Advertisement

Topics in Current Chemistry

, 375:13 | Cite as

Sorting Carbon Nanotubes

  • Ming Zheng
Review
Part of the following topical collections:
  1. Single-Walled Carbon Nanotubes: Preparation, Property and Application

Abstract

Sorting of single-wall carbon nanotubes by their electronic and atomic structures in liquid phases is reviewed in this chapter. We first introduce the sorting problem, and then provide an overview of several sorting methodologies, following roughly the chronological order of their development over the past 15 years or so. Major methods discussed include ion-exchange chromatography, density-gradient ultracentrifugation, selective extraction in organic solvents, gel chromatography, and aqueous two-phase extraction. A main focus of the review is on the common mechanisms underlining all sorting processes. We propose that differences in solvation among different nanotube species are the ultimate driving force of sorting, and we corroborate this proposal by presenting analysis on how the differences are realized in electronic-structure-based sorting and atomic-structure-based sorting. In the end, we offer some suggestions on future directions that may grow out of carbon nanotube sorting. In particular, the prospect of expanding the function of DNA/carbon nanotube hybrid to control inter-particle interactions both inside and outside the nanotube is discussed.

Keywords

Chirality DNA Separation Single-wall carbon nanotubes Solvation energy 

Notes

Acknowledgments

The author would like to express his gratitude to many of his colleagues and associates at DuPont CR&D, NIST and other institutions for their collaboration on the CNT sorting research. They are Anand Jagota, Bruce Diner, Xueying Huang, Scott Mclean, Ellen Semke, Xiaomin Tu, Constantine Khripin, Jeffrey Fagan, Angela Hight-Walker, Geyou Ao, Jason Streit, Hui Gui, and Chongwu Zhou. Critical reading of the manuscript by Geyou Ao, Jeffrey Fagan, and Jason Streit is also greatly appreciated.

