Topics in Current Chemistry

, 374:80 | Cite as

Carbon Nanotube Thin Film Transistors for Flat Panel Display Application

  • Xuelei LiangEmail author
  • Jiye Xia
  • Guodong Dong
  • Boyuan Tian
  • lianmao PengEmail author
Part of the following topical collections:
  1. Single-Walled Carbon Nanotubes: Preparation, Property, and Application


Carbon nanotubes (CNTs) are promising materials for both high performance transistors for high speed computing and thin film transistors for macroelectronics, which can provide more functions at low cost. Among macroelectronics applications, carbon nanotube thin film transistors (CNT-TFT) are expected to be used soon for backplanes in flat panel displays (FPDs) due to their superior performance. In this paper, we review the challenges of CNT-TFT technology for FPD applications. The device performance of state-of-the-art CNT-TFTs are compared with the requirements of TFTs for FPDs. Compatibility of the fabrication processes of CNT-TFTs and current TFT technologies are critically examined. Though CNT-TFT technology is not yet ready for backplane production line of FPDs, the challenges can be overcome by close collaboration between research institutes and FPD manufacturers in the short term.


Carbon nanotube Thin film transistors Backplane Flat panel display 



This work was supported by the National Natural Science Foundation of China (Grant No. 61321001), National Key Research and Development program (Grant No. 2016YFA0201902), and BOE Technology Group, Co., Ltd.


  1. 1.
    Iijima S (1991) Nature 354:56. doi: 10.1038/354056a0 CrossRefGoogle Scholar
  2. 2.
    Iijima S, Ichihashi T (1993) Nature 363:603. doi: 10.1038/363603a0 CrossRefGoogle Scholar
  3. 3.
    Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, UKGoogle Scholar
  4. 4.
    International technology roadmap for semiconductors
  5. 5.
    Franklin AD (2013) Nature 498:443. doi: 10.1038/498443a CrossRefGoogle Scholar
  6. 6.
    Tulevski GS, Franklin AD, Frank D, Lobez JM, Cao Q, Park H, Afzali A, Han S-J, Hannon JB, Haensch W (2014) ACS Nano 8:8730. doi: 10.1021/nn503627h CrossRefGoogle Scholar
  7. 7.
    Pei T, Zhang PP, Zhang ZY, Qiu CG, Liang SB, Yang YJ, Wang S, Peng LM (2014) Nano Lett 14:3102. doi: 10.1021/nl5001604 CrossRefGoogle Scholar
  8. 8.
    Ding L, Zhang ZY, Liang SB, Pei T, Wang S, Li Y, Zhou WW, Liu J, Peng LM (2012) Nature Communications 3. doi: 10.1038/ncomms1682
  9. 9.
    Shulaker MM, Hills G, Patil N, Wei H, Chen HY, PhilipWong HS, Mitra S (2013) Nature 501:526. doi: 10.1038/nature12502 CrossRefGoogle Scholar
  10. 10.
    Chen B, Zhang P, Ding L, Han J, Qiu S, Li Q, Zhang Z, Peng L-M (2016) Nano Lett 16:5120. doi: 10.1021/acs.nanolett.6b02046 CrossRefGoogle Scholar
  11. 11.
    Waldrop MM (2016) Nature 530:144. doi: 10.1038/530144a CrossRefGoogle Scholar
  12. 12.
    Brotherton SD (2013) Introduction to thin film transistors—physics and technology of TFTs. Springer, New YorkCrossRefGoogle Scholar
  13. 13.
    Zhang J, Fu Y, Wang C, Chen PC, Liu Z, Wei W, Wu C, Thompson ME, Zhou C (2011) Nano Lett 11:4852. doi: 10.1021/nl202695v CrossRefGoogle Scholar
  14. 14.
    Ishikawa FN, Chang HK, Ryu K, Chen PC, Badmaev A, De Arco LG, Shen GZ, Zhou CW (2009) ACS Nano 3:73. doi: 10.1021/nn800434d CrossRefGoogle Scholar
  15. 15.
    Wang C, Zhang JL, Ryu KM, Badmaev A, De Arco LG, Zhou CW (2009) Nano Lett 9:4285. doi: 10.1021/nl902522f CrossRefGoogle Scholar
  16. 16.
