira C, Veciana J, Alcon I, Bromley ST, Burzurí E, van der Zant HSJ (2015) Nano Lett 15:3109

    Article  CAS  Google Scholar 

  48. Rakhmilevitch D, Korytár R, Bagrets A, Evers F, Tal O (2014) Phys Rev Lett 113:236603

    Article  CAS  Google Scholar 

  49. Li Z, Li H, Chen S, Froehlich T, Yi C, Schönenberger C, Calame M, Decurtins S, Liu S-X, Borguet E (2014) J Am Chem Soc 136:8867

    Article  CAS  Google Scholar 

  50. Baghernejad M, Zhao X, Baruël Ørnsø K, Füeg M, Moreno-García P, Rudnev AV, Kaliginedi V, Vesztergom S, Huang C, Hong W, Broekmann P, Wandlowski T, Thygesen KS, Bryce MR (2014) J Am Chem Soc 136:17922

    Article  CAS  Google Scholar 

  51. Osorio HM, Catarelli S, Cea P, Gluyas JBG, Hartl F, Higgins SJ, Leary E, Low PJ, Martín S, Nichols RJ, Tory J, Ulstrup J, Vezzoli A, Milan DC, Zeng Q (2015) J Am Chem Soc 137:14319

    Article  CAS  Google Scholar 

  52. Schwöbel J, Fu Y, Brede J, Dilullo A, Hoffmann G, Klyatskaya S, Ruben M, Wiesendanger R (2012) Nat Commun 3:953

    Article  CAS  Google Scholar 

  53. Xie Z, Markus TZ, Cohen SR, Vager Z, Gutierrez R, Naaman R (2011) Nano Lett 11:4652

    Article  CAS  Google Scholar 

  54. Mondal PC, Fontanesi C, Waldeck DH, Naaman R (2016) Acc Chem Res 49:2560. doi:10.1021/acs.accounts.6b00446

  55. Schmaus S, Bagrets A, Nahas Y, Yamada TK, Bork A, Bowen M, Beaurepaire E, Evers F, Wulfhekel W (2011) Nat Nanotechnol 6:185

    Article  CAS  Google Scholar 

  56. Chang WB, Mai C-K, Kotiuga M, Neaton JB, Bazan GC, Segalman RA (2014) Chem Mater 26:7229

    Article  CAS  Google Scholar 

  57. Kim Y, Jeong W, Kim K, Lee W, Reddy P (2014) Nat Nanotechnol 9:881

    Article  CAS  Google Scholar 

  58. Evangeli C, Matt M, Rincón-García L, Pauly F, Nielaba P, Rubio-Bollinger G, Cuevas JC, Agraït N (1006) Nano Lett 2015:15

    Google Scholar 

  59. Li Y, Xiang L, Palma JL, Asai Y, Tao N (2016) Nat Commun 7:11294

    Article  CAS  Google Scholar 

  60. Vazquez H, Skouta R, Schneebeli S, Kamenetska M, Breslow R, Venkataraman L, Hybertsen MS (2012) Nat Nanotechnol 7:663

    Article  CAS  Google Scholar 

  61. Vezzoli A, Grace I, Brooke C, Wang K, Lambert CJ, Xu B, Nichols RJ, Higgins SJ (2015) Nanoscale 7:18949

    Article  CAS  Google Scholar 

  62. Nichols RJ, Higgins SJ (2012) Nat Nanotech 7:281

  63. Akkerman HB, de Boer B (2008) J Phys Condens Matter 20:013001

    Article  CAS  Google Scholar 

  64. Tachibana M, Yoshizawa K, Ogawa A, Fujimoto H, Hoffmann R (2002) J Phys Chem B 106:12727

    Article  CAS  Google Scholar 

  65. Engelkes VB, Beebe JM, Frisbie CD (2004) J Am Chem Soc 126:14287

    Article  CAS  Google Scholar 

  66. Li X, He J, Hihath J, Xu B, Lindsay SM, Tao N (2006) J Am Chem Soc 128:2135

    Article  CAS  Google Scholar 

  67. Akkerman HB, Naber RCG, Jongbloed B, van Hal PA, Blom PWM, de Leeuw DM, de Boer B (2007) Proc Natl Acad Sci USA 104:11161

