Advertisement

Topics in Current Chemistry

, 375:15 | Cite as

Synthesis of Carbonates from Alcohols and CO2

  • Nicole Kindermann
  • Tharun Jose
  • Arjan W. Kleij
Review
Part of the following topical collections:
  1. Chemical Transformations of Carbon Dioxide

Abstract

Alcohols are ubiquitous compounds in nature that offer modular building blocks for synthetic chemistry. Here we discuss the most recent development of different classes of alcohols and their coupling chemistry with carbon dioxide as to afford linear and cyclic carbonates, the challenges associated with their formation, and the potential of this chemistry to revive a waste carbon feed stock.

Keywords

Carbon dioxide Carboxylative cyclization Cyclic carbonates Diols Heterogeneous catalysis Homoallylic alcohols Homogeneous catalysis Linear carbonates Propargylic alcohols 

Notes

Acknowledgements

Funding was provided by ICREA, the CERCA Program/Generalitat de Catalunya and MINECO (Grant Nos. CTQ-2014-60419-R, SEV-2013-0319).

References

  1. 1.
    Huang S, Yan B, Wang S, Ma X (2015) Recent advances in dialkyl carbonates synthesis and applications. Chem Soc Rev 44:3079–3116CrossRefGoogle Scholar
  2. 2.
    Aresta M, Dibenedetto A, Dutta A (2017) Energy issues in the utilization of CO2 in the synthesis of chemicals: the case of the direct carboxylation of alcohols to dialkyl-carbonates. Catal Today in press. 281(2):345–351. doi:  10.1016/j.cattod.2016.02.046 CrossRefGoogle Scholar
  3. 3.
    Tundo P, Selva M (2002) The chemistry of dimethyl carbonate. Acc Chem Res 35:706–716CrossRefGoogle Scholar
  4. 4.
    Pacheco MA, Marshall CL (1997) Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy Fuels 11:2–29CrossRefGoogle Scholar
  5. 5.
    Shaikh A-AG (1996) Organic carbonates. Chem Rev 96:951–976CrossRefGoogle Scholar
  6. 6.
    Choi J-C, He L-N, Yasuda H, Sakakura T (2002) Selective and high-yield synthesis of dimethyl carbonate directly from carbon dioxide and methanol. Green Chem 4:230–234CrossRefGoogle Scholar
  7. 7.
    Honda M, Tamura M, Nakagawa Y, Tomishige K (2014) Catalytic CO2 conversion to organic carbonates with alcohols in combination with dehydration system. Catal Sci Technol 4:2830–2845CrossRefGoogle Scholar
  8. 8.
    Shukla K, Srivastava VC (2016) Diethyl carbonate: critical review of synthesis routes, catalysts used and engineering aspects. RSC Adv 6:32624–32645CrossRefGoogle Scholar
  9. 9.
    Gong J, Ma X, Wang S (2007) Phosgene-free approaches to catalytic synthesis of diphenyl carbonate and its intermediates. Appl Catal A General 316:1–21CrossRefGoogle Scholar
  10. 10.
    Aresta M, Dibenedetto A, Fracchiolla E, Giannoccaro P, Pastore C, Pápai I, Schubert G (2005) Mechanism of formation of organic carbonates from aliphatic alcohols and carbon dioxide under mild conditions promoted by carbodiimides. DFT calculation and experimental study. J Org Chem 70:6177–6186CrossRefGoogle Scholar
  11. 11.
    Chaturvedi D, Mishra N, Mishra V (2007) A high yielding, one-pot synthesis of dialkyl carbonates from alcohols using Mitsunobu’s reagent. Tetrahedron Lett 48:5043–5045CrossRefGoogle Scholar
  12. 12.
