Topics in Current Chemistry

, 375:19 | Cite as

High-Power-Density Organic Radical Batteries

  • Christian Friebe
  • Ulrich S. Schubert
Part of the following topical collections:
  1. Electrochemical Energy Storage


Batteries that are based on organic radical compounds possess superior charging times and discharging power capability in comparison to established electrochemical energy-storage technologies. They do not rely on metals and, hence, feature a favorable environmental impact. They furthermore offer the possibility of roll-to-roll processing through the use of different printing techniques, which enables the cost-efficient fabrication of mechanically flexible devices. In this review, organic radical batteries are presented with the focus on the hitherto developed materials and the key properties thereof, e.g., voltage, capacity, and cycle life. Furthermore, basic information, such as significant characteristics, housing approaches, and applied additives, are presented and discussed in the context of organic radical batteries.


Electrochemical energy storage Organic radical batteries Lithium-organic batteries High-power devices 



Multi-walled carbon nanotubes


Organic radical battery




Poly(ethylene glycol)




2,2,5,5-Tetramethylpyrrolidin-N-oxyl radical




Poly(2,2,6,6-tetramethyl-4-piperidinyl-N-oxyl acrylamide)


Poly(2,2,6,6-tetramethyl-4-piperidinyl-N-oxyl glycidyl ether)


Poly(2,2,6,6-tetramethyl-4-piperidinyl-N-oxyl methacrylate)