    Article  CAS  Google Scholar 

  68. Kaun C-C, Seideman T (2008) Phys Rev B 77:033414

    Article  CAS  Google Scholar 

  69. Li C, Pobelov I, Wandlowski T, Bagrets A, Arnold A, Evers F (2008) J Am Chem Soc 130:318

    Article  CAS  Google Scholar 

  70. Paulsson M, Krag C, Frederiksen T, Brandbyge M (2009) Nano Lett 9:117

    Article  CAS  Google Scholar 

  71. Wang K, Xu B (2016) Phys Chem Chem Phys 18:9569

    Article  CAS  Google Scholar 

  72. Wang K, Hamill JM, Zhou J, Xu B (2014) J Am Chem Soc 136:17406

    Article  CAS  Google Scholar 

  73. Zhou J, Chen F, Xu B (2009) J Am Chem Soc 131:10439

    Article  CAS  Google Scholar 

  74. Dhungana KB, Mandal S, Pati R (2012) J Phys Chem C 116:17268

    Article  CAS  Google Scholar 

  75. Demir F, Kirczenow G (2012) J Chem Phys 136:014703

    Article  CAS  Google Scholar 

  76. Guo S, Hihath J, Diez-Perez I, Tao N (2011) J Am Chem Soc 133:19189

    Article  CAS  Google Scholar 

  77. Joshua H, Nongjian T (2014) Semicond Sci Technol 29:054007

    Article  CAS  Google Scholar 

  78. Quek SY, Venkataraman L, Choi HJ, Louie SG, Hybertsen MS, Neaton JB (2007) Nano Lett 7:3477

    Article  CAS  Google Scholar 

  79. Zhou J, Guo C, Xu B (2012) J Phys Condens Matter 24(16):164209

  80. Park YS, Whalley AC, Kamenetska M, Steigerwald ML, Hybertsen MS, Nuckolls C, Venkataraman L (2007) J Am Chem Soc 129:15768

    Article  CAS  Google Scholar 

  81. Chen F, Li X, Hihath J, Huang Z, Tao N (2006) J Am Chem Soc 128:15874

    Article  CAS  Google Scholar 

  82. Kiguchi M, Miura S, Hara K, Sawamura M, Murakoshi K (2007) Appl Phys Lett 91:053110

    Article  CAS  Google Scholar 

  83. Patrone L, Palacin S, Bourgoin JP, Lagoute J, Zambelli T, Gauthier S (2002) Chem Phys 281:325

    Article  CAS  Google Scholar 

  84. Parameswaran R, Widawsky JR, Vázquez H, Park YS, Boardman BM, Nuckolls C, Steigerwald ML, Hybertsen MS, Venkataraman L (2010) J Phys Chem Lett 1:2114

    Article  CAS  Google Scholar 

  85. Hines T, Díez-Pérez I, Nakamura H, Shimazaki T, Asai Y, Tao N (2013) J Am Chem Soc 135:3319

    Article  CAS  Google Scholar 

  86. Hong W, Li H, Liu S-X, Fu Y, Li J, Kaliginedi V, Decurtins S, Wandlowski T (2012) J Am Chem Soc 134:19425

    Article  CAS  Google Scholar 

  87. Moreno-García P, Gulcur M, Manrique DZ, Pope T, Hong W, Kaliginedi V, Huang C, Batsanov AS, Bryce MR, Lambert C, Wandlowski T (2013) J Am Chem Soc 135:12228