    Lim YN, Lee C, Jang H-Y (2014) Metal-free synthesis of cyclic and acyclic carbonates from CO2 and alcohols. Eur J Org Chem 2014:1823–1826CrossRefGoogle Scholar
  13. 13.
    Bloodworth BAJ, Davies AG, Vasishtha SC (1967) Organometallic reactions. Part VII. Further addition reactions of tributyltin methoxide and of bistributyltin oxide. J Chem Soc C 1309–1313Google Scholar
  14. 14.
    Hidai M, Hikita T, Uchida Y (1972) Reactions of carbon dioxide with transition metal alkoxides. Chem Lett 1:521–522CrossRefGoogle Scholar
  15. 15.
    Choi J-C, Kohno K, Ohshima Y, Yasuda H, Sakakura T (2008) Tin- or titanium-catalyzed dimethyl carbonate synthesis from carbon dioxide and methanol: large promotion by a small amount of triflate salts. Catal Commun 9:1630–1633CrossRefGoogle Scholar
  16. 16.
    Kohno K, Choi J-C, Ohshima Y, Yasuda H, Sakakura T (2008) Synthesis of dimethyl carbonate from carbon dioxide catalyzed by titanium alkoxides with polyether-type ligands. ChemSusChem 1:186–188CrossRefGoogle Scholar
  17. 17.
    Aresta M, Dibenedetto A, Pastore C (2003) Synthesis and characterization of Nb(OR)4[OC(O)OR] (R=Me, Et, Allyl) and their reaction with the parent alcohol to afford organic carbonates. Inorg Chem 42:3256–3261CrossRefGoogle Scholar
  18. 18.
    Kizlink J, Pastucha I (1995) Preparation of dimethyl carbonate from methanol and carbon dioxide in the presence of Sn(IV) and Ti(IV) alkoxides and metal acetates. Collect Czechoslov Chem Commun 60:687–692CrossRefGoogle Scholar
  19. 19.
    Kizlink J (1993) Synthesis of dimethyl carbonate from carbon dioxide and methanol in the presence of organotin compounds. Collect Czechoslov Chem Commun 58:1399–1402CrossRefGoogle Scholar
  20. 20.
    Kizlink J, Pastucha I (1994) Preparation of dimethyl carbonate from methanol and carbon dioxide in the presence of organotin compounds. Collect Czechoslov Chem Commun 59:2116–2118CrossRefGoogle Scholar
  21. 21.
    Sakakura T, Saito Y, Okano M, Choi J-C, Sako T (1998) Selective conversion of carbon dioxide to dimethyl carbonate by molecular. J Org Chem 63:7095–7096CrossRefGoogle Scholar
  22. 22.
    Sakakura T, Choi J, Saito Y, Masuda T, Sako T, Oriyama T (1999) Metal-catalyzed dimethyl carbonate synthesis from carbon dioxide and acetals. J Org Chem 64:4506–4508CrossRefGoogle Scholar
  23. 23.
    Choi J-C, Sakakura T, Sako T (1999) Reaction of dialkyltin methoxide with carbon dioxide relevant to the mechanism of catalytic carbonate synthesis. J Am Chem Soc 121:3793–3794CrossRefGoogle Scholar
  24. 24.
    Sakakura T, Choi J-C, Saito Y, Sako T (2000) Synthesis of dimethyl carbonate from carbon dioxide: catalysis and mechanism. Polyhedron 19:573–576CrossRefGoogle Scholar
  25. 25.
    Kohno K, Choi J-C, Ohshima Y, Yili A, Yasuda H, Sakakura T (2008) Reaction of dibutyltin oxide with methanol under CO2 pressure relevant to catalytic dimethyl carbonate synthesis. J Organomet Chem 693:1389–1392CrossRefGoogle Scholar
  26. 26.
    Wakamatsu K, Orita A, Otera J (2010) DFT Study on activation of carbon dioxide by dimethytin dimethoxide for synthesis of dimethyl carbonate. Organometallics 29:1290–1295CrossRefGoogle Scholar
  27. 27.
    Stoian DC, Taboada E, Llorca J, Molins E, Medina F, Segarra AM (2013) Boosted CO2 reaction with methanol to yield dimethyl carbonate over Mg–Al hydrotalcite-silica lyogels. Chem Commun 49:5489–5491CrossRefGoogle Scholar