    Brady GJ, Joo Y, Wu MY, Shea MJ, Gopalan P, Arnold MS (2014) ACS Nano 8:11614. doi: 10.1021/nn5048734 CrossRefGoogle Scholar
  17. 17.
    Sun DM, Liu C, Ren WC, Cheng HM (2013) Small 9:1188. doi: 10.1002/smll.201203154 CrossRefGoogle Scholar
  18. 18.
    Wang C, Takei K, Takahashi T, Javey A (2013) Chem Soc Rev 42:2592. doi: 10.1039/c2cs35325c CrossRefGoogle Scholar
  19. 19.
    Park S, Vosguerichian M, Bao Z (2013) Nanoscale 5:1727. doi: 10.1039/c3nr33560g CrossRefGoogle Scholar
  20. 20.
    Cao Q, Kim HS, Pimparkar N, Kulkarni JP, Wang CJ, Shim M, Roy K, Alam MA, Rogers JA (2008) Nature 454:495. doi: 10.1038/nature07110 CrossRefGoogle Scholar
  21. 21.
    Liyanage LS, Lee H, Patil N, Park S, Mitra S, Bao Z, Wong HS (2012) ACS Nano 6:451. doi: 10.1021/nn203771u CrossRefGoogle Scholar
  22. 22.
    Kim J, Hong D, Lee H, Shin Y, Park S, Khang Y, Lee M, Hong S (2013) The Journal of Physical Chemistry C 117Google Scholar
  23. 23.
    Lau PH, Takei K, Wang C, Ju Y, Kim J, Yu ZB, Takahashi T, Cho G, Javey A (2013) Nano Lett 13:3864. doi: 10.1021/nl401934a CrossRefGoogle Scholar
  24. 24.
    Chen P, Fu Y, Aminirad R, Wang C, Zhang J, Wang K, Galatsis K, Zhou C (2011) Nano Lett 11:5301. doi: 10.1021/nl202765b CrossRefGoogle Scholar
  25. 25.
    Kocabas C, Pimparkar N, Yesilyurt O, Kang SJ, Alam MA, Rogers JA (2007) Nano Lett 7:1195. doi: 10.1021/nl062907m CrossRefGoogle Scholar
  26. 26.
    Ohshima H (2014) Solid-state circuits conference (A-SSCC), 2014 IEEE Asian p 1Google Scholar
  27. 27.
    Zhang ZY, Liang XL, Wang S, Yao K, Hu YF, Zhu YZ, Chen Q, Zhou WW, Li Y, Yao YG, Zhang J, Peng LM (2007) Nano Lett 7:3603. doi: 10.1021/nl0717107 CrossRefGoogle Scholar
  28. 28.
    Javey A, Guo J, Wang Q, Lundstrom M, Dai H (2003) Nature 424. doi: 10.1038/nature01797
  29. 29.
    Park S, Vosguerichian M, Bao Z (2013) Nanoscale 5:1727. doi: 10.1039/c3nr33560g CrossRefGoogle Scholar
  30. 30.
    Xu W, Zhao J, Qian L, Han X, Wu L, Wu W, Song M, Zhou L, Su W, Wang C, Nie S, Cui Z (2014) Nanoscale 6:1589. doi: 10.1039/c3nr04870e CrossRefGoogle Scholar
  31. 31.
    Kim S, Kim S, Park J, Ju S, Mohammadi S (2010) ACS Nano 4:2994. doi: 10.1021/nn1006094 CrossRefGoogle Scholar
  32. 32.
    Zou J, Zhang K, Li J, Zhao Y, Wang Y, Pillai SKR, Volkan Demir H, Sun X, Chan-Park MB, Zhang Q (2015) Sci Rep 5:11755. doi: 10.1038/srep11755 CrossRefGoogle Scholar
  33. 33.
    Matsueda Y (2010) Digest of Int. Transistor Conf. 2010 Hyogo, Japan p 314Google Scholar
  34. 34.
    Toshio K, Kenji N, Hideo H (2010) Sci Technol Adv Mater 11:044305CrossRefGoogle Scholar
  35. 35.