    Article  CAS  Google Scholar 

  88. Yelin T, Korytar R, Sukenik N, Vardimon R, Kumar B, Nuckolls C, Evers F, Tal O (2016) Nat Mater 15:444

    Article  CAS  Google Scholar 

  89. Xiang L, Hines T, Palma JL, Lu X, Mujica V, Ratner MA, Zhou G, Tao N (2016) J Am Chem Soc 138:679

    Article  CAS  Google Scholar 

  90. Martin CA, Ding D, Sørensen JK, Bjørnholm T, van Ruitenbeek JM, van der Zant HSJ (2008) J Am Chem Soc 130:13198

    Article  CAS  Google Scholar 

  91. Adak O, Korytár R, Joe AY, Evers F, Venkataraman L (2015) Nano Lett 15:3716

    Article  CAS  Google Scholar 

  92. Beebe JM, Kim B, Frisbie CD, Kushmerick JG (2008) ACS Nano 2:827

    Article  CAS  Google Scholar 

  93. Ko C-H, Huang M-J, Fu M-D, Chen C-H (2010) J Am Chem Soc 132:756

    Article  CAS  Google Scholar 

  94. Zhou J, Chen G, Xu B (2010) J Phys Chem C 114:8587

    Article  CAS  Google Scholar 

  95. Xu B (2007) Small 3:2061

    Article  CAS  Google Scholar 

  96. Wang K, Hamill JM, Wang B, Guo C, Jiang S, Huang Z, Xu B (2014) Chem Sci 5:3425

    Article  CAS  Google Scholar 

  97. Rascón-Ramos H, Artés JM, Li Y, Hihath J (2015) Nat Mater 14:517

    Article  CAS  Google Scholar 

  98. Quek SY, Kamenetska M, Steigerwald ML, Choi HJ, Louie SG, Hybertsen MS, Neaton JB, Venkataraman L (2009) Nat Nanotechnol 4:230

    Article  CAS  Google Scholar 

  99. Chen F, Hihath J, Huang Z, Li X, Tao NJ (2007) Annu Rev Phys Chem 58:535

    Article  CAS  Google Scholar 

  100. Zhou X, Peng Z, Sun Y, Wang L, Niu Z, Zhou X (2013) Nanotechnology 24:465204

    Article  CAS  Google Scholar 

  101. Zhou X-S, Wei Y-M, Liu L, Chen Z-B, Tang J, Mao B-W (2008) J Am Chem Soc 130:13228

    Article  CAS  Google Scholar 

  102. Wilson NR, Macpherson JV (2009) Nat Nanotechnol 4:483

    Article  CAS  Google Scholar 

  103. Bumm LA, Arnold JJ, Cygan MT, Dunbar TD, Burgin TP, Jones L, Allara DL, Tour JM, Weiss PS (1996) Science 271:1705

    Article  CAS  Google Scholar 

  104. Clément N, Patriarche G, Smaali K, Vaurette F, Nishiguchi K, Troadec D, Fujiwara A, Vuillaume D (2011) Small 7:2607

    Article  CAS  Google Scholar 

  105. Smaali K, Clément N, Patriarche G, Vuillaume D (2012) ACS Nano 6:4639

    Article  CAS  Google Scholar 

  106. Cui XD, Primak A, Zarate X, Tomfohr J, Sankey OF, Moore AL, Moore TA, Gust D, Harris G, Lindsay SM (2001) Science 294:571

    Article  CAS  Google Scholar 

  107. Tour JM, Reinerth WA, Jones L, Burgin TP, Zhou C-W, Muller CJ, Deshpande MR, Reed MA (1998) Ann NY Acad Sci 852:197

    Article  CAS  Google Scholar 

  108. Moreno-García P, La Rosa A, Kolivoška V, Bermejo D, Hong W, Yoshida K, Baghernejad M, Filippone S, Broekmann P, Wandlowski T, Martín N (2015) J Am Chem Soc 137:2318