  28. 28.
    Kumar S, Khatri OP, Cordier S, Boukherroub R, Jain SL (2015) Graphene oxide supported molybdenum cluster: first heterogenized homogeneous catalyst for the synthesis of dimethylcarbonate from CO2 and methanol. Chem Eur J 21:3488–3494CrossRefGoogle Scholar
  29. 29.
    Wu XL, Xiao M, Meng YZ, Lu YX (2005) Direct synthesis of dimethyl carbonate on H3PO4 modified V2O5. J Mol Catal A Chem 238:158–162CrossRefGoogle Scholar
  30. 30.
    Wu XL, Meng YZ, Xiao M, Lu YX (2006) Direct synthesis of dimethyl carbonate (DMC) using Cu–Ni/VSO as catalyst. J Mol Catal A Chem 249:93–97CrossRefGoogle Scholar
  31. 31.
    Tomishige K, Sakaihori T, Ikeda Y, Fujimoto K (1999) A novel method of direct synthesis of dimethyl carbonate from methanol and carbon dioxide catalyzed by zirconia. Catal Lett 58:225–229CrossRefGoogle Scholar
  32. 32.
    Ikeda Y, Sakaihori T, Tomishige K, Fujimoto K (2000) Promoting effect of phosphoric acid on zirconia catalysts in selective synthesis of dimethyl carbonate from methanol and carbon dioxide. Catal Lett 66:59–62CrossRefGoogle Scholar
  33. 33.
    Tomishige K, Ikeda Y, Sakaihori T, Fujimoto K (2000) Catalytic properties and structure of zirconia catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide. J Catal 192:355–362CrossRefGoogle Scholar
  34. 34.
    Tomishige K, Furusawa Y, Ikeda Y, Asadullah M, Fujimoto K (2001) CeO2–ZrO2 solid solution catalyst for selective synthesis of dimethyl carbonate from methanol and carbon dioxide. Catal Letters 76:71–74CrossRefGoogle Scholar
  35. 35.
    Yoshida Y, Arai Y, Kado S, Kunimori K, Tomishige K (2006) Direct synthesis of organic carbonates from the reaction of CO2 with methanol and ethanol over CeO2 catalysts. Catal Today 115:95–101CrossRefGoogle Scholar
  36. 36.
    Ikeda Y, Asadullah M, Fujimoto K, Tomishige K (2001) Structure of the active sites on H3PO4/ZrO2 catalysts for dimethyl carbonate synthesis from methanol and carbon dioxide. J Phys Chem B 105:10653–10658CrossRefGoogle Scholar
  37. 37.
    Lee HJ, Joe W, Song IK (2011) Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over transition metal oxide/Ce0.6Zr0.4O2 catalysts: effect of acidity and basicity of the catalysts. Korean J Chem Eng 29:317–322CrossRefGoogle Scholar
  38. 38.
    Jiang C, Guo Y, Wang C, Hu C, Wu Y, Wang E (2003) Synthesis of dimethyl carbonate from methanol and carbon dioxide in the presence of polyoxometalates under mild conditions. Appl Catal A Gen 256:203–212CrossRefGoogle Scholar
  39. 39.
    Honda M, Suzuki A, Noorjahan B, Fujimoto K, Suzuki K, Tomishige K (2009) Low pressure CO2 to dimethyl carbonate by the reaction with methanol promoted by acetonitrile hydration. Chem Commun 4596–4598Google Scholar
  40. 40.
    Honda M, Kuno S, Begum N, Fujimoto K, Suzuki K, Nakagawa Y, Tomishige K (2010) Catalytic synthesis of dialkyl carbonate from low pressure CO2 and alcohols combined with acetonitrile hydration catalyzed by CeO2. Appl Catal A 384:165–170CrossRefGoogle Scholar
  41. 41.