    Ohshima H (2014) SID Symp Digest Techn Pap 45:75. doi: 10.1002/j.2168-0159.2014.tb00021.x CrossRefGoogle Scholar
  36. 36.
    Wang L, Xu M, Lan L, Zou J, Tao H, Xu H, Li M, Luo D, Peng J (2013) Sci Sin Chim 43:1383. doi: 10.1360/032013-293 CrossRefGoogle Scholar
  37. 37.
    Cunningham KL (2014) Nanochip Fab Solut 9:24Google Scholar
  38. 38.
    Tian B, Liang X, Yan Q, Zhang H, Xia J, Dong G, Peng L, Xie S (2016) J Appl Phys 120:034501. doi: 10.1063/1.4958850 CrossRefGoogle Scholar
  39. 39.
    Brady GJ, Joo Y, Singha Roy S, Gopalan P, Arnold MS (2014) Appl Phys Lett 104:083107. doi: 10.1063/1.4866577 CrossRefGoogle Scholar
  40. 40.
    Sun DM, Timmermans MY, Kaskela A, Nasibulin AG, Kishimoto S, Mizutani T, Kauppinen EI, Ohno Y (2013) Nat Commun 4:2302. doi: 10.1038/ncomms3302 Google Scholar
  41. 41.
    Sun DM, Timmermans MY, Tian Y, Nasibulin AG, Kauppinen EI, Kishimoto S, Mizutani T, Ohno Y (2011) Nat Nanotechnol 6:156. doi: 10.1038/Nnano.2011.1 CrossRefGoogle Scholar
  42. 42.
    Kang SJ, Kocabas C, Ozel T, Shim M, Pimparkar N, Alam MA, Rotkin SV, Rogers JA (2007) Nat Nanotechnol 2:230. doi: 10.1038/nnano.2007.77 CrossRefGoogle Scholar
  43. 43.
    Dresselhaus MS, Dresselhaus G, Avouris P (eds) (2001) Carbon nanotubes: synthesis, structure, properties, and applications. Springer, HeidelbergGoogle Scholar
  44. 44.
    Choi YS, Yun JU, Park SE (2016) J Non Cryst Solids 431:2. doi: 10.1016/j.jnoncrysol.2015.05.007 CrossRefGoogle Scholar
  45. 45.
    Kang SJ, Kocabas C, Kim HS, Cao Q, Meitl MA, Khang DY, Rogers JA (2007) Nano Lett 7:3343. doi: 10.1021/nl071596s CrossRefGoogle Scholar
  46. 46.
    Kumar S, Murthy JY, Alam MA (2005) Phys Rev Lett 95:066802. doi: 10.1103/Physrevlett.95.066802 CrossRefGoogle Scholar
  47. 47.
    Alam MA, Pimparkar N, Kumar S, Murthy J (2006) MRS Bull 31:466. doi: 10.1557/Mrs2006.120 CrossRefGoogle Scholar
  48. 48.
    Tu XM, Manohar S, Jagota A, Zheng M (2009) Nature 460:250. doi: 10.1038/nature08116 CrossRefGoogle Scholar
  49. 49.
    Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG (2003) Nat Mater 2:338. doi: 10.1038/nmat877 CrossRefGoogle Scholar
  50. 50.
    Nish A, Hwang J-Y, Doig J, Nicholas RJ (2007) Nat Nano 2:640. doi: 10.1038/nnano.2007.290 CrossRefGoogle Scholar
  51. 51.
    Lee HW, Yoon Y, Park S, Oh JH, Hong S, Liyanage LS, Wang H, Morishita S, Patil N, Park YJ, Park JJ, Spakowitz A, Galli G, Gygi F, Wong PHS, Tok JBH, Kim JM, Bao Z (2011) Nat Commun 2:541. doi: 10.1038/ncomms1545 CrossRefGoogle Scholar
  52. 52.
    Li H, Zhou B, Lin Y, Gu L, Wang W, Fernando KAS, Kumar S, Allard LF, Sun Y-P (2004) J Am Chem Soc 126:1014. doi: 10.1021/ja037142o CrossRefGoogle Scholar
  53. 53.