    Article  CAS  Google Scholar 

  109. Dell EJ, Capozzi B, Xia J, Venkataraman L, Campos LM (2015) Nat Chem 7:209

    Article  CAS  Google Scholar 

  110. Su TA, Li H, Steigerwald ML, Venkataraman L, Nuckolls C (2015) Nat Chem 7:215

    Article  CAS  Google Scholar 

  111. Li H, Su TA, Zhang V, Steigerwald ML, Nuckolls C, Venkataraman L (2015) J Am Chem Soc 137:5028

    Article  CAS  Google Scholar 

  112. Makk P, Tomaszewski D, Martinek J, Balogh Z, Csonka S, Wawrzyniak M, Frei M, Venkataraman L, Halbritter A (2012) ACS Nano 6:3411

    Article  CAS  Google Scholar 

  113. Hamill JM, Wang K, Xu B (2014) Nanoscale 6:5657

    Article  CAS  Google Scholar 

  114. Büttiker M, Imry Y, Landauer R, Pinhas S (1985) Phys Rev B 31:6207

    Article  Google Scholar 

  115. Briechle BM, Kim Y, Ehrenreich P, Erbe A, Sysoiev D, Huhn T, Groth U, Scheer E (2012) Beilstein J Nanotechnol 3:798

    Article  CAS  Google Scholar 

  116. Simmons JG (1963) J Appl Phys 34:1793

    Article  Google Scholar 

  117. Cui B, Xu Y, Ji G, Wang H, Zhao W, Zhai Y, Li D, Liu D (2014) Org Electron 15:484

    Article  CAS  Google Scholar 

  118. Wang K, Zhou J, Hamill JM, Xu B (2014) J Chem Phys 141:054712

    Article  CAS  Google Scholar 

  119. Beebe JM, Kim B, Gadzuk JW, Frisbie CD, Kushmerick JG (2006) Phys Rev Lett 97:026801

    Article  CAS  Google Scholar 

  120. Jia C, Wang J, Yao C, Cao Y, Zhong Y, Liu Z, Liu Z, Guo X (2013) Angew Chem Int Ed 52:8666

    Article  CAS  Google Scholar 

  121. Xie Z, Bâldea I, Smith CE, Wu Y, Frisbie CD (2015) ACS Nano 9:8022

    Article  CAS  Google Scholar 

  122. Bâldea I (2012) Phys Rev B 85:035442

    Article  CAS  Google Scholar 

  123. Chen J, Markussen T, Thygesen KS (2010) Phys Rev B 82:121412

    Article  CAS  Google Scholar 

  124. Wang G, Kim Y, Na S-I, Kahng YH, Ku J, Park S, Jang YH, Kim D-Y, Lee T (2011) J Phys Chem C 115:17979

    Article  CAS  Google Scholar 

  125. Nijhuis CA, Reus WF, Whitesides GM (2010) J Am Chem Soc 132:18386

    Article  CAS  Google Scholar 

  126. Kornilovitch PE, Bratkovsky AM, Williams RS (2002) Phys Rev B 66:165436

    Article  CAS  Google Scholar 

  127. Liu R, Ke SH, Yang WT, Baranger HU (2006) J Chem Phys 124:024718

    Article  CAS  Google Scholar 

  128. Yee SK, Sun J, Darancet P, Tilley TD, Majumdar A, Neaton JB, Segalman RA (2011) ACS Nano 5:9256

    Article  CAS  Google Scholar 

  129. Hihath J, Bruot C, Nakamura H, Asai Y, Diez-Perez I, Lee Y, Yu L, Tao N (2011) ACS Nano 5:8331

    Article  CAS  Google Scholar 

