Topics in Current Chemistry

, 375:7 | Cite as

Electronic and Optical Properties of Single Wall Carbon Nanotubes

  • R. SaitoEmail author
  • A. R. T. Nugraha
  • E. H. Hasdeo
  • N. T. Hung
  • W. Izumida
Part of the following topical collections:
  1. Single-Walled Carbon Nanotubes: Preparation, Property and Application


In this article, we overview our recent theoretical works on electronic and optical properties of carbon nanotubes by going from the background to the perspectives. Electronic Raman spectra of metallic carbon nanotubes give a new picture of Raman processes. Thermoelectricity of semiconducting nanotubes gives a general concept of the confinement effect on the thermoelectric power factor. Selective excitation of only a single phonon mode is proposed by the pulsed train technique of coherent phonon spectroscopy. Occurrence of both two and four fold degeneracy in the carbon nanotube quantum dot is explained by difference group velocities and the intra/inter valley scattering near the hexagonal corner of the Brillouin zone.


Carbon nanotubes Quantum dots Coherent phonon Electric Raman spectroscopy Thermoelectric power Intervalley scattering 



R.S. acknowledges JSPS KAKENHI Grant Numbers JP25286005 and JP225107005. W.I. acknowledges JSPS KAKENHI Grant Numbers JP15K05118, JP16H01046 and JP15KK0147. A.R.T.N. and N.T.H. acknowledges the Interdepartmental Doctoral Degree Program for Material Science Leaders at Tohoku University. E.H.H. acknowledges the MEXT scholarship.


