Electronic and Optical Properties of Single Wall Carbon Nanotubes

Abstract

In this article, we overview our recent theoretical works on electronic and optical properties of carbon nanotubes by going from the background to the perspectives. Electronic Raman spectra of metallic carbon nanotubes give a new picture of Raman processes. Thermoelectricity of semiconducting nanotubes gives a general concept of the confinement effect on the thermoelectric power factor. Selective excitation of only a single phonon mode is proposed by the pulsed train technique of coherent phonon spectroscopy. Occurrence of both two and four fold degeneracy in the carbon nanotube quantum dot is explained by difference group velocities and the intra/inter valley scattering near the hexagonal corner of the Brillouin zone.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, London

    Google Scholar 

  2. 2.

    Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Phys Rev B 46:1804

    CAS  Article  Google Scholar 

  3. 3.

    Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Appl Phys Lett 60:2204

    CAS  Article  Google Scholar 

  4. 4.

    Farhat H, Berciaud S, Kalbac M, Saito R, Heinz TF, Dresselhaus MS, Kong J (2011) Phys Rev Lett 107:157401

    CAS  Article  Google Scholar 

  5. 5.

    Hasdeo EH, Nugraha ART, Sato K, Dresselhaus MS, Saito R (2013) Phys Rev B 88:115107

    Article  Google Scholar 

  6. 6.

    Saito R, Sato K, Araujo P, Mafra D, Dresselhaus M (2013) Solid State Commun 175–176:18

    Article  Google Scholar 

  7. 7.

    Hicks LD, Dresselhaus MS (1993) Phys Rev B 47:12727

    CAS  Article  Google Scholar 

  8. 8.

    Hicks LD, Dresselhaus MS (1993) Phys Rev B 47:16631

    CAS  Article  Google Scholar 

  9. 9.

    Dresselhaus MS, Chen G, Tang MY, Yang RG, Lee H, Wang DZ, Ren ZF, Fleurial JP, Gogna P (2007) Adv Mater 19:1043

    CAS  Article  Google Scholar 

  10. 10.

    Boukai AI, Bunimovich Y, Tahir-Kheli J, Yu J, Goddard WA III, Heath JR (2008) Nature 451:168

    CAS  Article  Google Scholar 

  11. 11.

    Hung NT, Hasdeo EH, Nugraha ART, Dresselhaus MS, Saito R (2016) Phys Rev Lett 117:036602

    Article  Google Scholar 

  12. 12.

    Kim JH, Nugraha ART, Booshehri LG, Haroz EH, Sato K, Sanders GD, Yee KJ, Lim YS, Stanton CJ, Saito R, Kono J (2013) Chem Phys 413:55

    CAS  Article  Google Scholar 

  13. 13.

    Kim JH, Han KJ, Kim NJ, Yee KJ, Lim YS, Sanders GD, Stanton CJ, Booshehri LG, Hároz EH, Kono J (2009) Phys Rev Lett 102:037402

    Article  Google Scholar 

  14. 14.

    Laird EA, Kuemmeth F, Steele GA, Grove-Rasmussen K, Nygård J, Flensberg K, Kouwenhoven LP (2015) Rev Mod Phys 87:703

    CAS  Article  Google Scholar 

  15. 15.

    Izumida W, Vikström A, Saito R (2012) Phys Rev B 85:165430

    Article  Google Scholar 

  16. 16.

    Izumida W, Okuyama R, Yamakage A, Saito R (2016) Phys Rev B 93:195442

    Article  Google Scholar 

  17. 17.

    Brown SDM, Jorio A, Corio P, Dresselhaus MS, Dresselhaus G, Saito R, Kneipp K (2001) Phys Rev B 63:155414

    Article  Google Scholar 

  18. 18.

    Rao AM, Eklund PC, Bandow S, Thess A, Smalley RE (1997) Nature (London) 388:257

    CAS  Article  Google Scholar 

  19. 19.

    Pimenta MA, Marucci A, Empedocles S, Bawendi M, Hanlon EB, Rao AM, Eklund PC, Smalley RE, Dresselhaus G, Dresselhaus MS (1998) Phys Rev B Rapid 58:R16016

    CAS  Article  Google Scholar 

  20. 20.

    Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y (1999) Synth Metals 103:2555

    CAS  Article  Google Scholar 

  21. 21.

    Alvarez L, Righi A, Rols S, Anglaret E, Sauvajol JL (2000) Chem Phys Lett 320:441

    CAS  Article  Google Scholar 

  22. 22.

    Saito R, Dresselhaus G, Dresselhaus MS (2000) Phys Rev B 61:2981

    CAS  Article  Google Scholar 

  23. 23.

    Fano U (1961) Phys Rev 124:1866

    CAS  Article  Google Scholar 

  24. 24.

    Alvarez L, Righi A, Guillard T, Rols S, Anglaret E, Laplaze D, Sauvajol J (2000) Chem Phys Lett 316:186

    CAS  Article  Google Scholar 

  25. 25.

    Eklund PC, Dresselhaus G, Dresselhaus MS, Fischer JE (1977) Phys Rev B 16:3330

    CAS  Article  Google Scholar 

  26. 26.

    Solin S (1977) Mater Sci Eng 31:153

    CAS  Article  Google Scholar 

  27. 27.

    Yoon D, Jeong D, Lee H, Saito R, Son Y, Lee H, Cheong H (2013) Carbon 61:373

    CAS  Article  Google Scholar 

  28. 28.

    Lazzeri M, Piscanec S, Mauri F, Ferrari AC, Robertson J (2006) Phys Rev B 73:155426

    Article  Google Scholar 

  29. 29.

    Wu Y, Maultzsch J, Knoesel E, Chandra B, Huang M, Sfeir MY, Brus LE, Hone J, Heinz TF (2007) Phys Rev Lett 99:027402

    Article  Google Scholar 

  30. 30.

    Bose SM, Gayen S, Behera SN (2005) Phys Rev B 72:153402

    Article  Google Scholar 

  31. 31.

    Jiang C, Kempa K, Zhao J, Schlecht U, Kolb U, Basché T, Burghard M, Mews A (2002) Phys Rev B 66:161404

    Article  Google Scholar 

  32. 32.

    Kempa K (2002) Phys Rev B 66:195406

    Article  Google Scholar 

  33. 33.

    Ando T (2008) J Phys Soc Japan 77:014707

    Article  Google Scholar 

  34. 34.

    Zhang D, Yang J, Hasdeo EH, Liu C, Liu K, Saito R, Li Y (2016) Phys Rev B 93:245428

    Article  Google Scholar 

  35. 35.

    Zhang D, Yang J, Li M, Li Y (2016) ACS Nano 10(12):10789. doi:10.1021/acsnano.6b04453

    CAS  Article  Google Scholar 

  36. 36.

    Hone J, Ellwood I, Muno M, Mizel A, Cohen ML, Zettl A, Rinzler AG, Smalley RE (1998) Phys Rev Lett 80:1042

    CAS  Article  Google Scholar 

  37. 37.

    Hone J, Llaguno MC, Nemes NM, Johnson AT, Fischer JE, Walters DA, Casavant MJ, Schmidt J, Smalley RE (2000) Appl Phys Lett 77:666

    CAS  Article  Google Scholar 

  38. 38.

    Yanagi K, Kanda S, Oshima Y, Kitamura Y, Kawai H, Yamamoto T, Takenobu T, Nakai Y, Maniwa Y (2014) Nano Lett 14:6437

    CAS  Article  Google Scholar 

  39. 39.

    Romero HE, Sumanasekera GU, Mahan GD, Eklund PC (2002) Phys Rev B 65:205410

    Article  Google Scholar 

  40. 40.

    Goldsmid HJ, Sharp JW (1999) J Electron Mater 28:869

    CAS  Article  Google Scholar 

  41. 41.

    Madsen GKH, Singh DJ (2006) Comput Phys Commun 175:67

    CAS  Article  Google Scholar 

  42. 42.

    Samsonidze GG, Saito R, Kobayashi N, Grüneis A, Jiang J, Jorio A, Chou SG, Dresselhaus G, Dresselhaus MS (2004) Appl Phys Lett 85:5703

    CAS  Article  Google Scholar 

  43. 43.