Radio-frequency identification


2,2,6,6-Tetramethyl-4-piperidinyl-N-oxyl radical


  1. 1.
    Andersson BA, Råde I (2001) Metal resource constraints for electric-vehicle batteries. Transp Res Part D Transp Environ 6:297CrossRefGoogle Scholar
  2. 2.
    Gandini A, Lacerda TM (2015) From monomers to polymers from renewable resources: recent advances. Prog Polym Sci 48:1CrossRefGoogle Scholar
  3. 3.
    Nishide H, Oyaizu K (2008) Toward flexible batteries. Science 319:737CrossRefGoogle Scholar
  4. 4.
    Nishide H, Suga T (2005) Organic radical battery. Electrochem Soc Interface 14:32Google Scholar
  5. 5.
    Satoh M (2005) Organic radical battery and its technology. NEC J Adv Technol 2:262Google Scholar
  6. 6.
    Nakahara K, Iwasa S, Satoh M, Morioka Y, Iriyama J, Suguro M, Hasegawa E (2002) Rechargeable batteries with organic radical cathodes. Chem Phys Lett 359:351CrossRefGoogle Scholar
  7. 7.
    Suga T, Ohshiro H, Sugita S, Oyaizu K, Nishide H (2009) Emerging n-type redox-active radical polymer for a totally organic polymer-based rechargeable battery. Adv Mater 21:1627CrossRefGoogle Scholar
  8. 8.
    Song Z, Zhou H (2013) Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ Sci 6:2280CrossRefGoogle Scholar
  9. 9.
    Muench S, Wild A, Friebe C, Häupler B, Janoschka T, Schubert US (2016) Polymer-based organic batteries. Chem Rev 116:9438CrossRefGoogle Scholar
  10. 10.
    Kumaresan K, Guo Q, Ramadass P, White RE (2006) Cycle life performance of lithium-ion pouch cells. J Power Sources 158:679CrossRefGoogle Scholar
  11. 11.
    Friebe C, Schubert US (2015) Development of active organic and polymeric materials for batteries and solar cells: introduction to essential characterization techniques. Adv Energy Mater 5:1500858CrossRefGoogle Scholar
  12. 12.
    Linden D, Reddy TB (2002) Handbook of Batteries. McGraw-Hill, New YorkGoogle Scholar
  13. 13.
    Nakahara K, Iwasa S, Iriyama J, Morioka Y, Suguro M, Satoh M, Cairns EJ (2006) Electrochemical and spectroscopic measurements for stable nitroxyl radicals. Electrochim Acta 52:921CrossRefGoogle Scholar
  14. 14.
    Janoschka T, Teichler A, Häupler B, Jähnert T, Hager MD, Schubert US (2013) Reactive inkjet printing of cathodes for organic radical batteries. Adv Energy Mater 3:1025CrossRefGoogle Scholar
  15. 15.
    Nakahara K, Oyaizu K, Nishide H (2011) Organic radical battery approaching practical use. Chem Lett 40:222CrossRefGoogle Scholar
  16. 16.
    Kemper TW, Larsen RE, Gennett T (2014) Relationship between molecular structure and electron transfer in a polymeric nitroxyl-radical energy storage material. J Phys Chem C 118:17213CrossRefGoogle Scholar
  17. 17.
    Oyaizu K, Nishide H (2009) Radical polymers for organic electronic devices: a radical departure from conjugated polymers? Adv Mater 21:2339CrossRefGoogle Scholar
  18. 18.
    Oyaizu K, Ando Y, Konishi H, Nishide H (2008) Nernstian adsorbate-like bulk layer of organic radical polymers for high-density charge storage purposes. J Am Chem Soc 130:14459CrossRefGoogle Scholar
  19. 19.
    Satoh M, Nakahara K, Iriyama J, Iwasa S, Suguro M (2004) High power organic radical battery for information systems. IEICE Trans Electron 87:2076Google Scholar
  20. 20.
    Suga T, Pu Y-J, Oyaizu K, Nishide H (2004) Electron-transfer kinetics of nitroxide radicals as an electrode-active material. Bull Chem Soc Jpn 77:2203CrossRefGoogle Scholar
  21. 21.
    Rostro L, Wong SH, Boudouris BW (2014) Solid state electrical conductivity of radical polymers as a function of pendant group oxidation state. Macromolecules 47:3713CrossRefGoogle Scholar
  22. 22.
    Nakahara K, Iriyama J, Iwasa S, Suguro M, Satoh M, Cairns EJ (2007) Cell properties for modified PTMA cathodes of organic radical batteries. J Power Sources 165:398CrossRefGoogle Scholar