    Honda M, Kuno S, Sonehara S, Fujimoto K, Suzuki K, Nakagawa Y, Tomishige K (2011) Tandem carboxylation-hydration reaction system from methanol, CO2 and benzonitrile to dimethyl carbonate and benzamide catalyzed by CeO2. ChemCatChem 3:365–370CrossRefGoogle Scholar
  42. 42.
    Tamura M, Wakasugi H, Shimizu K, Satsuma A (2011) Efficient and substrate-specific hydration of nitriles to amides in water by using a CeO2 catalyst. Chem Eur J 17:11428–11431CrossRefGoogle Scholar
  43. 43.
    Honda M, Tamura M, Nakagawa Y, Sonehara S, Suzuki K, Fujimoto K, Tomishige K (2013) Ceria-catalyzed conversion of carbon dioxide into dimethyl carbonate with 2-cyanopyridine. ChemSusChem 6:1341–1344CrossRefGoogle Scholar
  44. 44.
    Honda M, Tamura M, Nakagawa Y, Nakao K, Suzuki K, Tomishige K (2014) Organic carbonate synthesis from CO2 and alcohol over CeO2 with 2-cyanopyridine: scope and mechanistic studies. J Catal 318:95–107CrossRefGoogle Scholar
  45. 45.
    Jung KT, Bell AT (2002) Effects of catalyst phase structure on the elementary processes involved in the synthesis of dimethyl carbonate from methanol and carbon dioxide over zirconia. Top Catal 20:97–105CrossRefGoogle Scholar
  46. 46.
    Tamura M, Kishi R, Nakagawa Y, Tomishige K (2015) Self-assembled hybrid metal oxide base catalysts prepared by simply mixing with organic modifier. Nat Commun 6:8580CrossRefGoogle Scholar
  47. 47.
    Tamura M, Sawabe K, Tomishige K, Satsuma A, Shimizu K (2015) Substrate-specific heterogeneous catalysis of CeO2 by entropic effects via multiple interactions. ACS Catal 5:20–26CrossRefGoogle Scholar
  48. 48.
    Aresta M, Dibenedetto A, Pastore C, Angelini A, Aresta B, Pápai I (2010) Influence of Al2O3 on the performance of CeO2 used as catalyst in the direct carboxylation of methanol to dimethylcarbonate and the elucidation of the reaction mechanism. J Catal 269:44–52CrossRefGoogle Scholar
  49. 49.
    Chen L, Wang S, Zhou J, Shen Y, Zhao Y, Ma X (2014) Dimethyl carbonate synthesis from carbon dioxide and methanol over CeO2 versus over ZrO2: comparison of mechanisms. RSC Adv 4:30968–30975CrossRefGoogle Scholar
  50. 50.
    Bansode A, Urakawa A (2014) Continuous DMC synthesis from CO2 and methanol over a CeO2 catalyst in a fixed bed reactor in the presence of a dehydrating agent. ACS Catal 4:3877–3880CrossRefGoogle Scholar
  51. 51.
    Stoian D, Bansode A, Medina F, Urakawa A (2017) Catalysis under microscope: unraveling the mechanism of catalyst de- and re-activation in the continuous dimethyl carbonate synthesis from CO2 and methanol in the presence of a dehydrating agent. Catal Today in press. 283:2–10. doi:  10.1016/j.cattod.2016.03.038 CrossRefGoogle Scholar
  52. 52.
    Honda M, Tamura M, Nakao K, Suzuki K, Nakagawa Y, Tomishige K (2014) Direct cyclic carbonate synthesis from CO2 and diol over carboxylation/hydration cascade catalyst of CeO2 with 2-cyanopyridine. ACS Catal 4:1893–1896CrossRefGoogle Scholar
  53. 53.
    Honda M, Sonehara S, Yasuda H, Nakagawa Y, Tomishige K (2011) Heterogeneous CeO2 catalyst for the one-pot synthesis of organic carbamates from amines, CO2 and alcohols. Green Chem 13:3406–3413CrossRefGoogle Scholar
  54. 54.
    Tamura M, Honda M, Noro K, Nakagawa Y, Tomishige K (2013) Heterogeneous CeO2-catalyzed selective synthesis of cyclic carbamates from CO2 and aminoalcohols in acetonitrile solvent. J Catal 305:191–203CrossRefGoogle Scholar