    Popov VN (2004) New J Phys 6:17

    Article  Google Scholar 

  44. 44.

    Hung NT, Nugraha ART, Hasdeo EH, Dresselhaus MS, Saito R (2015) Phys Rev B 92(16):165426

    Article  Google Scholar 

  45. 45.

    Goldsmid HJ (2010) Introduction to thermoelectricity. Springer, Berlin

    Google Scholar 

  46. 46.

    Boukai AI, Bunimovich Y, Tahir-Kheli J, Yu JK, Goddard Iii WA, Heath JR (2008) Nature 451:168

  47. 47.

    Hochbaum AI, Chen R, Delgado RD, Liang W, Garnett EC, Najarian M, Majumdar A, Yang P (2008) Nature 451:163

    CAS  Article  Google Scholar 

  48. 48.

    Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus MS, Chen G, Ren Z (2008) Science 320:634

    CAS  Article  Google Scholar 

  49. 49.

    Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder GJ (2011) Nature 473:66

    CAS  Article  Google Scholar 

  50. 50.

    Weisman RB, Bachilo SM (2003) Nano Lett 3:1235

    CAS  Article  Google Scholar 

  51. 51.

    Dumitrică T, Garcia ME, Jeschke HO, Yakobson BI (2004) Phys Rev Lett 92:117401

    Article  Google Scholar 

  52. 52.

    Gambetta A, Manzoni C, Menna E, Meneghetti M, Cerullo G, Lanzani G, Tretiak S, Piryatinski A, Saxena A, Martin RL, Bishop AR (2006) Nat Phys 2:515

    CAS  Article  Google Scholar 

  53. 53.

    Lim YS, Yee KJ, Kim JH, Haroz EH, Shaver J, Kono J, Doorn SK, Hauge RH, Smalley RE (2006) Nano Lett 6:2696

    CAS  Article  Google Scholar 

  54. 54.

    Lüer L, Gadermaier C, Crochet J, Hertel T, Brida D, Lanzani G (2009) Phys Rev Lett 102:127401

    Article  Google Scholar 

  55. 55.

    Makino K, Hirano A, Shiraki K, Maeda Y, Hase M (2009) Phys Rev B 80:245428

    Article  Google Scholar 

  56. 56.

    Zeiger HJ, Vidal J, Cheng TK, Ippen EP, Dresselhaus G, Dresselhaus MS (1992) Phys Rev B 45:768

    CAS  Article  Google Scholar 

  57. 57.

    Kuznetsov AV, Stanton CJ (1994) Phys Rev Lett 73:3243

    CAS  Article  Google Scholar 

  58. 58.

    Hu X, Nori F (1996) Phys Rev B 53:2419

    CAS  Article  Google Scholar 

  59. 59.

    Merlin R (1997) Solid State Commun 102:207

    Article  Google Scholar 

  60. 60.

    Lim YS, Nugraha ART, Cho SJ, Noh MY, Yoon EJ, Liu H, Kim JH, Telg H, Hroz EH, Sanders GD, Baik SH, Kataura H, Doorn SK, Stanton CJ, Saito R, Kono J, Joo T (2014) Nano Lett 14:1426

    CAS  Article  Google Scholar 

  61. 61.

    Eichler A, Moser J, Chaste J, Zdrojek M, Wilson-Rae I, Bachtold A (2011) Nat Nanotechnol 6:339

    CAS  Article  Google Scholar 

  62. 62.

    Ruskov R, Tahan C (2012) JPCS 398:012011

    Google Scholar 

  63. 63.

    Li JJ, Zhu KD (2012) Sci Rep 2:903

    Article  Google Scholar 

  64. 64.

    Saito R, Takeya T, Kimura T, Dresselhaus G, Dresselhaus MS (1998) Phys Rev B 57:4145

    CAS  Article  Google Scholar 

  65. 65.

    Jiang J, Saito R, Samsonidze GG, Chou SG, Jorio A, Dresselhaus G, Dresselhaus MS (2005) Phys Rev B 72:235408

    Article  Google Scholar 

  66. 66.

    Chuang SL (1995) Physics of optoelectronic devices. Wiley, New York

    Google Scholar 

  67. 67.