  130. Zhao J, Yu C, Wang N, Liu H (2010) J Phys Chem C 114:4135

    Article  CAS  Google Scholar 

  131. Armstrong N, Hoft RC, McDonagh A, Cortie MB, Ford MJ (2007) Nano Lett 7:3018

    Article  CAS  Google Scholar 

  132. Stadler R, Geskin V, Cornil J (2008) J Phys Condens Matter 20:374105

    Article  CAS  Google Scholar 

  133. Chen J, Wang W, Reed MA, Rawlett AM, Price DW, Tour JM (2000) Appl Phys Lett 77:1224

    Article  CAS  Google Scholar 

  134. Fan F-RF, Yang J, Cai L, Price DW, Dirk SM, Kosynkin DV, Yao Y, Rawlett AM, Tour JM, Bard AJ (2002) J Am Chem Soc 124:5550

    Article  CAS  Google Scholar 

  135. Kratochvilova I, Kocirik M, Zambova A, Mbindyo J, Mallouk TE, Mayer TS (2002) J Mater Chem 12:2927

    Article  CAS  Google Scholar 

  136. Rawlett AM, Hopson TJ, Nagahara LA, Tsui RK, Ramachandran GK, Lindsay SM (2002) Appl Phys Lett 81:3043

    Article  CAS  Google Scholar 

  137. Xue Y, Datta S, Hong S, Reifenberger R, Henderson JI, Kubiak CP (1999) Phys Rev B 59:R7852

    Article  CAS  Google Scholar 

  138. Ying H, Zhou W-X, Chen K-Q, Zhou G (2014) Comput Mater Sci 82:33

    Article  CAS  Google Scholar 

  139. Mentovich ED, Belgorodsky B, Kalifa I, Richter S (2010) Adv Mater 22:2182

    Article  CAS  Google Scholar 

  140. Chang LL, Esaki L, Tsu R (1974) Appl Phys Lett 24:593

    Article  CAS  Google Scholar 

  141. Esaki L (1958) Phys Rev 109:603

    Article  CAS  Google Scholar 

  142. Guisinger NP, Basu R, Greene ME, Baluch AS, Hersam MC (2004) Nanotechnology 15:S452

    Article  CAS  Google Scholar 

  143. Guisinger NP, Greene ME, Basu R, Baluch AS, Hersam MC (2003) Nano Lett 4:55

    Article  CAS  Google Scholar 

  144. Hallbäck A-S, Poelsema B, Zandvliet HJW (2007) Appl Surf Sci 253:4066

    Article  CAS  Google Scholar 

  145. Lu ZH, Khangura RS, Dharma-wardana MWC, Zgierski MZ, Ritchie D (2004) Appl Phys Lett 85:323

    Article  CAS  Google Scholar 

  146. Pitters JL, Wolkow RA (2006) Nano Lett 6:390

    Article  CAS  Google Scholar 

  147. Rakshit T, Liang GC, Ghosh AW, Hersam MC, Datta S (2005) Phys Rev B 72:125305

    Article  CAS  Google Scholar 

  148. Rakshit T, Liang G-C, Ghosh AW, Datta S (1803) Nano Lett 2004:4

    Google Scholar 

  149. Le JD, He Y, Hoye TR, Mead CC, Kiehl RA (2003) Appl Phys Lett 83:5518

    Article  CAS  Google Scholar 

  150. Migliore A, Nitzan A (2011) ACS Nano 5:6669

    Article  CAS  Google Scholar 

  151. Bürkle M, Viljas JK, Vonlanthen D, Mishchenko A, Schön G, Mayor M, Wandlowski T, Pauly F (2012) Phys Rev B 85:075417