  23. 23.
    Nakahara K, Iriyama J, Iwasa S, Suguro M, Satoh M, Cairns EJ (2007) High-rate capable organic radical cathodes for lithium rechargeable batteries. J Power Sources 165:870CrossRefGoogle Scholar
  24. 24.
    Katsumata T, Satoh M, Wada J, Shiotsuki M, Sanda F, Masuda T (2006) Polyacetylene and polynorbornene derivatives carrying TEMPO. Synthesis and properties as organic radical battery materials. Macromol Rapid Commun 27:1206CrossRefGoogle Scholar
  25. 25.
    Sukegawa T, Sato K, Oyaizu K, Nishide H (2015) Efficient charge transport of a radical polyether/SWCNT composite electrode for an organic radical battery with high charge-storage density. RSC Adv 5:15448CrossRefGoogle Scholar
  26. 26.
    Hauffman G, Maguin Q, Bourgeois J-P, Vlad A, Gohy J-F (2014) Micellar cathodes from self-assembled nitroxide-containing block copolymers in battery electrolytes. Macromol Rapid Commun 35:228CrossRefGoogle Scholar
  27. 27.
    Chae IS, Koyano M, Oyaizu K, Nishide H (2013) Self-doping inspired zwitterionic pendant design of radical polymers toward a rocking-chair-type organic cathode-active material. J Mater Chem A 1:1326CrossRefGoogle Scholar
  28. 28.
    Yoshihara S, Isozumi H, Kasai M, Yonehara H, Ando Y, Oyaizu K, Nishide H (2010) Improving charge/discharge properties of radical polymer electrodes influenced strongly by current collector/carbon fiber interface. J Phys Chem B 114:8335CrossRefGoogle Scholar
  29. 29.
    Lin C-H, Lee J-T, Yang D-R, Chen H-W, Wu S-T (2015) Nitroxide radical polymer/carbon-nanotube-array electrodes with improved C-rate performance in organic radical batteries. RSC Adv 5:33044CrossRefGoogle Scholar
  30. 30.
    Vlad A, Rolland J, Hauffman G, Ernould B, Gohy J-F (2015) Melt-polymerization of TEMPO methacrylates with nano carbons enables superior battery materials. Chem Sus Chem 8:1692CrossRefGoogle Scholar
  31. 31.
    Vlad A, Singh N, Melinte S, Gohy J-F, Ajayan PM (2016) Carbon redox-polymer-gel hybrid super capacitors. Sci Rep 6:22194CrossRefGoogle Scholar
  32. 32.
    Vlad A, Singh N, Rolland J, Melinte S, Ajayan PM, Gohy J-F (2014) Hybrid supercapacitor-battery materials for fast electrochemical charge storage. Sci Rep 4:4315CrossRefGoogle Scholar
  33. 33.
    Du ZZ, Ai W, Xie LH, Huang W (2014) Organic radical functionalized graphene as a superior anode material for lithium-ion batteries. J Mater Chem A 2:9164CrossRefGoogle Scholar
  34. 34.
    Huang Q, Choi D, Cosimbescu L, Lemmon JP (2013) Multi-electron redox reaction of an organic radical cathode induced by a mesopore carbon network with nitroxide polymers. Phys Chem Chem Phys 15:20921CrossRefGoogle Scholar
  35. 35.
    Guo W, Su J, Li Y-H, Wan L-J, Guo Y-G (2012) Nitroxide radical polymer/graphene nanocomposite as an improved cathode material for rechargeable lithium batteries. Electrochim Acta 72:81CrossRefGoogle Scholar
  36. 36.
    Nakahara K, Iriyama J, Iwasa S, Suguro M, Satoh M, Cairns EJ (2007) Al-laminated film packaged organic radical battery for high-power applications. J Power Sources 163:1110CrossRefGoogle Scholar
  37. 37.
    Chae IS, Koyano M, Sukegawa T, Oyaizu K, Nishide H (2013) Redox equilibrium of a zwitterionic radical polymer in a non-aqueous electrolyte as a novel Li+ host material in a Li-ion battery. J Mater Chem A 1:9608CrossRefGoogle Scholar
  38. 38.
    Kim J-K, Scheers J, Ahn J-H, Johansson P, Matic A, Jacobsson P (2013) Nano-fibrous polymer films for organic rechargeable batteries. J Mater Chem A 1:2426CrossRefGoogle Scholar
  39. 39.
    Kim J-K (2013) Micro-fibrous organic radical electrode to improve the electrochemical properties of organic rechargeable batteries. J Power Sources 242:683CrossRefGoogle Scholar