    Wang WZ, Li WF, Pan XY, Li CM, Li L-J, Mu YG, Rogers JA, Chan-Park MB (2011) Adv Funct Mater 21:1643. doi: 10.1002/adfm.201002278 CrossRefGoogle Scholar
  54. 54.
    Liu H, Tanaka T, Urabe Y, Kataura H (2013) Nano Lett 13:1996. doi: 10.1021/nl400128m CrossRefGoogle Scholar
  55. 55.
    Liu H, Nishide D, Tanaka T, Kataura H (2011) Nat Commun 2:309. doi: 10.1038/ncomms1313 CrossRefGoogle Scholar
  56. 56.
    Khripin CY, Fagan JA, Zheng M (2013) J Am Chem Soc 135:6822. doi: 10.1021/ja402762e CrossRefGoogle Scholar
  57. 57.
    Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC (2006) Nat Nano 1:60. doi: 10.1038/nnano.2006.52 CrossRefGoogle Scholar
  58. 58.
    Tulevski GS, Franklin AD, Afzali A (2013) ACS Nano 7:2971. doi: 10.1021/nn400053k CrossRefGoogle Scholar
  59. 59.
  60. 60.
  61. 61.
    Ha M, Xia Y, Green AA, Zhang W, Renn MJ, Kim CH, Hersam MC, Frisbie CD (2010) ACS Nano 4:4388. doi: 10.1021/nn100966s CrossRefGoogle Scholar
  62. 62.
    Abdelhalim A, Abdellah A, Scarpa G, Lugli P (2014) Nanotechnology 25:055208. doi: 10.1088/0957-4484/25/5/055208 CrossRefGoogle Scholar
  63. 63.
    Takahashi T, Takei K, Gillies AG, Fearing RS, Javey A (2011) Nano Lett 11:5408. doi: 10.1021/nl203117h CrossRefGoogle Scholar
  64. 64.
    Wang C, Chien JC, Takei K, Takahashi T, Nah J, Niknejad AM, Javey A (2012) Nano Lett 12:1527. doi: 10.1021/nl2043375 CrossRefGoogle Scholar
  65. 65.
    Cao X, Chen H, Gu X, Liu B, Wang W, Cao Y, Wu F, Zhou C (2014) ACS Nano 8:12769. doi: 10.1021/nn505979j CrossRefGoogle Scholar
  66. 66.
    Joo Y, Brady GJ, Arnold MS, Gopalan P (2014) Langmuir 30:3460. doi: 10.1021/la500162x CrossRefGoogle Scholar
  67. 67.
    Zhang J, Wang C, Zhou C (2012) ACS Nano 6:7412. doi: 10.1021/nn3026172 CrossRefGoogle Scholar
  68. 68.
    Qian L, Xu WY, Fan XF, Wang C, Zhang JH, Zhao JW, Cui Z (2013) J Phys Chem C 117:18243. doi: 10.1021/jp4055022 CrossRefGoogle Scholar
  69. 69.
    Wang C, Qian L, Xu WY, Nie SH, Gu WB, Zhang JH, Zhao JW, Lin J, Chen Z, Cui Z (2013) Nanoscale 5:4156. doi: 10.1039/c3nr34304a CrossRefGoogle Scholar
  70. 70.
    LeMieux MC, Roberts M, Barman S, Jin YW, Kim JM, Bao Z (2008) Science 321:101. doi: 10.1126/science.1156588 CrossRefGoogle Scholar
  71. 71.
    Opatkiewicz JP, LeMieux MC, Bao Z (2010) ACS Nano 4:1167. doi: 10.1021/nn901388v CrossRefGoogle Scholar
  72. 72.
    Engel M, Small JP, Steiner M, Freitag M, Green AA, Hersam MC, Avouris P (2008) ACS Nano 2:2445. doi: 10.1021/nn800708w CrossRefGoogle Scholar
  73. 73.
    Li X, Zhang L, Wang X, Shimoyama I, Sun X, Seo W-S, Dai H (2007) J Am Chem Soc 129:4890. doi: 10.1021/ja071114e CrossRefGoogle Scholar
  74. 74.