  1. 1.
    Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, LondonCrossRefGoogle Scholar
  2. 2.
    Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Phys Rev B 46:1804CrossRefGoogle Scholar
  3. 3.
    Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Appl Phys Lett 60:2204CrossRefGoogle Scholar
  4. 4.
    Farhat H, Berciaud S, Kalbac M, Saito R, Heinz TF, Dresselhaus MS, Kong J (2011) Phys Rev Lett 107:157401CrossRefGoogle Scholar
  5. 5.
    Hasdeo EH, Nugraha ART, Sato K, Dresselhaus MS, Saito R (2013) Phys Rev B 88:115107CrossRefGoogle Scholar
  6. 6.
    Saito R, Sato K, Araujo P, Mafra D, Dresselhaus M (2013) Solid State Commun 175–176:18CrossRefGoogle Scholar
  7. 7.
    Hicks LD, Dresselhaus MS (1993) Phys Rev B 47:12727CrossRefGoogle Scholar
  8. 8.
    Hicks LD, Dresselhaus MS (1993) Phys Rev B 47:16631CrossRefGoogle Scholar
  9. 9.
    Dresselhaus MS, Chen G, Tang MY, Yang RG, Lee H, Wang DZ, Ren ZF, Fleurial JP, Gogna P (2007) Adv Mater 19:1043CrossRefGoogle Scholar
  10. 10.
    Boukai AI, Bunimovich Y, Tahir-Kheli J, Yu J, Goddard WA III, Heath JR (2008) Nature 451:168CrossRefGoogle Scholar
  11. 11.
    Hung NT, Hasdeo EH, Nugraha ART, Dresselhaus MS, Saito R (2016) Phys Rev Lett 117:036602CrossRefGoogle Scholar
  12. 12.
    Kim JH, Nugraha ART, Booshehri LG, Haroz EH, Sato K, Sanders GD, Yee KJ, Lim YS, Stanton CJ, Saito R, Kono J (2013) Chem Phys 413:55CrossRefGoogle Scholar
  13. 13.
    Kim JH, Han KJ, Kim NJ, Yee KJ, Lim YS, Sanders GD, Stanton CJ, Booshehri LG, Hároz EH, Kono J (2009) Phys Rev Lett 102:037402CrossRefGoogle Scholar
  14. 14.
    Laird EA, Kuemmeth F, Steele GA, Grove-Rasmussen K, Nygård J, Flensberg K, Kouwenhoven LP (2015) Rev Mod Phys 87:703CrossRefGoogle Scholar
  15. 15.
    Izumida W, Vikström A, Saito R (2012) Phys Rev B 85:165430CrossRefGoogle Scholar
  16. 16.
    Izumida W, Okuyama R, Yamakage A, Saito R (2016) Phys Rev B 93:195442CrossRefGoogle Scholar
  17. 17.
    Brown SDM, Jorio A, Corio P, Dresselhaus MS, Dresselhaus G, Saito R, Kneipp K (2001) Phys Rev B 63:155414CrossRefGoogle Scholar
  18. 18.
    Rao AM, Eklund PC, Bandow S, Thess A, Smalley RE (1997) Nature (London) 388:257CrossRefGoogle Scholar
  19. 19.
    Pimenta MA, Marucci A, Empedocles S, Bawendi M, Hanlon EB, Rao AM, Eklund PC, Smalley RE, Dresselhaus G, Dresselhaus MS (1998) Phys Rev B Rapid 58:R16016CrossRefGoogle Scholar
  20. 20.
    Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y (1999) Synth Metals 103:2555CrossRefGoogle Scholar
  21. 21.
    Alvarez L, Righi A, Rols S, Anglaret E, Sauvajol JL (2000) Chem Phys Lett 320:441CrossRefGoogle Scholar
  22. 22.
    Saito R, Dresselhaus G, Dresselhaus MS (2000) Phys Rev B 61:2981CrossRefGoogle Scholar
  23. 23.
    Fano U (1961) Phys Rev 124:1866CrossRefGoogle Scholar
  24. 24.
    Alvarez L, Righi A, Guillard T, Rols S, Anglaret E, Laplaze D, Sauvajol J (2000) Chem Phys Lett 316:186CrossRefGoogle Scholar
  25. 25.
    Eklund PC, Dresselhaus G, Dresselhaus MS, Fischer JE (1977) Phys Rev B 16:3330CrossRefGoogle Scholar
  26. 26.
    Solin S (1977) Mater Sci Eng 31:153CrossRefGoogle Scholar
  27. 27.
    Yoon D, Jeong D, Lee H, Saito R, Son Y, Lee H, Cheong H (2013) Carbon 61:373CrossRefGoogle Scholar
  28. 28.
    Lazzeri M, Piscanec S, Mauri F, Ferrari AC, Robertson J (2006) Phys Rev B 73:155426CrossRefGoogle Scholar