  40. 40.
    Liu CM, Chen J, Wang FQ, Yi BL (2012) Improvement of electrochemical properties of PTMA cathode by using carbon blacks with high specific surface area. Russ J Electrochem 48:1052CrossRefGoogle Scholar
  41. 41.
    Bugnon L, Morton CJH, Novak P, Vetter J, Nesvadba P (2007) Synthesis of poly(4-methacryloyloxy-TEMPO) via group-transfer polymerization and its evaluation in organic radical battery. Chem Mater 19:2910CrossRefGoogle Scholar
  42. 42.
    Nishide H, Iwasa S, Pu Y-J, Suga T, Nakahara K, Satoh M (2004) Organic radical battery: nitroxide polymers as a cathode-active material. Electrochim Acta 50:827CrossRefGoogle Scholar
  43. 43.
    Kim J-K, Cheruvally G, Choi J-W, Ahn J-H, Choi DS, Song CE (2007) Rechargeable organic radical battery with electrospun, fibrous membrane-based polymer electrolyte. J Electrochem Soc 154:A839CrossRefGoogle Scholar
  44. 44.
    Deng L-F, Li X-H, Xiao L-X, Zhang Y-H (2003) Synthesis and electrochemical properties of polyradical cathode material for lithium second batteries. J Cent South Univ Tech 10:190CrossRefGoogle Scholar
  45. 45.
    Kim J-K, Cheruvally G, Choi J-W, Ahn J-H, Lee SH, Choi DS, Song CE (2007) Effect of radical polymer cathode thickness on the electrochemical performance of organic radical battery. Solid State Ion 178:1546CrossRefGoogle Scholar
  46. 46.
    Kim J-K, Cheruvally G, Ahn J-H, Seo Y-G, Choi DS, Lee S-H, Song CE (2008) Organic radical battery with PTMA cathode: effect of PTMA content on electrochemical properties. J Ind Eng Chem 14:371CrossRefGoogle Scholar
  47. 47.
    Kim J-K, Ahn J-H, Cheruvally G, Chauhan GS, Choi J-W, Kim D-S, Ahn H-J, Lee SH, Song CE (2009) Electrochemical properties of rechargeable organic radical battery with PTMA cathode. Metal Mater Int 15:77CrossRefGoogle Scholar
  48. 48.
    Guo W, Yin Y-X, Xin S, Guo Y-G, Wan L-J (2012) Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene. Energy Environ Sci 5:5221CrossRefGoogle Scholar
  49. 49.
    Kim Y, Jo C, Lee J, Lee CW, Yoon S (2012) An ordered nanocomposite of organic radical polymer and mesocellular carbon foam as cathode material in lithium ion batteries. J Mater Chem 22:1453CrossRefGoogle Scholar
  50. 50.
    Lin H-C, Li C-C, Lee J-T (2011) Nitroxide polymer brushes grafted onto silica nanoparticles as cathodes for organic radical batteries. J Power Sources 196:8098CrossRefGoogle Scholar
  51. 51.
    Wang Y-H, Hung M-K, Lin C-H, Lin H-C, Lee J-T (2011) Patterned nitroxide polymer brushes for thin-film cathodes in organic radical batteries. Chem Commun 47:1249CrossRefGoogle Scholar
  52. 52.
    Lin C-H, Chou W-J, Lee J-T (2012) Three-dimensionally ordered macroporous nitroxide polymer brush electrodes prepared by surface-initiated atom transfer polymerization for organic radical batteries. Macromol Rapid Commun 33:107CrossRefGoogle Scholar
  53. 53.
    Hung M-K, Wang Y-H, Lin C-H, Lin H-C, Lee J-T (2012) Synthesis and electrochemical behaviour of nitroxide polymer brush thin-film electrodes for organic radical batteries. J Mater Chem 22:1570CrossRefGoogle Scholar
  54. 54.
    Ernould B, Devos M, Bourgeois J-P, Rolland J, Vlad A, Gohy J-F (2015) Grafting of a redox polymer onto carbon nanotubes for high capacity battery materials. J Mater Chem A 3:8832CrossRefGoogle Scholar
  55. 55.
    Takahashi K, Korolev K, Tsuji K, Oyaizu K, Nishide H, Bryuzgin E, Navrotskiy A, Novakov I (2015) Facile grafting-onto-preparation of block copolymers of TEMPO and glycidyl methacrylates on an oxide substrate as an electrode-active layer. Polymer 68:310CrossRefGoogle Scholar
  56. 56.