    Cao Q, Han SJ, Tulevski GS, Zhu Y, Lu DD, Haensch W (2013) Nat Nanotechnol 8:180. doi: 10.1038/Nnano.2012.257 CrossRefGoogle Scholar
  75. 75.
    Shekhar S, Stokes P, Khondaker SI (2011) ACS Nano 5:1739. doi: 10.1021/nn102305z CrossRefGoogle Scholar
  76. 76.
    Cao Q, Han SJ, Tulevski GS (2014) Nat Commun 5:5071. doi: 10.1038/ncomms6071 CrossRefGoogle Scholar
  77. 77.
    Monica AH, Papadakis SJ, Osiander R, Paranjape M (2008) Nanotechnology 19:085303. doi: 10.1088/0957-4484/19/8/085303 CrossRefGoogle Scholar
  78. 78.
    Krupke R, Hennrich F, Löhneysen HV, Kappes MM (2003) Science 301: 344Google Scholar
  79. 79.
    Lau PH, Takei K, Wang C, Ju Y, Kim J, Yu Z, Takahashi T, Cho G, Javey A (2013) Nano Lett 13:3864. doi: 10.1021/nl401934a CrossRefGoogle Scholar
  80. 80.
    Xu W, Dou J, Zhao J, Tan H, Ye J, Tange M, Gao W, Xu W, Zhang X, Guo W, Ma C, Okazaki T, Zhang K, Cui Z (2016) Nanoscale 8:4588. doi: 10.1039/c6nr00015k CrossRefGoogle Scholar
  81. 81.
    Tans SJ, Verschueren ARM, Dekker C (1998) Nature 393:49CrossRefGoogle Scholar
  82. 82.
    Zhu XM, Jiang CS, Yuan GC, Liu W, Li XY, Xin LB, Wang ML, Wang G (2015) SID symposium digest of technical papers, vol 46, p 1198. doi: 10.1002/sdtp.10057
  83. 83.
    Li W, Liang YR, Yu DM, Peng LM, Pernstich KP, Shen T, Walker ARH, Cheng GJ, Hacker CA, Richter CA, Li QL, Gundlach DJ, Liang XL (2013) Appl Phys Lett 102. doi: 10.1063/1.4804643
  84. 84.
    Li W, Hacker CA, Cheng GJ, Liang YR, Tian BY, Walker ARH, Richter CA, Gundlach DJ, Liang XL, Peng LM (2014) J Appl Phys 115. doi: 10.1063/1.4868897
  85. 85.
    Leonard F, Tersoff J (2000) Phys Rev Lett 84:4693. doi: 10.1103/PhysRevLett.84.4693 CrossRefGoogle Scholar
  86. 86.
    Ding L, Wang S, Zhang ZY, Zeng QS, Wang ZX, Pei T, Yang LJ, Liang XL, Shen J, Chen Q, Cui RL, Li Y, Peng LM (2009) Nano Lett 9:4209. doi: 10.1021/nl9024243 CrossRefGoogle Scholar
  87. 87.
    Zhang Y, Franklin NW, Chen RJ, Dai HJ (2000) Chem Phys Lett 331:35. doi: 10.1016/S0009-2614(00)01162-3 CrossRefGoogle Scholar
  88. 88.
    Chen ZH, Appenzeller J, Knoch J, Lin YM, Avouris P (2005) Nano Lett 5:1497. doi: 10.1021/Nl0508624 CrossRefGoogle Scholar
  89. 89.
    Morrison NA, Stolley T, Hermanns U, Reus A, Deppisch T, Bolandi H, Melnik Y, Singh V, Griffith Cruz J (2015) Proc IEEE 103:518. doi: 10.1109/jproc.2015.2408052 CrossRefGoogle Scholar
  90. 90.
    Wang P, Hwang J, Chuang A, Huang F-S (2000) Thin Solid Films 358:292. doi: 10.1016/S0040-6090(99)00674-4 CrossRefGoogle Scholar
  91. 91.
    Franklin AD, Farmer DB, Haensch W (2014) ACS Nano 8:7333. doi: 10.1021/nn5024363 CrossRefGoogle Scholar
  92. 92.