References

  1. 1.
    Giddings JC (1991) Unified separation science. Wiley-Interscience, New YorkGoogle Scholar
  2. 2.
    Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, LondonCrossRefGoogle Scholar
  3. 3.
    Liu J, Wang C, Tu X, Liu B, Chen L, Zheng M, Zhou C (2012) Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy. Nat Commun 3:1199. http://www.nature.com/ncomms/journal/v3/n11/suppinfo/ncomms2205_S1.html
  4. 4.
    Yang F, Wang X, Zhang D, Yang J, LuoDa, Xu Z, Wei J, Wang J-Q, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F, Li Y (2014) Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510(7506):522–524. doi: 10.1038/nature13434. http://www.nature.com/nature/journal/v510/n7506/abs/nature13434.html#supplementary-information
  5. 5.
    Sanchez-Valencia JR, Dienel T, Groning O, Shorubalko I, Mueller A, Jansen M, Amsharov K, Ruffieux P, Fasel R (2014) Controlled synthesis of single-chirality carbon nanotubes. Nature 512(7512):61–64. doi: 10.1038/nature13607 CrossRefGoogle Scholar
  6. 6.
    Ao G, Streit J, Fagan J, Zheng M (2016) Differentiating left- and right-handed carbon nanotubes by DNA. J Am Chem Soc. doi: 10.1021/jacs.6b09135 Google Scholar
  7. 7.
    Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Electronic structure of chiral graphene tubules. Appl Phys Lett 60(18):2204–2206. doi: 10.1063/1.107080 CrossRefGoogle Scholar
  8. 8.
    Hamada N, S-i Sawada, Oshiyama A (1992) New one-dimensional conductors: graphitic microtubules. Phys Rev Lett 68(10):1579–1581CrossRefGoogle Scholar
  9. 9.
    Kane CL, Mele EJ (1997) Size, shape, and low energy electronic structure of carbon nanotubes. Phys Rev Lett 78(10):1932–1935CrossRefGoogle Scholar
  10. 10.
    Odom TW, Huang J-L, Kim P, Lieber CM (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391(6662):62–64CrossRefGoogle Scholar
  11. 11.
    Ouyang M, Huang J-L, Cheung CL, Lieber CM (2001) Energy gaps in “metallic” single-walled carbon nanotubes. Science 292(5517):702–705CrossRefGoogle Scholar
  12. 12.
    Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tománek D, Fischer JE, Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science 273(5274):483CrossRefGoogle Scholar
  13. 13.
    Girifalco LA, Hodak M, Lee RS (2000) Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B 62(19):13104–13110CrossRefGoogle Scholar
  14. 14.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605CrossRefGoogle Scholar
  15. 15.
    Dresselhaus MS, Dresselhaus G, Avouris P (eds) (2001) Carbon nanotubes: synthesis, structure, properties, and applications. Springer, BerlinGoogle Scholar
  16. 16.
    Wang S, Humphreys ES, Chung S-Y, Delduco DF, Lustig SR, Wang H, Parker KN, Rizzo NW, Subramoney S, Chiang Y-M, Jagota A (2003) Peptides with selective affinity for carbon nanotubes. Nat Mater 2(3):196–200CrossRefGoogle Scholar
  17. 17.
    Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2(5):338–342CrossRefGoogle Scholar
  18. 18.
    Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG, Diner BA, Dresselhaus MS, McLean RS, Onoa GB, Samsonidze GG, Semke ED, Usrey M, Walls DJ (2003) Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302(5650):1545–1548CrossRefGoogle Scholar
  19. 19.
    Chen Z, Du X, Du M-H, Rancken CD, Cheng H-P, Rinzler AG (2003) Bulk separative enrichment in metallic or semiconducting single-walled carbon nanotubes. Nano Lett 3(9):1245–1249. doi: 10.1021/nl0344763 CrossRefGoogle Scholar
  20. 20.
    Krupke R, Hennrich F, Hv Löhneysen, Kappes MM (2003) Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301(5631):344CrossRefGoogle Scholar
  21. 21.
    Zheng M, Diner BA (2004) Solution redox chemistry of carbon nanotubes. J Am Chem Soc 126(47):15490–15494CrossRefGoogle Scholar
  22. 22.
    Jagota A, Diner BA, Boussaad S, Zheng M (2005) Carbon nanotube -biomolecule interactions: applications in carbon nanotube separation and biosensing. In: Rotkin SV, Subramoney S (eds) Applied physics of carbon nanotubes—fundamentals of theory, optics and transport devices. Springer, New YorkGoogle Scholar