    Suga T, Konishi H, Nishide H (2007) Photocrosslinked nitroxide polymer cathode-active materials for application in an organic-based paper battery. Chem Commun 1370Google Scholar
  57. 57.
    Katsumata T, Qu J, Shiotsuki M, Satoh M, Wada J, Igarashi J, Mizoguchi K, Masuda T (2008) Synthesis, characterization, and charge/discharge properties of polynorbornenes carrying 2,2,6,6-tetramethylpiperidine-1-oxy radicals at high density. Macromolecules 41:1175CrossRefGoogle Scholar
  58. 58.
    Dai Y, Zhang Y, Gao L, Xu G, Xie J (2011) Electrochemical performance of organic radical cathode with ionic liquid based electrolyte. J Electrochem Soc 158:A291CrossRefGoogle Scholar
  59. 59.
    Qu JQ, Katsumata T, Satoh M, Wada J, Masuda T (2009) Poly (7-oxanorbornenes) carrying 2,2,6,6-tetramethylpiperidine-1-oxy(TEMPO) radicals: synthesis and charge/discharge properties. Polymer 50:391CrossRefGoogle Scholar
  60. 60.
    Koshika K, Sano N, Oyaizu K, Nishide H (2009) An aqueous, electrolyte-type, rechargeable device utilizing a hydrophilic radical polymer-cathode. Macromol Chem Phys 210:1989CrossRefGoogle Scholar
  61. 61.
    Suguro M, Iwasa S, Kusachi Y, Morioka Y, Nakahara K (2007) Cationic polymerization of poly(vinyl ether) bearing a TEMPO radical: a new cathode-active material for organic radical batteries. Macromol Rapid Commun 28:1929CrossRefGoogle Scholar
  62. 62.
    Suguro M, Iwasa S, Nakahara K (2008) Fabrication of a practical and polymer-rich organic radical polymer electrode and its rate dependence. Macromol Rapid Commun 29:1635CrossRefGoogle Scholar
  63. 63.
    Koshika K, Sano N, Oyaizu K, Nishide H (2009) An ultrafast chargeable polymer electrode based on the combination of nitroxide radical and aqueous electrolyte. Chem Commun 836Google Scholar
  64. 64.
    Sertkol SB, Sinirlioglu D, Esat B, Muftuoglu AE (2015) A novel cathode material based on polystyrene with pendant TEMPO moieties obtained via click reaction and its use in rechargeable batteries. J Polym Res 22:136CrossRefGoogle Scholar
  65. 65.
    Suga T, Yoshimura K, Nishide H (2006) Nitroxide-substituted polyether as a new material for batteries. Macromol Symp 245–246:416CrossRefGoogle Scholar
  66. 66.
    Qu J, Katsumata T, Satoh M, Wada J, Igarashi J, Mizoguchi K, Masuda T (2007) Synthesis and charge/discharge properties of polyacetylenes carrying 2,2,6,6-tetramethyl-1-piperidinoxy radicals. Chem Eur J 13:7965CrossRefGoogle Scholar
  67. 67.
    Qu JQ, Fujii T, Katsumata T, Suzuki Y, Shiotsuki M, Sanda F, Satoh M, Wada J, Masuda T (2007) Helical polyacetylenes carrying 2,2,6,6-tetramethyl-1-piperidinyloxy and 2,2,5,5-tetramethyl-1-pyrrolidinyloxy moieties: their synthesis, properties, and function. J Polym Sci A Polym Chem 45:5431CrossRefGoogle Scholar
  68. 68.
    Qu JQ, Khan FZ, Satoh M, Wada J, Hayashi H, Mizoguchi K, Masuda T (2008) Synthesis and charge/discharge properties of cellulose derivatives carrying free radicals. Polymer 49:1490CrossRefGoogle Scholar
  69. 69.
    Qu J, Morita R, Satoh M, Wada J, Terakura F, Mizoguchi K, Ogata N, Masuda T (2008) Synthesis and properties of DNA complexes containing 2,2,6,6-tetramethyl-1-piperidinoxy(TEMPO) moieties as organic radical battery materials. Chem Eur J 14:3250CrossRefGoogle Scholar
  70. 70.
    Zhang XH, Li HQ, Li LT, Lu GL, Zhang S, Gu LN, Xia YY, Huang XY (2008) Polyallene with pendant nitroxyl radicals. Polymer 49:3393CrossRefGoogle Scholar
  71. 71.
    Ibe T, Frings RB, Lachowicz A, Kyo S, Nishide H (2010) Nitroxide polymer networks formed by Michael addition: on site-cured electrode-active organic coating. Chem Commun 46:3475CrossRefGoogle Scholar
  72. 72.
    Koshika K, Chikushi N, Sano N, Oyaizu K, Nishide H (2010) A TEMPO-substituted polyacrylamide as a new cathode material: an organic rechargeable device composed of polymer electrodes and aqueous electrolyte. Green Chem 12:1573CrossRefGoogle Scholar