    Wind SJ, Appenzeller J, Martel R, Derycke V, Avouris P (2002) Appl Phys Lett 80:3817. doi: 10.1063/1.1480877 CrossRefGoogle Scholar
  93. 93.
    Sangwan VK, Ortiz RP, Alaboson JMP, Emery JD, Bedzyk MJ, Lauhon LJ, Marks TJ, Hersam MC (2012) ACS Nano 6:7480. doi: 10.1021/nn302768h CrossRefGoogle Scholar
  94. 94.
    Hur S-H, Yoon M-H, Gaur A, Shim M, Facchetti A, Marks TJ, Rogers JA (2005) J Am Chem Soc 127:13808. doi: 10.1021/ja0553203 CrossRefGoogle Scholar
  95. 95.
    Dai YX (2010) Design and operation of TFT LCD panels. Tsinghua University Press, BeijingGoogle Scholar
  96. 96.
    Brotherton SD, Ayres JR, Young ND (1991) Solid State Electron 34:671. doi: 10.1016/0038-1101(91)90002-G CrossRefGoogle Scholar
  97. 97.
    Opatkiewicz JP, LeMieux MC, Liu D, Vosgueritchian M, Barman SN, Elkins CM, Hedrick J, Bao Z (2012) ACS Nano 6:4845. doi: 10.1021/nn300124y CrossRefGoogle Scholar
  98. 98.
    Cao Q, Han SJ, Tulevski GS, Franklin AD, Haensch W (2012) ACS Nano 6:6471. doi: 10.1021/nn302185d CrossRefGoogle Scholar
  99. 99.
    Liang Y, Xia J, Liang X (2016) Sci Bull 61:794. doi: 10.1007/s11434-016-1075-1 CrossRefGoogle Scholar
  100. 100.
    Lin YM, Appenzeller J, Avouris P (2004) Nano Lett 4:947. doi: 10.1021/nl049745j CrossRefGoogle Scholar
  101. 101.
    Zhang J, Gui H, Liu B, Liu J, Zhou C (2013) Nano Res 6:906. doi: 10.1007/s12274-013-0368-9 CrossRefGoogle Scholar
  102. 102.
    Qiu C, Zhang Z, Zhong D, Si J, Yang Y, Peng L-M (2015) ACS Nano 9:969. doi: 10.1021/nn506806b CrossRefGoogle Scholar
  103. 103.
    Wang ZX, Xu HL, Zhang ZY, Wang S, Ding L, Zeng QS, Yang LJ, Pei TA, Liang XL, Gao M, Peng LM (2010) Nano Lett 10:2024. doi: 10.1021/nl100022u CrossRefGoogle Scholar
  104. 104.
    Javey A, Tu R, Farmer DB, Guo J, Gordon RG, Dai HJ (2005) Nano Lett 5:345. doi: 10.1021/nl047931j CrossRefGoogle Scholar
  105. 105.
    Ha TJ, Kiriya D, Chen K, Javey A (2014) Acs Appl Mater Interfaces 6:8441. doi: 10.1021/am5013326 CrossRefGoogle Scholar
  106. 106.
    Kim B, Franklin A, Nuckolls C, Haensch W, Tulevski GS (2014) Appl Phys Lett 105:063111. doi: 10.1063/1.4891335 CrossRefGoogle Scholar
  107. 107.
    Kim W, Javey A, Vermesh O, Wang O, Li YM, Dai HJ (2003) Nano Lett 3:193. doi: 10.1021/nl0259232 CrossRefGoogle Scholar
  108. 108.
    Park RS, Shulaker MM, Hills G, Suriyasena Liyanage L, Lee S, Tang A, Mitra S, Wong HSP (2016) ACS Nano 10:4599. doi: 10.1021/acsnano.6b00792 CrossRefGoogle Scholar
  109. 109.
    Franklin AD, Tulevski GS, Han SJ, Shahrjerdi D, Cao Q, Chen HY, Wong HSP, Haensch W (2012) ACS Nano 6:1109. doi: 10.1021/nn203516z CrossRefGoogle Scholar
  110. 110.
    Shlafman M, Tabachnik T, Shtempluk O, Razin A, Kochetkov V, Yaish YE (2016) Appl Phys Lett 108:163104. doi: 10.1063/1.4947099 CrossRefGoogle Scholar
  111. 111.