  55. 55.
    Tamura M, Noro K, Honda M, Nakagawa Y, Tomishige K (2013) Highly efficient synthesis of cyclic ureas from CO2 and diamines by a pure CeO2 catalyst using a 2-propanol solvent. Green Chem 15:1567–1577CrossRefGoogle Scholar
  56. 56.
    Tamura M, Ito K, Honda M, Nakagawa Y, Sugimoto H, Tomishige K (2016) Direct copolymerization of CO2 and diols. Sci Rep 6:24038CrossRefGoogle Scholar
  57. 57.
    Tamura M, Honda M, Nakagawa Y, Tomishige K (2014) Direct conversion of CO2 with diols, aminoalcohols and diamines to cyclic carbonates, cyclic carbamates and cyclic ureas using heterogeneous catalysts. J Chem Technol Biotechnol 89:19–33CrossRefGoogle Scholar
  58. 58.
    Tomishige K, Yasuda H, Yoshida Y, Nurunnabi M, Li B, Kunimori K (2004) Catalytic performance and properties of ceria-based catalysts for cyclic carbonate synthesis from glycol and carbon dioxide. Green Chem 6:206–214CrossRefGoogle Scholar
  59. 59.
    Tomishige K, Yasuda H, Yoshida Y, Nurunnabi M, Li B, Kunimori K (2004) Novel route to propylene carbonate: selective synthesis from propylene glycol and carbon dioxide. Catal Letters 95:45–49CrossRefGoogle Scholar
  60. 60.
    Du Y, He L-N, Kong D-L (2008) Magnesium-catalyzed synthesis of organic carbonate from 1,2-diol/alcohol and carbon dioxide. Catal Commun 9:1754–1758CrossRefGoogle Scholar
  61. 61.
    Du Y, Kong D-L, Wang H-Y, Cai F, Tian J-S, Wang J-Q, He L-N (2005) Sn-catalyzed synthesis of propylene carbonate from propylene glycol and CO2 under supercritical conditions. J Mol Catal A Chem 241:233–237CrossRefGoogle Scholar
  62. 62.
    Huang S, Liu S, Li J, Zhao N, Wei W, Sun Y (2006) Effective synthesis of propylene carbonate from propylene glycol and carbon dioxide by alkali carbonates. Catal Letters 112:187–191CrossRefGoogle Scholar
  63. 63.
    Vieville C, Yoo JW, Pelet S, Mouloungui Z (1998) Synthesis of glycerol carbonate by direct carbonatation of glycerol in supercritical CO2 in the presence of zeolites and ion exchange resins. Catal Lett 56:245–247CrossRefGoogle Scholar
  64. 64.
    Aresta M, Dibenedetto A, Nocito F, Pastore C (2006) A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: the role of the catalyst, solvent and reaction conditions. J Mol Catal A Chem 257:149–153CrossRefGoogle Scholar
  65. 65.
    Dibenedetto A, Angelini A, Aresta M, Ethiraj J, Fragale C, Nocito F (2011) Converting wastes into added value products: from glycerol to glycerol carbonate, glycidol and epichlorohydrin using environmentally friendly synthetic routes. Tetrahedron 67:1308–1313CrossRefGoogle Scholar
  66. 66.
    George J, Patel Y, Pillai SM, Munshi P (2009) Methanol-assisted selective formation of 1,2-glycerol carbonate from glycerol and carbon dioxide using nBu2SnO as a catalyst. J Mol Catal A Chem 304:1–7CrossRefGoogle Scholar
  67. 67.
    Li H, Gao D, Gao P, Wang F, Zhao N, Xiao F, Wei W, Sun Y (2013) The synthesis of glycerol carbonate from glycerol and CO2 over La2O2CO3–ZnO catalysts. Catal Sci Technol 3:2801–2809CrossRefGoogle Scholar
  68. 68.
    Zhang J, He D (2014) Surface properties of Cu/La2O3 and its catalytic performance in the synthesis of glycerol carbonate and monoacetin from glycerol and carbon dioxide. J Colloid Interface Sci 419:31–38CrossRefGoogle Scholar