  73. 73.
    Aydın M, Esat B, Kılıç Ç, Köse ME, Ata A, Yılmaz F (2011) A polythiophene derivative bearing TEMPO as a cathode material for rechargeable batteries. Eur Polym J 47:2283CrossRefGoogle Scholar
  74. 74.
    Aydin M, Esat B (2015) A polythiophene derivative bearing two electroactive groups per monomer as a cathode material for rechargeable batteries. J Solid State Electrochem 19:2275CrossRefGoogle Scholar
  75. 75.
    Xu LH, Yang F, Su C, Ji LL, Zhang C (2014) Synthesis and properties of novel TEMPO-contained polypyrrole derivatives as the cathode material of organic radical battery. Electrochim Acta 130:148CrossRefGoogle Scholar
  76. 76.
    Lee SH, Kim J-K, Cheruvally G, Choi J-W, Ahn J-H, Chauhan GS, Song CE (2008) Electrochemical properties of new organic radical materials for lithium secondary batteries. J Power Sources 184:503CrossRefGoogle Scholar
  77. 77.
    Xu LH, Ji LL, Wang GS, Zhang C, Su C (2016) A novel nitroxide radical polymer-containing conductive polyaniline as molecular skeleton: its synthesis and electrochemical properties as organic cathode. Ionics 22:1377CrossRefGoogle Scholar
  78. 78.
    Suguro M, Mori A, Iwasa S, Nakahara K, Nakano K (2009) Syntheses and electrochemical properties of TEMPO radical substituted silicones: active material for organic radical batteries. Macromol Chem Phys 210:1402CrossRefGoogle Scholar
  79. 79.
    Lebègue E, Brousse T, Gaubicher J, Retoux R, Cougnon C (2014) Toward fully organic rechargeable charge storage devices based on carbon electrodes grafted with redox molecules. J Mater Chem A 2:8599CrossRefGoogle Scholar
  80. 80.
    Jähnert T, Janoschka T, Hager MD, Schubert US (2014) Polymers with n-type nitroxide side groups: synthesis and electrochemical characterization. Eur Polym J 61:105CrossRefGoogle Scholar
  81. 81.
    Aricò AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366CrossRefGoogle Scholar
  82. 82.
    Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359CrossRefGoogle Scholar
  83. 83.
    Oyaizu K, Kawamoto T, Suga T, Nishide H (2010) Synthesis and charge transport properties of redox-active nitroxide polyethers with large site density. Macromolecules 43:10382CrossRefGoogle Scholar
  84. 84.
    Nesvadba P, Bugnon L, Maire P, Novák P (2010) Synthesis of a novel spirobisnitroxide polymer and its evaluation in an organic radical battery. Chem Mater 22:783CrossRefGoogle Scholar
  85. 85.
    Suga T, Pu Y-J, Kasatori S, Nishide H (2007) Cathode- and anode-active poly (nitroxylstyrene)s for rechargeable batteries: p- and n-type redox switching via substituent effects. Macromolecules 40:3167CrossRefGoogle Scholar
  86. 86.
    Suga T, Sugita S, Ohshiro H, Oyaizu K, Nishide H (2011) p- and n-type bipolar redox-active radical polymer: toward totally organic polymer-based rechargeable devices with variable configuration. Adv Mater 23:751CrossRefGoogle Scholar
  87. 87.
    Jähnert T, Hager MD, Schubert US (2014) Application of phenolic radicals for antioxidants, as active materials in batteries, magnetic materials and ligands for metal-complexes. J Mater Chem A 2:15234CrossRefGoogle Scholar
  88. 88.
    Jähnert T, Häupler B, Janoschka T, Hager MD, Schubert US (2014) Polymers based on stable phenoxyl radicals for the use in organic radical batteries. Macromol Rapid Commun 35:882CrossRefGoogle Scholar
  89. 89.
    Morita Y, Nishida S, Murata T, Moriguchi M, Ueda A, Satoh M, Arifuku K, Sato K, Takui T (2011) Organic tailored batteries materials using stable open-shell molecules with degenerate frontier orbitals. Nat Mater 10:947CrossRefGoogle Scholar