    Article  CAS  Google Scholar 

  152. Kang N, Erbe A, Scheer E (2010) Appl Phys Lett 96:023701

    Article  CAS  Google Scholar 

  153. Mentovich ED, Kalifa I, Tsukernik A, Caster A, Rosenberg-Shraga N, Marom H, Gozin M, Richter S (2008) Small 4:55

    Article  CAS  Google Scholar 

  154. Bingqian X, Yonatan D (2015) J Phys Condens Matter 27:263202

    Article  CAS  Google Scholar 

  155. Zhou JF, Guo CL, Xu BQ (2012) J Phys Condens Matter 24:164029

    Google Scholar 

  156. Zhou JF, Xu BQ (2011) Appl Phys Lett 99:042104

    Article  CAS  Google Scholar 

  157. Galperin M, Ratner MA, Nitzan A (2004) Nano Lett 5:125

    Article  CAS  Google Scholar 

  158. Yeganeh S, Galperin M, Ratner MA (2007) J Am Chem Soc 129:13313

    Article  CAS  Google Scholar 

  159. Zazunov A, Feinberg D, Martin T (2006) Phys Rev B 73:115405

  160. Galperin M, Ratner M, Nitzan A (2005) Nano Lett 5:125

    Article  CAS  Google Scholar 

  161. Han JE (2010) Phys Rev B 81:113106

    Article  CAS  Google Scholar 

  162. Song H, Kim Y, Jang YH, Jeong H, Reed MA, Lee T (1039) Nature 2009:462

    Google Scholar 

  163. Xiang D, Jeong H, Kim D, Lee T, Cheng Y, Wang Q, Mayer D (2013) Nano Lett 13:2809

    Article  CAS  Google Scholar 

  164. Baghernejad M, Manrique DZ, Li C, Pope T, Zhumaev U, Pobelov I, Moreno-Garcia P, Kaliginedi V, Huang C, Hong W, Lambert C, Wandlowski T (2014) Chem Commun 50:15975

    Article  CAS  Google Scholar 

  165. Capozzi B, Chen Q, Darancet P, Kotiuga M, Buzzeo M, Neaton JB, Nuckolls C, Venkataraman L (2014) Nano Lett 14:1400

    Article  CAS  Google Scholar 

  166. Huang C, Rudnev AV, Hong W, Wandlowski T (2015) Chem Soc Rev 44:889

    Article  CAS  Google Scholar 

  167. Li C, Stepanenko V, Lin M-J, Hong W, Würthner F, Wandlowski T (2013) Phys Status Solidi B 250:2458

    Article  CAS  Google Scholar 

  168. Kay NJ, Higgins SJ, Jeppesen JO, Leary E, Lycoops J, Ulstrup J, Nichols RJ (2012) J Am Chem Soc 134:16817

    Article  CAS  Google Scholar 

  169. Darwish N, Díez-Pérez I, Da Silva P, Tao N, Gooding JJ, Paddon-Row MN (2012) Angew Chem Int Ed 51:3203

    Article  CAS  Google Scholar 

  170. Bruot C, Hihath J, Tao N (2012) Nat Nanotechnol 7:35

    Article  CAS  Google Scholar 

  171. Bruot C, Palma JL, Xiang L, Mujica V, Ratner MA, Tao N (2015) Nat Commun 6:8032

  172. Galperin M, Nitzan A (2012) Phys Chem Chem Phys 14:9421

    Article  CAS  Google Scholar 

  173. Battacharyya S, Kibel A, Kodis G, Liddell PA, Gervaldo M, Gust D, Lindsay S (2011) Nano Lett 11:2709

    Article  CAS  Google Scholar 

  174. Aragonès AC, Aravena D, Cerdá JI, Acís-Castillo Z, Li H, Real JA, Sanz F, Hihath J, Ruiz E, Díez-Pérez I (2016) Nano Lett 16:218

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the U.S. National Science Foundation for funding this work (ECCS 0823849, ECCS 1231967, ECCS 1609788).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingqian Xu.

Additional information

This article is part of the Topical Collection “Molecular-Scale Electronics: Current Status and Perspective”; edited by Xuefeng Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Xu, B. Modulation and Control of Charge Transport Through Single-Molecule Junctions. Top Curr Chem (Z) 375, 17 (2017). https://doi.org/10.1007/s41061-017-0105-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-017-0105-z

Keywords

Navigation