  23. 23.
    Wang J, Nguyen TD, Cao Q, Wang Y, Tan MYC, Chan-Park MB (2016) Selective surface charge sign reversal on metallic carbon nanotubes for facile ultrahigh purity nanotube sorting. ACS Nano 10(3):3222–3232. doi: 10.1021/acsnano.5b05795 CrossRefGoogle Scholar
  24. 24.
    Tu X, Manohar S, Jagota A, Zheng M (2009) DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460:250–253CrossRefGoogle Scholar
  25. 25.
    Tu X, Hight Walker AR, Khripin CY, Zheng M (2011) Evolution of DNA sequences toward recognition of metallic armchair carbon nanotubes. J Am Chem Soc 133(33):12998–13001. doi: 10.1021/ja205407q CrossRefGoogle Scholar
  26. 26.
    Zheng M, Semke ED (2007) Enrichment of single chirality carbon nanotubes. J Am Chem Soc 129:6084–6085CrossRefGoogle Scholar
  27. 27.
    Tu X, Zheng M (2008) A DNA-based approach to the carbon nanotube sorting problem. Nano Research 1:185–194CrossRefGoogle Scholar
  28. 28.
    Lustig SR, Jagota A, Khripin C, Zheng M (2005) Theory of structure-based carbon nanotube separations by ion-exchange chromatography of DNA/CNT hybrids. J Phys Chem B 109:2559–2566CrossRefGoogle Scholar
  29. 29.
    Arnold MS, Stupp SI, Hersam MC (2005) Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett 5(4):713–718. doi: 10.1021/nl050133o CrossRefGoogle Scholar
  30. 30.
    Wenseleers W, Vlasov II, Goovaerts E, Obraztsova ED, Lobach AS, Bouwen A (2004) Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv Funct Mater 14(11):1105–1112. doi: 10.1002/adfm.200400130 CrossRefGoogle Scholar
  31. 31.
    Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nano 1(1):60–65. http://www.nature.com/nnano/journal/v1/n1/suppinfo/nnano.2006.52_S1.html
  32. 32.
    Niyogi S, Densmore CG, Doorn SK (2008) Electrolyte tuning of surfactant interfacial behavior for enhanced density-based separations of single-walled carbon nanotubes. J Am Chem Soc 131(3):1144–1153. doi: 10.1021/ja807785e CrossRefGoogle Scholar
  33. 33.
    Hároz EH, Rice WD, Lu BY, Ghosh S, Hauge RH, Weisman RB, Doorn SK, Kono J (2010) Enrichment of armchair carbon nanotubes via density gradient ultracentrifugation: Raman spectroscopy evidence. ACS Nano 4(4):1955–1962. doi: 10.1021/nn901908n CrossRefGoogle Scholar
  34. 34.
    Ghosh S, Bachilo SM, Weisman RB (2010) Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat Nano 5(6):443–450. http://www.nature.com/nnano/journal/v5/n6/abs/nnano.2010.68.html#supplementary-information
  35. 35.
    Yanagi K, Miyata Y, Kataura H (2008) Optical and conductive characteristics of metallic single-wall carbon nanotubes with three basic colors; cyan, magenta, and yellow. Appl Phys Express 1(3):034003CrossRefGoogle Scholar
  36. 36.
    Fagan JA, Becker ML, Chun J, Hobbie EK (2008) Length fractionation of carbon nanotubes using centrifugation. Adv Mater 20(9):1609–1613. doi: 10.1002/adma.200702353 CrossRefGoogle Scholar
  37. 37.
    Kawai M, Kyakuno H, Suzuki T, Igarashi T, Suzuki H, Okazaki T, Kataura H, Maniwa Y, Yanagi K (2012) single chirality extraction of single-wall carbon nanotubes for the encapsulation of organic molecules. J Am Chem Soc 134(23):9545–9548. doi: 10.1021/ja3013853 CrossRefGoogle Scholar
  38. 38.
    Fagan JA, Zheng M, Rastogi V, Simpson JR, Khripin CY, Silvera Batista CA, Hight Walker AR (2013) Analyzing surfactant structures on length and chirality resolved (6, 5) single-wall carbon nanotubes by analytical ultracentrifugation. ACS Nano 7(4):3373–3387. doi: 10.1021/nn4002165 CrossRefGoogle Scholar
  39. 39.
    Lam S, Zheng M, Fagan JA (2016) Characterizing the effect of salt and surfactant concentration on the counterion atmosphere around surfactant stabilized SWCNTs using analytical ultracentrifugation. Langmuir 32(16):3926–3936. doi: 10.1021/acs.langmuir.6b00605 CrossRefGoogle Scholar
  40. 40.