    Lefebvre J, Ding J, Li Z, Cheng F, Du N, Malenfant PRL (2015) Appl Phys Lett 107:243301. doi: 10.1063/1.4937223 CrossRefGoogle Scholar
  112. 112.
    Ha TJ, Chen K, Chuang S, Yu KM, Kiriya D, Javey A (2015) Nano Lett 15:392. doi: 10.1021/nl5037098 CrossRefGoogle Scholar
  113. 113.
    Seong N, Kim T, Kim H, Ha T-J, Hong Y (2015) Curr Appl Phys 15:S8. doi: 10.1016/j.cap.2015.03.009 CrossRefGoogle Scholar
  114. 114.
    Zhang ZY, Wang S, Ding L, Liang XL, Pei T, Shen J, Xu HL, Chen O, Cui RL, Li Y, Peng LM (2008) Nano Lett 8:3696. doi: 10.1021/nl8018802 CrossRefGoogle Scholar
  115. 115.
    Lee SW, Suh D, Lee SY, Lee YH (2014) Appl Phys Lett 104. doi: 10.1063/1.4873316
  116. 116.
    Lee SW, Lee SY, Lim SC, Kwon Y-d, Yoon J-S, Uh K, Lee YH (2012) Appl Phys Lett 101:053504. doi: 10.1063/1.4740084 CrossRefGoogle Scholar
  117. 117.
    Fuhrer MS, Nygard J, Shih L, Forero M, Yoon YG, Mazzoni MSC, Choi HJ, Ihm J, Louie SG, Zettl A, McEuen PL (2000) Science 288:494. doi: 10.1126/science.288.5465.494 CrossRefGoogle Scholar
  118. 118.
    Liu Q, Luo G, Qin R, Li H, Yan X, Xu C, Lai L, Zhou J, Hou S, Wang E, Gao Z, Lu J (2011) Phys Rev B 83:155442. doi: 10.1103/PhysRevB.83.155442 CrossRefGoogle Scholar
  119. 119.
    Pimparkar N, Alam MA (2008) Electron Device Lett IEEE 29:1037. doi: 10.1109/led.2008.2001259 CrossRefGoogle Scholar
  120. 120.
    Xia J, Dong G, Tian B, Yan Q, Zhang H, Liang X, Peng L (2016) Nanoscale 8:9988. doi: 10.1039/c6nr00876c CrossRefGoogle Scholar
  121. 121.
    Choi SJ, Bennett P, Takei K, Wang C, Lo CC, Javey A, Bokor J (2013) ACS Nano 7:798. doi: 10.1021/nn305277d CrossRefGoogle Scholar
  122. 122.
    Yang YJ, Ding L, Zhang ZY, Peng LM (2016) 4th carbon nanotube thin film electronics and applications satellite. In: Seventeenth international conference of the science and applications of nanotubes and low-dimensional materials, University of Vienna, AustriaGoogle Scholar
  123. 123.
    Shin K, Jeon H, Park CE, Kim Y, Cho H, Lee G, Han JH (2010) Org Electron 11:1403. doi: 10.1016/j.orgel.2010.05.012 CrossRefGoogle Scholar
  124. 124.
    Barman SN, LeMieux MC, Baek J, Rivera R, Bao Z (2010) Acs Appl Mater Interfaces 2:2672. doi: 10.1021/am1005223 CrossRefGoogle Scholar
  125. 125.
    Asada Y, Miyata Y, Ohno Y, Kitaura R, Sugai T, Mizutani T, Shinohara H (2010) Adv Mater 22:2698. doi: 10.1002/adma.200904006 CrossRefGoogle Scholar
  126. 126.
    Lee CW, Han X, Chen F, Wei J, Chen Y, Chan-Park MB, Li L-J (2010) Adv Mater 22:1278. doi: 10.1002/adma.200902461 CrossRefGoogle Scholar
  127. 127.
    LeMieux MC, Sok S, Roberts ME, Opatkiewicz JP, Liu D, Barman SN, Patil N, Mitra S, Bao Z (2009) ACS Nano 3:4089. doi: 10.1021/nn900827v CrossRefGoogle Scholar
  128. 128.