  29. 29.
    Wu Y, Maultzsch J, Knoesel E, Chandra B, Huang M, Sfeir MY, Brus LE, Hone J, Heinz TF (2007) Phys Rev Lett 99:027402CrossRefGoogle Scholar
  30. 30.
    Bose SM, Gayen S, Behera SN (2005) Phys Rev B 72:153402CrossRefGoogle Scholar
  31. 31.
    Jiang C, Kempa K, Zhao J, Schlecht U, Kolb U, Basché T, Burghard M, Mews A (2002) Phys Rev B 66:161404CrossRefGoogle Scholar
  32. 32.
    Kempa K (2002) Phys Rev B 66:195406CrossRefGoogle Scholar
  33. 33.
    Ando T (2008) J Phys Soc Japan 77:014707CrossRefGoogle Scholar
  34. 34.
    Zhang D, Yang J, Hasdeo EH, Liu C, Liu K, Saito R, Li Y (2016) Phys Rev B 93:245428CrossRefGoogle Scholar
  35. 35.
    Zhang D, Yang J, Li M, Li Y (2016) ACS Nano 10(12):10789. doi: 10.1021/acsnano.6b04453 CrossRefGoogle Scholar
  36. 36.
    Hone J, Ellwood I, Muno M, Mizel A, Cohen ML, Zettl A, Rinzler AG, Smalley RE (1998) Phys Rev Lett 80:1042CrossRefGoogle Scholar
  37. 37.
    Hone J, Llaguno MC, Nemes NM, Johnson AT, Fischer JE, Walters DA, Casavant MJ, Schmidt J, Smalley RE (2000) Appl Phys Lett 77:666CrossRefGoogle Scholar
  38. 38.
    Yanagi K, Kanda S, Oshima Y, Kitamura Y, Kawai H, Yamamoto T, Takenobu T, Nakai Y, Maniwa Y (2014) Nano Lett 14:6437CrossRefGoogle Scholar
  39. 39.
    Romero HE, Sumanasekera GU, Mahan GD, Eklund PC (2002) Phys Rev B 65:205410CrossRefGoogle Scholar
  40. 40.
    Goldsmid HJ, Sharp JW (1999) J Electron Mater 28:869CrossRefGoogle Scholar
  41. 41.
    Madsen GKH, Singh DJ (2006) Comput Phys Commun 175:67CrossRefGoogle Scholar
  42. 42.
    Samsonidze GG, Saito R, Kobayashi N, Grüneis A, Jiang J, Jorio A, Chou SG, Dresselhaus G, Dresselhaus MS (2004) Appl Phys Lett 85:5703CrossRefGoogle Scholar
  43. 43.
    Popov VN (2004) New J Phys 6:17CrossRefGoogle Scholar
  44. 44.
    Hung NT, Nugraha ART, Hasdeo EH, Dresselhaus MS, Saito R (2015) Phys Rev B 92(16):165426CrossRefGoogle Scholar
  45. 45.
    Goldsmid HJ (2010) Introduction to thermoelectricity. Springer, BerlinCrossRefGoogle Scholar
  46. 46.
    Boukai AI, Bunimovich Y, Tahir-Kheli J, Yu JK, Goddard Iii WA, Heath JR (2008) Nature 451:168Google Scholar
  47. 47.
    Hochbaum AI, Chen R, Delgado RD, Liang W, Garnett EC, Najarian M, Majumdar A, Yang P (2008) Nature 451:163CrossRefGoogle Scholar
  48. 48.
    Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus MS, Chen G, Ren Z (2008) Science 320:634CrossRefGoogle Scholar
  49. 49.
    Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder GJ (2011) Nature 473:66CrossRefGoogle Scholar
  50. 50.
    Weisman RB, Bachilo SM (2003) Nano Lett 3:1235CrossRefGoogle Scholar
  51. 51.
    Dumitrică T, Garcia ME, Jeschke HO, Yakobson BI (2004) Phys Rev Lett 92:117401CrossRefGoogle Scholar
  52. 52.
    Gambetta A, Manzoni C, Menna E, Meneghetti M, Cerullo G, Lanzani G, Tretiak S, Piryatinski A, Saxena A, Martin RL, Bishop AR (2006) Nat Phys 2:515CrossRefGoogle Scholar
  53. 53.
    Lim YS, Yee KJ, Kim JH, Haroz EH, Shaver J, Kono J, Doorn SK, Hauge RH, Smalley RE (2006) Nano Lett 6:2696CrossRefGoogle Scholar
  54. 54.
    Lüer L, Gadermaier C, Crochet J, Hertel T, Brida D, Lanzani G (2009) Phys Rev Lett 102:127401CrossRefGoogle Scholar
  55. 55.
    Makino K, Hirano A, Shiraki K, Maeda Y, Hase M (2009) Phys Rev B 80:245428CrossRefGoogle Scholar
  56. 56.
    Zeiger HJ, Vidal J, Cheng TK, Ippen EP, Dresselhaus G, Dresselhaus MS (1992) Phys Rev B 45:768CrossRefGoogle Scholar