  69. 69.
    Zhang J, He D (2015) Synthesis of glycerol carbonate and monoacetin from glycerol and carbon dioxide over Cu catalysts: the role of supports. J Chem Technol Biotechnol 90:1077–1085CrossRefGoogle Scholar
  70. 70.
    Li H, Jiao X, Li L, Zhao N, Xiao F, Wei W, Sun Y, Zhang B (2015) Synthesis of glycerol carbonate by direct carbonylation of glycerol with CO2 over solid catalysts derived from Zn/Al/La and Zn/Al/La/M (M=Li, Mg and Zr) hydrotalcites. Catal Sci Technol 5:989–1005CrossRefGoogle Scholar
  71. 71.
    Liu J, Li Y, Zhang J, He D (2016) Glycerol carbonylation with CO2 to glycerol carbonate over CeO2 catalyst and the influence of CeO2 preparation methods and reaction parameters. Appl Catal A Gen 513:9–18CrossRefGoogle Scholar
  72. 72.
    Whiteoak CJ, Kielland N, Laserna V, Escudero-Adan EC, Martin E, Kleij AW (2013) A powerful aluminium catalyst for the synthesis of highly functional organic carbonates. J Am Chem Soc 135:1228–1231CrossRefGoogle Scholar
  73. 73.
    Gregory GL, Ulmann M, Buchard A (2015) Synthesis of 6-membered cyclic carbonates from 1,3-diols and low CO2 pressure: a novel mild strategy to replace phosgene reagents. RSC Adv 5:39404–39408CrossRefGoogle Scholar
  74. 74.
    Inoue Y, Itoh Y, Yen IF, Imaizumi S (1990) Palladium(0)-catalyzed carboxylative cyclized coupling of propargylic alcohol with aryl halides. J Mol Catal 60:L1–L3CrossRefGoogle Scholar
  75. 75.
    Kim H-S, Kim J-W, Kwon S-C, Shim S-C, Kim T-J (1997) Catalytic formation of carbamates and cyclic carbonates by copper complex of 2,5,19,22-tetraaza[6](1,1′)ferrocenophane-1,5-diene X-ray crystal structure of [Cu(1)]PF6. J Organomet Chem 545–546:337–344CrossRefGoogle Scholar
  76. 76.
    Gu Y, Shi F, Deng Y (2004) Ionic liquid as an efficient promoting medium for fixation of CO2: clean synthesis of α-methylene cyclic carbonates from CO2 and propargyl alcohols catalyzed by metal salts under mild conditions. J Org Chem 69:391–394CrossRefGoogle Scholar
  77. 77.
    Kimura T, Kamata K, Mizuno N (2012) A bifunctional tungstate catalyst for chemical fixation of CO2 at atmospheric pressure. Angew Chem Int Ed 51:6700–6703CrossRefGoogle Scholar
  78. 78.
    Song Q-W, Yu B, Li X-D, Ma R, Diao Z-F, Li R-G, Li W, He L-N (2014) Efficient chemical fixation of CO2 promoted by a bifunctional Ag2WO4/Ph3P system. Green Chem 16:1633–1638CrossRefGoogle Scholar
  79. 79.
    Yamada W, Sugawara Y, Hau MC, Ikeno T, Yamada T (2007) Silver-catalyzed incorporation of carbon dioxide into propargylic alcohols. Eur J Org Chem 2007:2604–2607CrossRefGoogle Scholar
  80. 80.
    Yang Z-Z, Zhao Y, Zhang H, Yu B, Ma Z, Ji G, Liu Z (2014) Fluorinated microporous organic polymers: design and applications in CO2 adsorption and conversion. Chem Commun 50:13910–13913CrossRefGoogle Scholar
  81. 81.
    Jiang HF, Wang AZ, Liu HL, Qi CR (2008) Reusable polymer-supported amine-copper catalyst for the formation of α-alkylidene cyclic carbonates in supercritical carbon dioxide. Eur J Org Chem 2008:2309–2312CrossRefGoogle Scholar
  82. 82.