    Nish A, Hwang J-Y, Doig J, Nicholas RJ (2007) Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat Nano 2(10):640–646. http://www.nature.com/nnano/journal/v2/n10/suppinfo/nnano.2007.290_S1.html
  41. 41.
    Chen F, Wang B, Chen Y, Li L-J (2007) Toward the extraction of single species of single-walled carbon nanotubes using fluorene-based polymers. Nano Lett 7(10):3013–3017. doi: 10.1021/nl071349o CrossRefGoogle Scholar
  42. 42.
    Lee HW, Yoon Y, Park S, Oh JH, Hong S, Liyanage LS, Wang H, Morishita S, Patil N, Park YJ, Park JJ, Spakowitz A, Galli G, Gygi F, Wong PHS, Tok JBH, Kim JM, Bao Z (2011) Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nat Commun 2:541. doi: 10.1038/ncomms1545. http://www.nature.com/articles/ncomms1545#supplementary-information
  43. 43.
    Ju S-Y, Doll J, Sharma I, Papadimitrakopoulos F (2008) Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide. Nat Nano 3(6):356–362. http://www.nature.com/nnano/journal/v3/n6/suppinfo/nnano.2008.148_S1.html
  44. 44.
    Ozawa H, Fujigaya T, Niidome Y, Hotta N, Fujiki M, Nakashima N (2011) Rational concept to recognize/extract single-walled carbon nanotubes with a specific chirality. J Am Chem Soc 133(8):2651–2657. doi: 10.1021/ja109399f CrossRefGoogle Scholar
  45. 45.
    Lemasson FA, Strunk T, Gerstel P, Hennrich F, Lebedkin S, Barner-Kowollik C, Wenzel W, Kappes MM, Mayor M (2011) Selective dispersion of single-walled carbon nanotubes with specific chiral indices by poly(N-decyl-2,7-carbazole). J Am Chem Soc 133(4):652–655. doi: 10.1021/ja105722u CrossRefGoogle Scholar
  46. 46.
    Stürzl N, Hennrich F, Lebedkin S, Kappes MM (2009) Near monochiral single-walled carbon nanotube dispersions in organic solvents. J Phys Chem C 113(33):14628–14632. doi: 10.1021/jp902788y CrossRefGoogle Scholar
  47. 47.
    Tange M, Okazaki T, Iijima S (2011) Selective extraction of large-diameter single-wall carbon nanotubes with specific chiral indices by poly(9,9-dioctylfluorene-alt-benzothiadiazole). J Am Chem Soc 133(31):11908–11911. doi: 10.1021/ja204698d CrossRefGoogle Scholar
  48. 48.
    Mistry KS, Larsen BA, Blackburn JL (2013) High-yield dispersions of large-diameter semiconducting single-walled carbon nanotubes with tunable narrow chirality distributions. ACS Nano 7(3):2231–2239. doi: 10.1021/nn305336x CrossRefGoogle Scholar
  49. 49.
    Kato Y, Fukuzawa M, Toshimitsu F, Nakashima N (2015) Separation of semiconducting single-walled carbon nanotubes using a flavin compound. Chem Lett 44(4):566–567. doi: 10.1246/cl.141193 CrossRefGoogle Scholar
  50. 50.
    Han J, Ji Q, Li H, Li G, Qiu S, Li H-B, Zhang Q, Jin H, Li Q, Zhang J (2016) A photodegradable hexaaza-pentacene molecule for selective dispersion of large-diameter semiconducting carbon nanotubes. Chem Commun 52(49):7683–7686. doi: 10.1039/C6CC01558A CrossRefGoogle Scholar
  51. 51.
    Gui H, Streit JK, Fagan JA, Hight Walker AR, Zhou C, Zheng M (2015) Redox sorting of carbon nanotubes. Nano Lett 15(3):1642–1646. doi: 10.1021/nl504189p CrossRefGoogle Scholar
  52. 52.
    Tanaka T, Jin H, Miyata Y, Fujii S, Suga H, Naitoh Y, Minari T, Miyadera T, Tsukagoshi K, Kataura H (2009) Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes. Nano Lett 9(4):1497–1500. doi: 10.1021/nl8034866 CrossRefGoogle Scholar
  53. 53.
    Moshammer K, Hennrich F, Kappes M (2009) Selective suspension in aqueous sodium dodecyl sulfate according to electronic structure type allows simple separation of metallic from semiconducting single-walled carbon nanotubes. Nano Res 2(8):599–606. doi: 10.1007/s12274-009-9057-0 CrossRefGoogle Scholar
  54. 54.
    Liu H, Nishide D, Tanaka T, Kataura H (2011) Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat Commun 2:309. http://www.nature.com/ncomms/journal/v2/n5/suppinfo/ncomms1313_S1.html
  55. 55.
    Liu H, Tanaka T, Kataura H (2014) Optical isomer separation of single-chirality carbon nanotubes using gel column chromatography. Nano Lett 14(11):6237–6243. doi: 10.1021/nl5025613 CrossRefGoogle Scholar