    Vosgueritchian M, LeMieux MC, Dodge D, Bao Z (2010) Acs Nano 4:6137. doi: 10.1021/nn1012226 CrossRefGoogle Scholar
  129. 129.
    Yuki N, Yuki T, Shota G, Satoki M, Kazuhiro Y, Taishi T (2012) Jpn J Appl Phys 51:06FD15CrossRefGoogle Scholar
  130. 130.
    Ohmori S, Ihara K, Nihey F, Kuwahara Y, Saito T (2012) Rsc Adv 2:12408. doi: 10.1039/c2ra22272h CrossRefGoogle Scholar
  131. 131.
    Asada Y, Nihey F, Ohmori S, Shinohara H, Saito T (2011) Adv Mater 23:4631. doi: 10.1002/adma.201102806 CrossRefGoogle Scholar
  132. 132.
    Miyata Y, Shiozawa K, Asada Y, Ohno Y, Kitaura R, Mizutani T, Shinohara H (2011) Nano Res 4:963. doi: 10.1007/s12274-011-0152-7 CrossRefGoogle Scholar
  133. 133.
    Zhang J, Wang C, Fu Y, Che Y, Zhou C (2011) Acs Nano 5:3284. doi: 10.1021/nn2004298 CrossRefGoogle Scholar
  134. 134.
    Wang C, Zhang J, Zhou C (2010) Acs Nano 4:7123. doi: 10.1021/nn1021378 CrossRefGoogle Scholar
  135. 135.
    Raman Pillai SK, Chan-Park MB (2012) Acs Applied Mater Interfaces 4:7047. doi: 10.1021/am302431e CrossRefGoogle Scholar
  136. 136.
    Lee CW, Raman Pillai SK, Luan X, Wang Y, Li CM, Chan-Park MB (2012) Small 8:2941. doi: 10.1002/smll.201200041 CrossRefGoogle Scholar
  137. 137.
    Lee D, Seol M-L, Moon D-I, Bennett P, Yoder N, Humes J, Bokor J, Choi Y-K, Choi S-J (2014) Appl Phys Lett 104:143508. doi: 10.1063/1.4871100 CrossRefGoogle Scholar
  138. 138.
    Tatsuya T, Hiroshi F, Mamoru F (2013) Jpn J Appl Phys 52:03BB09CrossRefGoogle Scholar
  139. 139.
    Li Z, Ding J, Lefebvre J, Malenfant PRL (2015) Org Electron 26:15. doi: 10.1016/j.orgel.2015.07.006 CrossRefGoogle Scholar
  140. 140.
    Yuki K, Fumiyuki N, Shigekazu O, Takeshi S (2015) Appl Phys Express 8:105101CrossRefGoogle Scholar
  141. 141.
    Liu N, Yun KN, Yu H-Y, Shim JH, Lee CJ (2015) Appl Phys Lett 106:103106. doi: 10.1063/1.4914400 CrossRefGoogle Scholar
  142. 142.
    Li G, Li Q, Jin Y, Zhao Y, Xiao X, Jiang K, Wang J, Fan S (2015) Nanoscale 7:17693. doi: 10.1039/c5nr05036g CrossRefGoogle Scholar
  143. 143.
    Wei L, Liu B, Wang X, Gui H, Yuan Y, Zhai S, Ng AK, Zhou C, Chen Y (2015) Adv Electron Mater 1:1500151. doi: 10.1002/aelm.201500151 CrossRefGoogle Scholar
  144. 144.
    Cao C, Andrews JB, Kumar A, Franklin AD (2016) Acs Nano 10:5221. doi: 10.1021/acsnano.6b00877 CrossRefGoogle Scholar
  145. 145.
    Gui H, Chen H, Khripin CY, Liu B, Fagan JA, Zhou C, Zheng M (2016) Nanoscale 8:3467. doi: 10.1039/c5nr07329d CrossRefGoogle Scholar
  146. 146.
  147. 147.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Key Laboratory for the Physics and Chemistry of Nanodevices and Department of ElectronicsPeking UniversityBeijingChina

Personalised recommendations