Skip to main content

Chitosan-Based Matrices Prepared by Gamma Irradiation for Tissue Regeneration: Structural Properties vs. Preparation Method

Abstract

In the last decade, new generations of biopolymer-based materials have attracted attention, aiming its application as scaffolds for tissue engineering. These engineered three-dimensional scaffolds are designed to improve or replace damaged, missing, or otherwise compromised tissues or organs. Despite the number of promising methods that can be used to generate 3D cell-instructive matrices, the innovative nature of the present work relies on the application of ionizing radiation technology to form and modify surfaces and matrices with advantage over more conventional technologies (room temperature reaction, absence of harmful initiators or solvents, high penetration through the bulk materials, etc.), and the possibility of preparation and sterilization in one single step. The current chapter summarizes the work done by the authors in the gamma radiation processing of biocompatible and biodegradable chitosan-based matrices for skin regeneration. Particular attention is given to the correlation between the different preparation conditions and the final polymeric matrices’ properties. We therefore expect to demonstrate that instructive matrices produced and improved by radiation technology bring to the field of skin regenerative medicine a supplemental advantage over more conservative techniques.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

References

  1. Ayres CE, Jha BS, Sell SA, Bowlin GL, Simpson DG (2010) Nanotechnology in the design of soft tissue scaffolds: innovations in structure and function—advanced review. WIREs Nanomed Nanobiotechnol 2:20–34

    Article  CAS  Google Scholar 

  2. O’Brien CE (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14:88–95

    Article  Google Scholar 

  3. Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408

    Article  Google Scholar 

  4. Hasirci V, Vrana E, Zorlutuna P, Ndreu A, Yilgor P, Basmanav FB, Aydin E (2006) Nanobiomaterials: a review of the existing science and technology, and new approaches. J Biomater Sci Polym Ed 17:1241–1268

    Article  CAS  Google Scholar 

  5. Shalumona KT, Anulekhaa KH, Chennazhia KP, Tamurab H, Naira SV, Jayakumar R (2011) Fabrication of chitosan/poly(caprolactone) nanofibrous scaffold for bone and skin tissue engineering. Int J Biol Macromol 48:571–576

    Article  Google Scholar 

  6. Gomes SR, Rodrigues G, Martins GG, Henriques CMR, Silva JC (2013) In vitro evaluation of crosslinked electrospun fish gelatin scaffolds. Mater Sci Eng C 33:1219–1227

    Article  CAS  Google Scholar 

  7. Dorozhkin SV (2010) Bioceramics of calcium ortophosphates. Biomaterials 31:1465–1485

    Article  CAS  Google Scholar 

  8. Liao S, Wang W, Uo M, Ohkawa S, Akasaka T, Tamura K, Cui F, Watari F (2005) A tree-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration. Biomaterials 26:7564–7571

    Article  CAS  Google Scholar 

  9. Frohbergh ME, Katsman A, Botta GP, Lazarovici P, Schauer CL, Wegst UGK, Lelkes PI (2012) Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials 33:9167–9178

    Article  CAS  Google Scholar 

  10. Martins A, Reis R, Neves N (2008) Electrospinning: processing technique for tissue engineering scaffolding. Int Mater Rev 53:257–274

    Article  CAS  Google Scholar 

  11. Safinia L, Datan N, Hohse M, Mantalaris A, Bismarck A (2005) Towards a methodology for the effective surface modification of porous polymer scaffolds. Biomaterials 26:7537–7547

    Article  CAS  Google Scholar 

  12. Rodas ACD, Ohnuki T, Mathor MB, Lugao AB (2005) Irradiated PVAl membrane swelled with chitosan solution as dermal equivalent. Nucl Instrum Methods B 236:536–539

    Article  CAS  Google Scholar 

  13. Plikk P, Odelius K, Hakkarainen M, Albertsson AC (2006) Finalizing the properties of porous scaffolds of aliphatic polyesters through radiation sterilization. Biomaterials 27:5335–5347

    Article  CAS  Google Scholar 

  14. Odelius K, Plikk P, Albertsson AC (2008) The influence of composition of porous copolyester scaffolds on reactions induced by irradiation sterilization. Biomaterials 29:129–140

    Article  CAS  Google Scholar 

  15. Cottam E, Hukins DWL, Lee K, Hewitt C, Jenkins MJ (2009) Effect of sterilisation by gamma irradiation on the ability of polycaprolactone (PCL) to act as a scaffold material. Med Eng Phys 31:221–226

    Article  Google Scholar 

  16. Luyen DV, Huong DM (1996) In: Salamone JC (ed) Polymeric Materials Encyclopedia, vol 2. CRC Press, New York

    Google Scholar 

  17. Risbud MV, Hardikar AA, Bhat SV, Bhonde RR (2000) pH-sensitive freeze-dried chitosan-polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. J Control Release 68:23–30

    Article  CAS  Google Scholar 

  18. Ishihara M, Nakanishi K, Ono K, Sato M, Kikuchi M, Saito Y, Yura H, Matsui T, Hattori H, Uenoyama M, Kurita A (2002) Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials 23:833–840