  56. 56.
    Yomogida Y, Tanaka T, Zhang M, Yudasaka M, Wei X, Kataura H (2016) Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging. Nat Commun 7:12056. doi: 10.1038/ncomms12056. http://www.nature.com/articles/ncomms12056#supplementary-information
  57. 57.
    Wei X, Tanaka T, Yomogida Y, Sato N, Saito R, Kataura H (2016) Experimental determination of excitonic band structures of single-walled carbon nanotubes using circular dichroism spectra. Nat Commun 7:12899. doi: 10.1038/ncomms12899 CrossRefGoogle Scholar
  58. 58.
    Khripin CY, Fagan JA, Zheng M (2013) Spontaneous partition of carbon nanotubes in polymer-modified aqueous phases. J Am Chem Soc 135(18):6822–6825. doi: 10.1021/ja402762e CrossRefGoogle Scholar
  59. 59.
    Albertsson PA (1971) Partition of cell particles and macromolecules, 2nd edn. Wiley-Interscience, New YorkGoogle Scholar
  60. 60.
    Khripin CY, Arnold-Medabalimi N, Zheng M (2011) Molecular-crowding-induced clustering of DNA-wrapped carbon nanotubes for facile length fractionation. ACS Nano 5:8258–8266. doi: 10.1021/nn2029549 CrossRefGoogle Scholar
  61. 61.
    Ao G, Khripin CY, Zheng M (2014) DNA-controlled partition of carbon nanotubes in polymer aqueous two-phase systems. J Am Chem Soc 136(29):10383–10392. doi: 10.1021/ja504078b CrossRefGoogle Scholar
  62. 62.
    Fagan JA, Khripin CY, Silvera Batista CA, Simpson JR, Hároz EH, Hight Walker AR, Zheng M (2014) Isolation of specific small-diameter single-wall carbon nanotube species via aqueous two-phase extraction. Adv Mater 26(18):2800–2804. doi: 10.1002/adma.201304873 CrossRefGoogle Scholar
  63. 63.
    Subbaiyan NK, Cambré S, Parra-Vasquez ANG, Hároz EH, Doorn SK, Duque JG (2014) Role of surfactants and salt in aqueous two-phase separation of carbon nanotubes toward simple chirality isolation. ACS Nano 8(2):1619–1628. doi: 10.1021/nn405934y CrossRefGoogle Scholar
  64. 64.
    Zhang M, Khripin CY, Fagan JA, McPhie P, Ito Y, Zheng M (2014) Single-step total fractionation of single-wall carbon nanotubes by countercurrent chromatography. Anal Chem 86(8):3980–3984. doi: 10.1021/ac5003189 CrossRefGoogle Scholar
  65. 65.
    Fagan JA, Hároz EH, Ihly R, Gui H, Blackburn JL, Simpson JR, Lam S, Hight Walker AR, Doorn SK, Zheng M (2015) Isolation of >1 nm diameter single-wall carbon nanotube species using aqueous two-phase extraction. ACS Nano 9(5):5377–5390. doi: 10.1021/acsnano.5b01123 CrossRefGoogle Scholar
  66. 66.
    Graf A, Zakharko Y, Schießl SP, Backes C, Pfohl M, Flavel BS, Zaumseil J (2016) Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing. Carbon 105:593–599. doi: 10.1016/j.carbon.2016.05.002 CrossRefGoogle Scholar
  67. 67.
    Albertsson P-A (1971) Partition of cell particles and macromolecules, 2nd edn. Wiley-Interscience, New YorkGoogle Scholar
  68. 68.
    Zaslavsky BY (1994) Aqueous two-phase partitioning. Marcel Dekker, New YorkGoogle Scholar
  69. 69.
    Hofmann AF, Roda A (1984) Physicochemical properties of bile acids and their relationship to biological properties: an overview of the problem. J Lipid Res 25(13):1477–1489Google Scholar
  70. 70.
    Huang X, Mclean RS, Zheng M (2005) High-resolution length sorting and purification of DNA-wrapped carbon nanotubes by size-exclusion chromatography. Anal Chem 77(19):6225–6228CrossRefGoogle Scholar
  71. 71.
    Khripin C, Tu X, Howarter JA, Fagan JA, Zheng M (2012) Concentration measurement of length-fractionated colloidal single-wall carbon nanotubes. Anal Chem Artic ASAP. doi: 10.1021/ac302023n Google Scholar
  72. 72.
    Gui H, Chen H, Khripin CY, Liu B, Fagan JA, Zhou C, Zheng M (2016) A facile and low-cost length sorting of single-wall carbon nanotubes by precipitation and applications for thin-film transistors. Nanoscale 8(6):3467–3473. doi: 10.1039/C5NR07329D CrossRefGoogle Scholar
  73. 73.