  90. 90.
    Lipunova GN, Fedorchenko TG, Chupakhin ON (2013) Verdazyls: synthesis, properties, application. Russ Chem Rev 82:701CrossRefGoogle Scholar
  91. 91.
    Gilroy JB, McKinnon SDJ, Koivisto BD, Hicks RG (2007) Electrochemical studies of verdazyl radicals. Org Lett 9:4837CrossRefGoogle Scholar
  92. 92.
    Morgan IS, Peuronen A, Hänninen MM, Reed RW, Clérac R, Tuononen HM (2014) 1-Phenyl-3-(pyrid-2-yl)benzo[e][1, 2, 4]triazinyl: the first “Blatter Radical” for coordination chemistry. Inorg Chem 53:33CrossRefGoogle Scholar
  93. 93.
    Berezin AA, Zissimou G, Constantinides CP, Beldjoudi Y, Rawson JM, Koutentis PA (2014) Route to benzo- and pyrido-fused 1,2,4-triazinyl radicals via N′-(het)aryl-N′-[2-nitro(het)aryl]hydrazides. J Org Chem 79:314CrossRefGoogle Scholar
  94. 94.
    Constantinides CP, Koutentis PA, Krassos H, Rawson JM, Tasiopoulos AJ (2011) Characterization and magnetic properties of a “super stable” radical 1,3-diphenyl-7-trifluoromethyl-1,4-dihydro-1,2,4-benzotriazin-4-yl. J Org Chem 76:2798CrossRefGoogle Scholar
  95. 95.
    Blatter HM, Lukaszewski H (1968) A new stable free radical. Tetrahedron Lett 9:2701CrossRefGoogle Scholar
  96. 96.
    Miura Y, Muranaka Y (2006) Electrochemical study of stable N-alkoxyarylaminyl radicals. Electrochim Acta 52:1053CrossRefGoogle Scholar
  97. 97.
    Miura Y, Momoki M, Fuchikami T, Teki Y, Itoh K, Mizutani H (1996) Exceptionally persistent nitrogen-centered free radicals. Syntheses, ESR spectra, isolation, and X-ray crystallographic structures of N-(arylthio)-2-tert-butyl-4,6-diarylphenylaminyl and N-(arylthio)-4-tert-butyl-2,6-diarylphenylaminyl radicals. J Org Chem 61:4300CrossRefGoogle Scholar
  98. 98.
    Miura Y, Tanaka A (1992) Cyclic voltammetric behaviour of exceptionally persistent nitrogen-centred free radicals. N-(arylthio)-2,4,6-triphenylanilino radicals. Electrochim Acta 37:2095CrossRefGoogle Scholar
  99. 99.
    Oyaizu K, Suga T, Yoshimura K, Nishide H (2008) Synthesis and characterization of radical-bearing polyethers as an electrode-active material for organic secondary batteries. Macromolecules 41:6646CrossRefGoogle Scholar
  100. 100.
    Qu J, Katsumata T, Satoh M, Wada J, Masuda T (2007) Synthesis and properties of polyacetylene and polynorbornene derivatives carrying 2,2,5,5-tetramethyl-1-pyrrolidinyloxy moieties. Macromolecules 40:3136CrossRefGoogle Scholar
  101. 101.
    Sukegawa T, Kai A, Oyaizu K, Nishide H (2013) Synthesis of pendant nitronyl nitroxide radical-containing poly (norbornene)s as ambipolar electrode-active materials. Macromolecules 46:1361CrossRefGoogle Scholar
  102. 102.
    Koizumi T, Ohfuji H, Tanaka S, Shigematsu S, Akutagawa N, Satoh M, Miura Y (2014) Charge-discharge behavior of secondary organic radical battery using 2-aryl nitronyl nitroxides as the cathode active material. Chem Lett 43:1092CrossRefGoogle Scholar
  103. 103.
    Li F, Zhang YP, Kwon SR, Lutkenhaus JL (2016) Electropolymerized polythiophenes bearing pendant nitroxide radicals. ACS Macro Lett 5:337CrossRefGoogle Scholar
  104. 104.
    Kunz TK, Wolf MO (2011) Electrodeposition and properties of TEMPO functionalized polythiophene thin films. Polym Chem 2:640CrossRefGoogle Scholar
  105. 105.
    Takahashi Y, Hayashi N, Oyaizu K, Honda K, Nishide H (2008) Totally organic polymer-based electrochromic cell using TEMPO-substituted polynorbornene as a counter electrode-active material. Polym J 40:763CrossRefGoogle Scholar
  106. 106.
    Ruff I, Friedrich VJ (1971) Transfer diffusion. I. Theoretical. J Phys Chem 75:3297CrossRefGoogle Scholar
  107. 107.
    Dahms H (1968) Electronic conduction in aqueous solution. J Phys Chem 72:362CrossRefGoogle Scholar
  108. 108.