    Article  CAS  Google Scholar 

  19. Jayakumar R, Prabaharan M, Reis RL, Mano JF (2005) Graft copolymerized chitosan-present status and applications. Carbohydr Polym 62:142–158

    Article  CAS  Google Scholar 

  20. Casimiro MH, Leal JP, Gil MH (2005) Characterisation of gamma irradiated chitosan/pHEMA membranes for biomedical purposes. Nucl Instrum Methods B 236:482–487

    Article  CAS  Google Scholar 

  21. Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T (2006) Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res 133:185–192

    Article  CAS  Google Scholar 

  22. Casimiro MH, Gil MH, Leal JP (2010) Suitability of gamma irradiated chitosan based membranes as matrix in drug release system. Int J Pharm 395:142–146

    Article  CAS  Google Scholar 

  23. Alves NM, Mano JF (2008) Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int J Biol Macromol 43:401–414

    Article  CAS  Google Scholar 

  24. Luyen DV, Huong DM (1996) In: Salamone JC (ed) Polymeric materials encyclopedia chitin and derivatives. CRC, New York

    Google Scholar 

  25. Ulański P, Rosiak J (1992) Preliminary studies on radiation-induced changes in chitosan. Radiat Phys Chem 39:53–57

    Google Scholar 

  26. Lim LY, Khor E, Koo O (1998) Gamma irradiation of chitosan. J Biomed Mater Res 43:282–290

    Article  CAS  Google Scholar 

  27. Casimiro MH, Leal JP, Gil MH (2005) Characterisation of gamma-irradiated chitosan/pHEMA membranes for biomedical purposes. Nucl Instrum Methods B 236:482–487

    Article  CAS  Google Scholar 

  28. Wiley Billmeyer FW (1984) Textbook of polymer science, 3rd edn. Wiley, New York

    Google Scholar 

  29. Hassan CM, Peppas NA (2000) In: Dusek K (ed) Structure and applications of poly(vinyl alcohol), vol 153. Springer, Berlin

    Google Scholar 

  30. Schmedlen RH, Masters KS, West JL (2002) Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials 23(22):4325–4332

    Article  CAS  Google Scholar 

  31. Solaro R, Corti A, Chiellini E (2000) Biodegradation of poly(vinyl alcohol) with different molecular weights and degree of hydrolysis. Polym Adv Technol 11:873–878

    Article  CAS  Google Scholar 

  32. Bolto B, Tran T, Hoang M, Xie Z (2009) Crosslinked poly(vinyl alcohol) membranes. Prog Polym Sci 34:969–981

    Article  CAS  Google Scholar 

  33. Tamariz E, Rios-Ramírez A (2013) Biodegradation of medical purpose polymeric materials and their impact on biocompatibility. INTECH. doi:10.5772/56220

    Google Scholar 

  34. Zhang H, Grinstaff MW (2014) Recent advances in glycerol polymers: chemistry and biomedical applications. Macromol Rapid Commun 35:1906–1924

    Article  CAS  Google Scholar 

  35. Lim L-Y, Khor E, Koo O (1998) γ irradiation of chitosan. J Appl Polym Sci 43:290–382

    Google Scholar 

  36. Paulino AT, Simionato JI, Garcia JC, Nozaki J (2006) Characterization of chitosan and chitin produced from silkworm chrysalides. Carbohydr Polym 64:98–103

    Article  CAS  Google Scholar 

  37. Yue W (2014) Prevention of browning of depolymerized chitosan obtained by gamma irradiation. Carbohydr Polym 101:857–863

    Article  CAS  Google Scholar 

  38. Ferreira LM, Leal JP, Casimiro MH, Cruz C, Lancastre JJH, Falcão NA (2014) Evidence of structural order recovery in LDPE based copolymers prepared by gamma irradiation. Radiat Phys Chem 94:31–35

    Article  CAS  Google Scholar 

  39. Huang Y, Onyeri S, Siewe M, Moshfeghian A, Madihally SV (2005) In vitro characterization of chitosan-gelatin scaffolds for tissue engineering. Biomaterials 26:7616–7627

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C2TN/IST authors gratefully acknowledge the Fundação para a Ciência e Tecnologia support through the UID/Multi/04349/2013 project. The authors also acknowledge the International Atomic Energy Agency under the Research Contract No. 18202 for financial support of this work. The authors would also like to thank the Erasmus student Reda Paitian (University of Vilnius, Lithuania) for her collaboration in the preparation and characterization of chitosan-based matrices.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Helena Casimiro or Luís M. Ferreira.

Additional information

This article is part of the Topical Collection “Applications of Radiation Chemistry”; edited by Margherita Venturi, Mila D’Angelantonio.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casimiro, M.H., Lancastre, J.J.H., Rodrigues, A.P. et al. Chitosan-Based Matrices Prepared by Gamma Irradiation for Tissue Regeneration: Structural Properties vs. Preparation Method. Top Curr Chem (Z) 375, 5 (2017). https://doi.org/10.1007/s41061-016-0092-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-016-0092-5

Keywords