    Strano MS, Huffman CB, Moore VC, O’Connell MJ, Haroz EH, Hubbard J, Miller M, Rialon K, Kittrell C, Ramesh S, Hauge RH, Smalley RE (2003) Reversible, Band-gap-selective protonation of single-walled carbon nanotubes in solution. J Phys Chem B 107(29):6979–6985. doi: 10.1021/jp027664a CrossRefGoogle Scholar
  74. 74.
    Hirana Y, Juhasz G, Miyauchi Y, Mouri S, Matsuda K, Nakashima N (2013) Empirical prediction of electronic potentials of single-walled carbon nanotubes with a specific chirality (n, m). Sci Rep 3:2959. doi: 10.1038/srep02959. http://www.nature.com/srep/2013/131016/srep02959/abs/srep02959.html#supplementary-information
  75. 75.
    Schäfer S, Cogan NMB, Krauss TD (2014) Spectroscopic investigation of electrochemically charged individual (6, 5) single-walled carbon nanotubes. Nano Lett 14(6):3138–3144. doi: 10.1021/nl5003729 CrossRefGoogle Scholar
  76. 76.
    Streit J, Zheng M (2016) Redox sorting of double-wall carbon nanotubes (unpublished results) Google Scholar
  77. 77.
    Antaris AL, Seo J-WT, Brock RE, Herriman JE, Born MJ, Green AA, Hersam MC (2012) Probing and tailoring pH-dependent interactions between block copolymers and single-walled carbon nanotubes for density gradient sorting. J Phys Chem C 116(37):20103–20108. doi: 10.1021/jp3063564 CrossRefGoogle Scholar
  78. 78.
    Homenick CM, Rousina-Webb A, Cheng F, Jakubinek MB, Malenfant PRL, Simard B (2014) High-Yield, single-step separation of metallic and semiconducting SWCNTs using block copolymers at low temperatures. J Phys Chem C 118(29):16156–16164. doi: 10.1021/jp5030476 CrossRefGoogle Scholar
  79. 79.
    Flavel BS, Kappes MM, Krupke R, Hennrich F (2013) Separation of single-walled carbon nanotubes by 1-dodecanol-mediated size-exclusion chromatography. ACS Nano 7(4):3557–3564. doi: 10.1021/nn4004956 CrossRefGoogle Scholar
  80. 80.
    Hirano A, Tanaka T, Urabe Y, Kataura H (2013) pH- and solute-dependent adsorption of single-wall carbon nanotubes onto hydrogels: mechanistic insights into the metal/semiconductor separation. ACS Nano 7(11):10285–10295. doi: 10.1021/nn4046776 CrossRefGoogle Scholar
  81. 81.
    Rice NA, Adronov A (2013) Supramolecular interactions of high molecular weight poly(2,7-carbazole)s with single-walled carbon nanotubes. Macromolecules 46(10):3850–3860. doi: 10.1021/ma400081d CrossRefGoogle Scholar
  82. 82.
    Gelbart WM, Bruinsma RF, Pincus PA, Parsegian VA (2000) DNA-inspired electrostatics. Phys Today 53(9):38–44CrossRefGoogle Scholar
  83. 83.
    Manning GS (1978) The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Quart Rev Biophys 11(02):179–246CrossRefGoogle Scholar
  84. 84.
    Ao G, Zheng M (2016) Metallicity-based carbon nanotube sorting by DNA and SDBS combination (unpublished results) Google Scholar
  85. 85.
    Roxbury D, Mittal J, Jagota A (2012) Molecular-basis of single-walled carbon nanotube recognition by single-stranded DNA. Nano Lett 12(3):1464–1469. doi: 10.1021/nl204182b CrossRefGoogle Scholar
  86. 86.
    Meng S, Wang WL, Maragakis P, Kaxiras E (2007) Determination of DNA-base orientation on carbon nanotubes through directional optical absorbance. Nano Lett 7(8):2312–2316. doi: 10.1021/nl070953w CrossRefGoogle Scholar
  87. 87.
    Khripin CY, Tu X, Heddleston JM, Silvera-Batista C, Hight Walker AR, Fagan J, Zheng M (2012) High-resolution length fractionation of surfactant-dispersed carbon nanotubes. Anal Chem 85(3):1382–1388. doi: 10.1021/ac303349q CrossRefGoogle Scholar
  88. 88.
    Schneider TD (2010) 70% efficiency of bistate molecular machines explained by information theory, high dimensional geometry and evolutionary convergence. Nucleic Acids Res. doi: 10.1093/nar/gkq389 Google Scholar
  89. 89.
    Pabo CO, Sauer RT (1984) Protein-DNA recognition. Annu Rev Biochem 53(1):293–321. doi: 10.1146/annurev.bi.53.070184.001453 CrossRefGoogle Scholar
  90. 90.
    Dervan PB (1986) Design of sequence-specific DNA-binding molecules. Science 232(4749):464CrossRefGoogle Scholar
  91. 91.