    Tang X, Qi C, He H, Jiang H, Ren Y, Yuan G (2013) Polystyrene-supported N-heterocyclic carbene-silver complexes as robust and efficient catalysts for the reaction of carbon dioxide and propargylic alcohols. Adv Synth Catal 355:2019–2028CrossRefGoogle Scholar
  83. 83.
    Yang Z, Yu B, Zhang H, Zhao Y, Chen Y, Ma Z, Ji G, Gao X, Han B, Liu Z (2016) Metalated mesoporous poly(triphenylphosphine) with Azo functionality: efficient catalysts for CO2 conversion. ACS Catal 6:1268–1273CrossRefGoogle Scholar
  84. 84.
    Song QW, Chen WQ, Ma R, Yu A, Li QY, Chang Y, He LN (2015) Bifunctional silver(I) complex-catalyzed CO2 conversion at ambient conditions: synthesis of α-methylene cyclic carbonates and derivatives. ChemSusChem 8:821–827CrossRefGoogle Scholar
  85. 85.
    Cui M, Qian Q, He Z, Ma J, Kang X, Hu J, Liu Z, Han B (2015) Synthesizing Ag nanoparticles of small size on a hierarchical porosity support for the carboxylative cyclization of propargyl alcohols with CO2 under ambient conditions. Chem Eur J 21:15924–15928CrossRefGoogle Scholar
  86. 86.
    Qiu J, Zhao Y, Wang H, Cui G, Wang J (2016) AgX@carbon (X=Br and I) as robust and efficient catalysts for the reaction of propargylic alcohols and CO2 to carbonates under ambient conditions. RSC Adv 6:54020–54026CrossRefGoogle Scholar
  87. 87.
    Hu J, Ma J, Zhu Q, Qian Q, Han H, Mei Q, Han B (2016) Zinc(II)-catalyzed reactions of carbon dioxide and propargylic alcohols to carbonates at room temperature. Green Chem 18:382–385CrossRefGoogle Scholar
  88. 88.
    Kayaki Y, Yamamoto M, Ikariya T (2009) N-heterocyclic carbenes as efficient organocatalysts for CO2 fixation reactions. Angew Chem Int Ed 48:4194–4197CrossRefGoogle Scholar
  89. 89.
    Wang Y-B, Wang Y-M, Zhang WZ, Lu X-B (2013) Fast CO2 sequestration, activation, and catalytic transformation using N-heterocyclic olefins. J Am Chem Soc 135:11996–12003CrossRefGoogle Scholar
  90. 90.
    Wang Y-B, Sun D-S, Zhou H, Zhang W-Z, Lu X-B (2014) Alkoxide-functionalized imidazolium betaines for CO2 activation and catalytic transformation. Green Chem 16:2266–2272CrossRefGoogle Scholar
  91. 91.
    Minakata S, Sasaki I, Ide T (2010) Atmospheric CO2 fixation by unsaturated alcohols using tBuOI under neutral conditions. Angew Chem Int Ed 49:1309–1311CrossRefGoogle Scholar
  92. 92.
    Vara BA, Struble TJ, Wang W, Dobish MC, Johnston JN (2015) Enantioselective small molecule synthesis by carbon dioxide fixation using a dual Brønsted acid/base organocatalyst. J Am Chem Soc 137:7302–7305CrossRefGoogle Scholar
  93. 93.
    Wang JL, He LN, Dou XY, Wu F (2009) Poly(ethylene glycol): an alternative solvent for the synthesis of cyclic carbonate from vicinal halohydrin and carbon dioxide. Aust J Chem 62:917–920CrossRefGoogle Scholar
  94. 94.
    Reithofer MR, Sum YN, Zhang Y (2013) Synthesis of cyclic carbonates with carbon dioxide and cesium carbonate. Green Chem 15:2086–2090CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Nicole Kindermann
    • 1
  • Tharun Jose
    • 1
  • Arjan W. Kleij
    • 1
    • 2
  1. 1.The Barcelona Institute of Science and TechnologyInstitute of Chemical Research of Catalonia (ICIQ)TarragonaSpain
  2. 2.Catalan Institute of Research and Advanced Studies (ICREA)BarcelonaSpain

Personalised recommendations