  57. 57.
    Kuznetsov AV, Stanton CJ (1994) Phys Rev Lett 73:3243CrossRefGoogle Scholar
  58. 58.
    Hu X, Nori F (1996) Phys Rev B 53:2419CrossRefGoogle Scholar
  59. 59.
    Merlin R (1997) Solid State Commun 102:207CrossRefGoogle Scholar
  60. 60.
    Lim YS, Nugraha ART, Cho SJ, Noh MY, Yoon EJ, Liu H, Kim JH, Telg H, Hroz EH, Sanders GD, Baik SH, Kataura H, Doorn SK, Stanton CJ, Saito R, Kono J, Joo T (2014) Nano Lett 14:1426CrossRefGoogle Scholar
  61. 61.
    Eichler A, Moser J, Chaste J, Zdrojek M, Wilson-Rae I, Bachtold A (2011) Nat Nanotechnol 6:339CrossRefGoogle Scholar
  62. 62.
    Ruskov R, Tahan C (2012) JPCS 398:012011Google Scholar
  63. 63.
    Li JJ, Zhu KD (2012) Sci Rep 2:903CrossRefGoogle Scholar
  64. 64.
    Saito R, Takeya T, Kimura T, Dresselhaus G, Dresselhaus MS (1998) Phys Rev B 57:4145CrossRefGoogle Scholar
  65. 65.
    Jiang J, Saito R, Samsonidze GG, Chou SG, Jorio A, Dresselhaus G, Dresselhaus MS (2005) Phys Rev B 72:235408CrossRefGoogle Scholar
  66. 66.
    Chuang SL (1995) Physics of optoelectronic devices. Wiley, New YorkGoogle Scholar
  67. 67.
    Nugraha ART, Hasdeo EH, Sanders GD, Stanton CJ, Saito R (2015) Phys Rev B 91:045406CrossRefGoogle Scholar
  68. 68.
    Hamada N, Sawada SI, Oshiyama A (1992) Phys Rev Lett 68:1579CrossRefGoogle Scholar
  69. 69.
    Kane CL, Mele EJ (1997) Phys Rev Lett 78:1932CrossRefGoogle Scholar
  70. 70.
    Ando T (2000) J Phys Soc Japan 69:1757CrossRefGoogle Scholar
  71. 71.
    Chico L, Lopez-Sancho MP, Munoz MC (2004) Phys Rev Lett 93:176402CrossRefGoogle Scholar
  72. 72.
    Izumida W, Sato K, Saito R (2009) J Phys Soc Japan 78:074707CrossRefGoogle Scholar
  73. 73.
    Chico L, López-Sancho MP, Muñoz MC (2009) Phys Rev B 79(23):235423CrossRefGoogle Scholar
  74. 74.
    Jeong JS, Lee HW (2009) Phys Rev B 80(7):075409CrossRefGoogle Scholar
  75. 75.
    Maki H, Ishiwata Y, Suzuki M, Ishibashi K (2005) Jpn J Appl Phys 44:4269CrossRefGoogle Scholar
  76. 76.
    Makarovski A, An L, Liu J, Finkelstein G (2006) Phys Rev B 74:155431CrossRefGoogle Scholar
  77. 77.
    Moriyama S, Fuse T, Ishibashi K (2007) Phys Stat Sol B 244:2371CrossRefGoogle Scholar
  78. 78.
    Holm JV, Jørgensen HI, Grove-Rasmussen K, Paaske J, Flensberg K, Lindelof PE (2008) Phys Rev B 77:161406(R)CrossRefGoogle Scholar
  79. 79.
    Schmid DR, Smirnov S, Margańska M, Dirnaichner A, Stiller PL, Grifoni M, Hüttel AK, Strunk C (2015) Phys Rev B 91:155435CrossRefGoogle Scholar
  80. 80.
    Ferrier M, Arakawa T, Hata T, Fujiwara R, Delagrange R, Weil R, Deblock R, Sakano R, Oguri A, Kobayashi K (2016) Nat Phys 12(3):230CrossRefGoogle Scholar
  81. 81.
    White CT, Robertson DH, Mintmire JW (1993) Phys Rev B 47:5485CrossRefGoogle Scholar
  82. 82.
    Saito R, Sato K, Oyama Y, Jiang J, Samsonidze GG, Dresselhaus G, Dresselhaus MS (2005) Phys Rev B 72:153413CrossRefGoogle Scholar
  83. 83.
    Izumida W, Okuyama R, Saito R (2015) Phys Rev B 91:235442CrossRefGoogle Scholar
  84. 84.
    Akhmerov AR, Beenakker CWJ (2008) Phys Rev B 77:085423CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • R. Saito
    • 1
    Email author
  • A. R. T. Nugraha
    • 1
  • E. H. Hasdeo
    • 1
  • N. T. Hung
    • 1
  • W. Izumida
    • 1
  1. 1.Department of PhysicsTohoku UniversitySendaiJapan

Personalised recommendations