    White S, Szewczyk JW, Turner JM, Baird EE, Dervan PB (1998) Recognition of the four Watson–Crick base pairs in the DNA minor groove by synthetic ligands. Nature 391(6666):468–471. http://www.nature.com/nature/journal/v391/n6666/suppinfo/391468a0_S1.html
  92. 92.
    Kang JS, Meier JL, Dervan PB (2014) Design of sequence-specific DNA binding molecules for DNA methyltransferase inhibition. J Am Chem Soc 136(9):3687–3694. doi: 10.1021/ja500211z CrossRefGoogle Scholar
  93. 93.
    Chou SG, Plentz F, Jiang J, Saito R, Nezich D, Ribeiro HB, Jorio A, Pimenta MA, Samsonidze GG, Santos AP, Zheng M, Onoa GB, Semke ED, Dresselhaus G, Dresselhaus MS (2005) Phonon-assisted excitonic recombination channels observed in DNA-wrapped carbon nanotubes using photoluminescence spectroscopy. Phys Rev Lett 94(12):127402CrossRefGoogle Scholar
  94. 94.
    Chou S, DeCamp MF, Jiang J, Samsonidze GG, Barros EB, Plentz F, Jorio A, Zheng M, Onoa GB, Semke ED, Tokmakoff A, Saito R, Dresselhaus G, Dresselhaus MS (2005) Phonon-assisted exciton relaxation dynamics for a (6, 5)-enriched DNA-wrapped single-walled carbon nanotube sample. Phys Rev B 72:195415CrossRefGoogle Scholar
  95. 95.
    Carlson LJ, Maccagnano SE, Zheng M, Silcox J, Krauss TD (2007) Fluorescence efficiency of individual carbon nanotubes. Nano Lett 7:3698–3703CrossRefGoogle Scholar
  96. 96.
    Torrens ON, Kikkawa JM, Zheng M (2008) Phonon sideband optical spectroscopy of carbon nanotubes: evidence for K′-momentum dark excitons. Phys Rev Lett 101:157401CrossRefGoogle Scholar
  97. 97.
    Vora PM, Tu X, Mele EJ, Zheng M, Kikkawa JM (2010) Chirality dependence of the K-momentum dark excitons in carbon nanotubes. Phys Rev B 81:155123CrossRefGoogle Scholar
  98. 98.
    Telg H, Duque JG, Staiger M, Tu X, Hennrich F, Kappes MM, Zheng M, Maultzsch J, Thomsen C, Doorn SK (2011) Chiral index dependence of the G+ and G− Raman modes in semiconducting carbon nanotubes. ACS Nano 6(1):904–911. doi: 10.1021/nn2044356 CrossRefGoogle Scholar
  99. 99.
    Duque JG, Telg H, Chen H, Swan AK, Shreve AP, Tu X, Zheng M, Doorn SK (2012) Quantum interference between the third and fourth exciton states in semiconducting carbon nanotubes using resonance Raman spectroscopy. Phys Rev Lett 108(11):117404CrossRefGoogle Scholar
  100. 100.
    Duque JG, Chen H, Swan AK, Shreve AP, Kilina S, Tretiak S, Tu X, Zheng M, Doorn SK (2011) Violation of the Condon approximation in semiconducting carbon nanotubes. ACS Nano 5(6):5233–5241. doi: 10.1021/nn201430z CrossRefGoogle Scholar
  101. 101.
    Piao Y, Simpson JR, Streit JK, Ao G, Zheng M, Fagan JA, Hight Walker AR (2016) Intensity ratio of resonant Raman modes for (n, m) enriched semiconducting carbon nanotubes. ACS Nano 10(5):5252–5259. doi: 10.1021/acsnano.6b01031 CrossRefGoogle Scholar
  102. 102.
    Zheng M, Rostovtsev VV (2006) Photoinduced charge transfer mediated by DNA-wrapped carbon nanotubes. J Am Chem Soc 128:7702–7703CrossRefGoogle Scholar
  103. 103.
    Piao Y, Meany B, Powell LR, Valley N, Kwon H, Schatz GC, Wang Y (2013) Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects. Nat Chem 5(10):840–845. doi: 10.1038/nchem.1711. http://www.nature.com/nchem/journal/v5/n10/abs/nchem.1711.html#supplementary-information
  104. 104.
    Hartmann NF, Velizhanin KA, Haroz EH, Kim M, Ma X, Wang Y, Htoon H, Doorn SK (2016) Photoluminescence dynamics of aryl sp3 defect states in single-walled carbon nanotubes. ACS Nano. doi: 10.1021/acsnano.6b02986 Google Scholar
  105. 105.
    Ma X, Hartmann NF, BaldwinJon KS, Doorn SK, Htoon H (2015) Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nat Nano 10(8):671–675. doi: 10.1038/nnano.2015.136. http://www.nature.com/nnano/journal/v10/n8/abs/nnano.2015.136.html#supplementary-information
  106. 106.
    Zhang L, Tu X, Welsher K, Wang X, Zheng M, Dai H (2009) Optical characterizations and electronic devices of nearly pure (10, 5) single-walled carbon nanotubes. J Am Chem Soc 131:2454–2455CrossRefGoogle Scholar