    Nugraha ART, Hasdeo EH, Sanders GD, Stanton CJ, Saito R (2015) Phys Rev B 91:045406

    Article  Google Scholar 

  68. 68.

    Hamada N, Sawada SI, Oshiyama A (1992) Phys Rev Lett 68:1579

    CAS  Article  Google Scholar 

  69. 69.

    Kane CL, Mele EJ (1997) Phys Rev Lett 78:1932

    CAS  Article  Google Scholar 

  70. 70.

    Ando T (2000) J Phys Soc Japan 69:1757

    CAS  Article  Google Scholar 

  71. 71.

    Chico L, Lopez-Sancho MP, Munoz MC (2004) Phys Rev Lett 93:176402

    CAS  Article  Google Scholar 

  72. 72.

    Izumida W, Sato K, Saito R (2009) J Phys Soc Japan 78:074707

    Article  Google Scholar 

  73. 73.

    Chico L, López-Sancho MP, Muñoz MC (2009) Phys Rev B 79(23):235423

    Article  Google Scholar 

  74. 74.

    Jeong JS, Lee HW (2009) Phys Rev B 80(7):075409

    Article  Google Scholar 

  75. 75.

    Maki H, Ishiwata Y, Suzuki M, Ishibashi K (2005) Jpn J Appl Phys 44:4269

    CAS  Article  Google Scholar 

  76. 76.

    Makarovski A, An L, Liu J, Finkelstein G (2006) Phys Rev B 74:155431

    Article  Google Scholar 

  77. 77.

    Moriyama S, Fuse T, Ishibashi K (2007) Phys Stat Sol B 244:2371

    CAS  Article  Google Scholar 

  78. 78.

    Holm JV, Jørgensen HI, Grove-Rasmussen K, Paaske J, Flensberg K, Lindelof PE (2008) Phys Rev B 77:161406(R)

    Article  Google Scholar 

  79. 79.

    Schmid DR, Smirnov S, Margańska M, Dirnaichner A, Stiller PL, Grifoni M, Hüttel AK, Strunk C (2015) Phys Rev B 91:155435

    Article  Google Scholar 

  80. 80.

    Ferrier M, Arakawa T, Hata T, Fujiwara R, Delagrange R, Weil R, Deblock R, Sakano R, Oguri A, Kobayashi K (2016) Nat Phys 12(3):230

    CAS  Article  Google Scholar 

  81. 81.

    White CT, Robertson DH, Mintmire JW (1993) Phys Rev B 47:5485

    CAS  Article  Google Scholar 

  82. 82.

    Saito R, Sato K, Oyama Y, Jiang J, Samsonidze GG, Dresselhaus G, Dresselhaus MS (2005) Phys Rev B 72:153413

    Article  Google Scholar 

  83. 83.

    Izumida W, Okuyama R, Saito R (2015) Phys Rev B 91:235442

    Article  Google Scholar 

  84. 84.

    Akhmerov AR, Beenakker CWJ (2008) Phys Rev B 77:085423

    Article  Google Scholar 

Download references

Acknowledgements

R.S. acknowledges JSPS KAKENHI Grant Numbers JP25286005 and JP225107005. W.I. acknowledges JSPS KAKENHI Grant Numbers JP15K05118, JP16H01046 and JP15KK0147. A.R.T.N. and N.T.H. acknowledges the Interdepartmental Doctoral Degree Program for Material Science Leaders at Tohoku University. E.H.H. acknowledges the MEXT scholarship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Saito.

Additional information

This article is part of the Topical Collection “Single-Walled Carbon Nanotubes: Preparation, Property and Application”; edited by Yan Li, Shigeo Maruyama.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saito, R., Nugraha, A.R.T., Hasdeo, E.H. et al. Electronic and Optical Properties of Single Wall Carbon Nanotubes. Top Curr Chem (Z) 375, 7 (2017). https://doi.org/10.1007/s41061-016-0095-2

Download citation

Keywords

  • Carbon nanotubes
  • Quantum dots
  • Coherent phonon
  • Electric Raman spectroscopy
  • Thermoelectric power
  • Intervalley scattering