    Donnet J-B (1994) Fifty years of research and progress on carbon black. Carbon 32:1305CrossRefGoogle Scholar
  109. 109.
    Bourrat X (1993) Electrically conductive grades of carbon black: structure and properties. Carbon 31:287CrossRefGoogle Scholar
  110. 110.
    Liang C, Li Z, Dai S (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed 47:3696CrossRefGoogle Scholar
  111. 111.
    Choi Y-K, K-i Sugimoto, Song S-M, Gotoh Y, Ohkoshi Y, Endo M (2005) Mechanical and physical properties of epoxy composites reinforced by vapor grown carbon nanofibers. Carbon 43:2199CrossRefGoogle Scholar
  112. 112.
    Endo M, Kim YA, Hayashi T, Nishimura K, Matusita T, Miyashita K, Dresselhaus MS (2001) Vapor-grown carbon fibers (VGCFs): basic properties and their battery applications. Carbon 39:1287CrossRefGoogle Scholar
  113. 113.
    Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902CrossRefGoogle Scholar
  114. 114.
    Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498CrossRefGoogle Scholar
  115. 115.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183CrossRefGoogle Scholar
  116. 116.
    Cao L, Sadaf S, Beladi-Mousavi SM, Walder L (2013) PolyTEMPO and polyviologen on carbon nanotubes: syntheses, structures and organic battery applications. Eur Polym J 49:1923CrossRefGoogle Scholar
  117. 117.
    Choi W, Ohtani S, Oyaizu K, Nishide H, Geckeler KE (2011) Radical polymer-wrapped SWNTs at a molecular level: high-rate redox mediation through a percolation network for a transparent charge-storage material. Adv Mater 23:4440CrossRefGoogle Scholar
  118. 118.
    Hecht DS, Hu L, Irvin G (2011) Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater 23:1482CrossRefGoogle Scholar
  119. 119.
    Chou S-L, Pan Y, Wang J-Z, Liu H-K, Dou S-X (2014) Small things make a big difference: binder effects on the performance of Li and Na batteries. Phys Chem Chem Phys 16:20347CrossRefGoogle Scholar
  120. 120.
    Xu W, Read A, Koech PK, Hu D, Wang C, Xiao J, Padmaperuma AB, Graff GL, Liu J, Zhang J-G (2012) Factors affecting the battery performance of anthraquinone-based organic cathode materials. J Mater Chem 22:4032CrossRefGoogle Scholar
  121. 121.
    Komaba S, Tanaka T, Ozeki T, Taki T, Watanabe H, Tachikawa H (2010) Fast redox of composite electrode of nitroxide radical polymer and carbon with polyacrylate binder. J Power Sources 195:6212CrossRefGoogle Scholar
  122. 122.
    Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303CrossRefGoogle Scholar
  123. 123.
    Aurbach D, Daroux ML, Faguy PW, Yeager E (1987) Identification of surface films formed on lithium in propylene carbonate solutions. J Electrochem Soc 134:1611CrossRefGoogle Scholar
  124. 124.
    Sano N, Tomita W, Hara S, Min C-M, Lee J-S, Oyaizu K, Nishide H (2013) Polyviologen hydrogel with high-rate capability for anodes toward an aqueous electrolyte-type and organic-based rechargeable device. ACS Appl Mater Interfaces 5:1355CrossRefGoogle Scholar
  125. 125.
    Jähnert T, Häupler B, Janoschka T, Hager MD, Schubert US (2013) Synthesis and charge-discharge studies of poly (ethynylphenyl) galvinoxyles and their use in organic radical batteries with aqueous electrolytes. Macromol Chem Phys 214:2616CrossRefGoogle Scholar
  126. 126.
    Janoschka T, Hager MD, Schubert US (2012) Powering up the future: radical polymers for battery applications. Adv Mater 24:6397CrossRefGoogle Scholar
  127. 127.
    Wild A, Strumpf M, Häupler B, Hager MD, Schubert US (2016) All-organic battery composed of thianthrene- and TCAQ-based polymers. Adv Energy Mater 1601415Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaJenaGermany
  2. 2.Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaJenaGermany

Personalised recommendations