  107. 107.
    Wang C, Zhang J, Ryu K, Badmaev A, De Arco LG, Zhou C (2009) Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett 9(12):4285–4291. doi: 10.1021/nl902522f CrossRefGoogle Scholar
  108. 108.
    Tulevski GS, Franklin AD, Afzali A (2013) High purity isolation and quantification of semiconducting carbon nanotubes via column chromatography. ACS Nano 7(4):2971–2976. doi: 10.1021/nn400053k CrossRefGoogle Scholar
  109. 109.
    Liu B, Liu J, Tu X, Zhang J, Zheng M, Zhou C (2013) Chirality-dependent vapor-phase epitaxial growth and termination of single-wall carbon nanotubes. Nano Lett 13(9):4416–4421. doi: 10.1021/nl402259k CrossRefGoogle Scholar
  110. 110.
    Panchakarla LS, Radovsky G, Houben L, Popovitz-Biro R, Dunin-Borkowski RE, Tenne R (2014) Nanotubes from misfit layered compounds: a new family of materials with low dimensionality. J Phys Chem Lett 5(21):3724–3736. doi: 10.1021/jz5016845 CrossRefGoogle Scholar
  111. 111.
    Lorenz T, Joswig J-O, Seifert G (2014) Two-dimensional and tubular structures of misfit compounds: structural and electronic properties. Beilstein J Nanotechnol 5:2171–2178. doi: 10.3762/bjnano.5.226 CrossRefGoogle Scholar
  112. 112.
    Seifert G, Terrones H, Terrones M, Jungnickel G, Frauenheim T (2000) Structure and electronic properties of MoS2 nanotubes. Phys Rev Lett 85(1):146–149CrossRefGoogle Scholar
  113. 113.
    Tenne R, Redlich M (2010) Recent progress in the research of inorganic fullerene-like nanoparticles and inorganic nanotubes. Chem Soc Rev 39(5):1423–1434. doi: 10.1039/B901466G CrossRefGoogle Scholar
  114. 114.
    Heckl WM, Smith DP, Binnig G, Klagges H, Hänsch TW, Maddocks J (1991) Two-dimensional ordering of the DNA base guanine observed by scanning tunneling microscopy. Proc Natl Acad Sci 88(18):8003–8005CrossRefGoogle Scholar
  115. 115.
    Chandler D (2005) Interfaces and the driving force of hydrophobic assembly. Nature 437(7059):640–647CrossRefGoogle Scholar
  116. 116.
    Ashbaugh HS, Pratt LR (2006) Colloquium: scaled particle theory and the length scales of hydrophobicity. Rev Mod Phys 78(1):159CrossRefGoogle Scholar
  117. 117.
    Ignatova T, Balaeff A, Blades M, Zheng M, Stoeckl P, Rotkin SV (2016) Two-color spectroscopy of UV excited ssDNA complex with a single-wall nanotube photoluminescence probe: fast relaxation by nucleobase autoionization mechanism. Nano Res 9(2):571–583. doi: 10.1007/s12274-015-0938-0 CrossRefGoogle Scholar
  118. 118.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822CrossRefGoogle Scholar
  119. 119.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510. doi: 10.1126/science.2200121 CrossRefGoogle Scholar
  120. 120.
    Diniz GS, Latgé A, Ulloa SE (2012) Helicoidal fields and spin polarized currents in carbon nanotube–DNA Hybrids. Phys Rev Lett 108(12):126601CrossRefGoogle Scholar
  121. 121.
    Alam KM, Pramanik S (2015) Spin filtering through single-wall carbon nanotubes functionalized with single-stranded DNA. Adv Funct Mater 25(21):3210–3218. doi: 10.1002/adfm.201500494 CrossRefGoogle Scholar
  122. 122.
    Hamo A, Benyamini A, Shapir I, Khivrich I, Waissman J, Kaasbjerg K, Oreg Y, von Oppen F, Ilani S (2016) Electron attraction mediated by Coulomb repulsion. Nature 535(7612):395–400. doi: 10.1038/nature18639. http://www.nature.com/nature/journal/v535/n7612/abs/nature18639.html#supplementary-information
  123. 123.
    Rotkin SV (2010) Electronic properties of nonideal nanotube materials: helical symmetry breaking in DNA hybrids. Annu Rev Phys Chem 61(1):241–261. doi: 10.1146/annurev.physchem.012809.103304 CrossRefGoogle Scholar
  124. 124.
    Michalski PJ, Mele EJ (2008) Carbon nanotubes in helically modulated potentials. Phys Rev B 77(8):085429CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA)  2017

Authors and Affiliations

  1. 1.Materials Science and Engineering DivisionNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations