Skip to main content
Log in

Semiconductor Quantum Dots with Photoresponsive Ligands

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Photochromic or photocaged ligands can be anchored to the outer shell of semiconductor quantum dots in order to control the photophysical properties of these inorganic nanocrystals with optical stimulations. One of the two interconvertible states of the photoresponsive ligands can be designed to accept either an electron or energy from the excited quantum dots and quench their luminescence. Under these conditions, the reversible transformations of photochromic ligands or the irreversible cleavage of photocaged counterparts translates into the possibility to switch luminescence with external control. As an alternative to regulating the photophysics of a quantum dot via the photochemistry of its ligands, the photochemistry of the latter can be controlled by relying on the photophysics of the former. The transfer of excitation energy from a quantum dot to a photocaged ligand populates the excited state of the species adsorbed on the nanocrystal to induce a photochemical reaction. This mechanism, in conjunction with the large two-photon absorption cross section of quantum dots, can be exploited to release nitric oxide or to generate singlet oxygen under near-infrared irradiation. Thus, the combination of semiconductor quantum dots and photoresponsive ligands offers the opportunity to assemble nanostructured constructs with specific functions on the basis of electron or energy transfer processes. The photoswitchable luminescence and ability to photoinduce the release of reactive chemicals, associated with the resulting systems, can be particularly valuable in biomedical research and can, ultimately, lead to the realization of imaging probes for diagnostic applications as well as to therapeutic agents for the treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Reproduced with permission from Physica E, 2004, © Elsevier Science Ltd.)

Fig. 2

(Reproduced with permission from Materials, 2010, © MDPI.)

Fig. 3
Fig. 4
Fig. 5
Fig. 6

(Reprinted with permission from Aust. J. Chem., 2006, © CSIRO Publishing)

Fig. 7

(Reprinted with the permission from J. Am. Chem. Soc., 2005, © American Chemical Society)

Fig. 8
Fig. 9

(Adapted from ACS Nano, 2011, © American Chemical Society)

Fig. 10

(Adapted from ACS Nano, 2011, © American Chemical Society)

Fig. 11

(Adapted from J. Am. Chem. Soc., 2008, © American Chemical Society)

Fig. 12

(Reprinted with permission from J. Am. Chem. Soc., 2008, © American Chemical Society)

Fig. 13

(Reprinted with permission from J. Am. Chem. Soc., 2012, © American Chemical Society)

Fig. 14

(Reprinted with permission from J. Am. Chem. Soc., 2012, © American Chemical Society)

Fig. 15

(Adapted with permission from J. Am. Chem. Soc., 2007, © American Chemical Society)

Fig. 16

(Adapted with permission from J. Am. Chem. Soc., 2007, © American Chemical Society)

Fig. 17

(Adapted with permission from J. Phys. Chem. A, 2014, © American Chemical Society)

Fig. 18

(Adapted from J. Phys. Chem. A, 2014, © American Chemical Society)

Fig. 19

(Adapted with permission from Analyst, 2014, © Royal Society of Chemistry)

Fig. 20

(Reproduced with permission from Analyst, 2014, © Royal Society of Chemistry)

Fig. 21

(Adapted from Mat. Chem. Phys., 2015, © Elsevier)

Fig. 22
Fig. 23

(Adapted from J. Am. Chem. Soc., 2011, © American Chemical Society)

Fig. 24

(Adapted with permission from ACS Appl. Mater. Interfaces, 2013, © American Chemical Society)

Fig. 25

(Adapted from Chem. Comm., 2015, © Royal Society of Chemistry)

Similar content being viewed by others

References

  1. Graham-Rowe D (2008) Nat Photonics 3:307–309

    Article  Google Scholar 

  2. Tartakovskii A (2012) Quantum dots: optics, electron transport and future applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Masumoto Y, Takagahara T (2002) Semiconductor quantum dots. Physics, spectroscopy and applications. Springer-Verlag, Heidelberg

    Google Scholar 

  4. Woggon U (2013) Optical properties of semiconductor quantum dots. Springer-Verlag, Heidelberg

    Google Scholar 

  5. Karmakar S (2014) Fabrication, modeling and application. Novel three-state quantum dot gate field effect transistor. Springer, New Delhi

    Chapter  Google Scholar 

  6. Wu J, Wang ZM (2014) Quantum dot solar cells. Springer, New York

    Book  Google Scholar 

  7. Wang ZM (2012) Quantum dot devices. Springer, New York

    Book  Google Scholar 

  8. Ustinov VM, Zhukov AE, Egorov AY, Maleev NA (2003) Quantum dot lasers. Oxford University Press, Oxford

    Book  Google Scholar 

  9. Rafailov EU, Cataluna MA, Avrutin EA (2011) Ultrafast lasers based on quantum dot structures: physics and devices. Wiley-VCH, Weinheim

    Book  Google Scholar 

  10. Stolze J, Suter D (2004) Quantum computing. Wiley-VCH, Weinheim

    Book  Google Scholar 

  11. Hoath SD (2016) Fundamentals of inkjet printing. Wiley-VCH, Weinheim

    Book  Google Scholar 

  12. Grumezescu AM (2016) Nanobiomaterials in medical imaging. Applications of nanobiomaterials. Elsevier, Oxford

    Google Scholar 

  13. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York

    Book  Google Scholar 

  14. Algar Russ W, Kim H, Medintz IL, Hildebrandt N (2014) Coord Chem Rev 263–264:65–85

    Article  Google Scholar 

  15. Wegner DK, Hildebrandt N (2015) Chem Soc Rev 44:4792–4834

    Article  CAS  Google Scholar 

  16. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Nat Methods 5:763–775

    Article  CAS  Google Scholar 

  17. Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Curr Opin Biotech 13:40–46

    Article  CAS  Google Scholar 

  18. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker AJ, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV (2004) Nat Biotech 22:93–97

    Article  CAS  Google Scholar 

  19. Hardman R (2006) Environ Health Perspect 114:165–172

    Article  Google Scholar 

  20. Kavarnos GJ (1993) Fundamentals of photoinduced electron transfer. Wiley-VCH, Weinheim

    Google Scholar 

  21. Willard DM, Van Orden A (2003) Nat Materials 2:575–576

    Article  CAS  Google Scholar 

  22. Medintz IL, Mattoussi H (2009) Phys Chem Chem Phys 165:17–45

    Article  Google Scholar 

  23. Algar WR, Tavares AJ, Krull UJ (2010) Anal Chim Acta 673:1–25

    Article  CAS  Google Scholar 

  24. Bouas-Laurent H, Durr H (2001) Pure Appl Chem 73:639–665

    Article  CAS  Google Scholar 

  25. Crano JC, Guglielmetti RJ (1999) Organic photochromic and thermochromic compounds: main photochromic families. Springer, Berlin

    Google Scholar 

  26. Crano JC, Guglielmetti RJ (2006) Organic photochromic and thermochromic compounds: physicochemical studies, biological applications, and thermochromism. Springer, Berlin

    Google Scholar 

  27. Durr H, Bouas-Laurent H (1990) Photochromism: molecules and systems. Elsevier, Amsterdam

    Google Scholar 

  28. Klajn R (2014) Chem Soc Rev 43:148–184

    Article  CAS  Google Scholar 

  29. Medintz IL, Trammell SA, Mattoussi H, Mauro JM (2004) J Am Chem Soc 126:30–31

    Article  CAS  Google Scholar 

  30. Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM (2003) Nat Mater 2:630–638

    Article  CAS  Google Scholar 

  31. Medintz IL, Goldman ER, Lassman ME, Mauro JM (2003) Bioconjugate Chem 14:909–918

    Article  CAS  Google Scholar 

  32. Tomasulo M, Yildiz I, Raymo FM (2006) Aust J Chem 59:175–178

    Article  CAS  Google Scholar 

  33. Zhu L, Zhu M-Q, Hurst JK, Li ADQ (2005) J Am Chem Soc 127:8968–8970

    Article  CAS  Google Scholar 

  34. Giordano L, Jovin TM, Irie M, Jares-Erijman EA (2002) J Am Chem Soc 124:7481–7489

    Article  CAS  Google Scholar 

  35. Erno Z, Yildiz I, Gorodetsky B, Raymo FM, Branda NR (2010) Photochem Photobiol Sci 9:249–253

    Article  CAS  Google Scholar 

  36. Díaz SA, Menéndez GO, Etchehon MH, Giordano L, Jovin TM, Jares-Erijman EA (2011) ACS Nano 5:2795–2805

    Article  Google Scholar 

  37. Diaz SA, Gillanders F, Jares-Erijman EA, Jovin TM (2015) Nat Commun 6 6036:1–11

    Google Scholar 

  38. Irie M, Fukaminato T, Matsuda K, Kobatake S (2014) Chem Rev 114:12174–12277

    Article  CAS  Google Scholar 

  39. Raymo FM (2013) Phys Chem Chem Phys 15:14840–14850

    Article  CAS  Google Scholar 

  40. Huang B, Bates M, Zhuang X (2009) Ann Rev Biochem 78:993–1016

    Article  CAS  Google Scholar 

  41. Fernández-Suárez M, Ting AY (2008) Nat Rev Mol Cell Biol 9:929–943

    Article  Google Scholar 

  42. Heilemann MJ (2010) Biotech. 149:243–251

    CAS  Google Scholar 

  43. Banala S, Maurel D, Manley S, Johnsson K (2012) ACS Chem Biol 7:289–293

    Article  CAS  Google Scholar 

  44. Zhang Y, Swaminathan S, Tang S, Garcia-Amorós J, Boulina M, Captain B, Baker JD, Raymo FM (2015) J Am Chem Soc 137:4709–4719

    Article  CAS  Google Scholar 

  45. Zhao Y, Zheng Q, Dakin K, Xu K, Martínez ML, Li WH (2004) J Am Chem Soc 126:4653–4663

  46. Ellis-Davies GCR (2007) Nat Methods 4:619–628

    Article  CAS  Google Scholar 

  47. Shao Q, Xing B (2010) Chem Soc Rev 39:2835–2846

    Article  CAS  Google Scholar 

  48. Yu CYY, Kwok RTK, Mei J, Hong Y, Chen S, Lam JWY, Tang BZ (2014) Chem Commun 50:8134–8136

    Article  CAS  Google Scholar 

  49. Shaban Ragab S, Swaminathan S, Garcia-Amorós J, Captain B, Raymo FM (2015) New J Chem 39:1570–1573

    Article  Google Scholar 

  50. Gang Han TM, Ajo-Franklin C, Cohen BE (2008) J Am Chem Soc 130:15811–15813

    Article  Google Scholar 

  51. Miesch C, Emrick T (2014) J Coll Interf Sci 425:152–158

    Article  CAS  Google Scholar 

  52. Impellizzeri S, McCaughan B, Callan JF, Raymo FM (2012) J Am Chem Soc 134:2276–2283

    Article  CAS  Google Scholar 

  53. Wink DA, Grisham MB, Mitchell JB, Ford P (1996) Methods Enzymol 268:12–31

    Article  CAS  Google Scholar 

  54. Davis KL, Martin E, Turko IV, Murad F (2001) Annu Rev Pharmacol Toxicol 41:203–206

    Article  CAS  Google Scholar 

  55. Murad F (1999) Angew Chem Int Ed 38:1856–1868

    Article  CAS  Google Scholar 

  56. Furchgott RF (1999) Angew Chem Int Ed 38:1870–1880

    Article  CAS  Google Scholar 

  57. Ignarro LJ (1999) Angew Chem Int Ed 38:1882–1892

    Article  CAS  Google Scholar 

  58. Seabra AB, Duran N (2010) J Mater Chem 20:1624–1637

    Article  CAS  Google Scholar 

  59. Sonveaux P, Jordan BF, Gallez B, Feron O (2009) Eur J Cancer 45:1352–1369

    Article  CAS  Google Scholar 

  60. Cheng H, Wang L, Mollica M, Re AT, Wu S, Zuo L (2014) Cancer Lett 353:1–7

    Article  CAS  Google Scholar 

  61. Huerta S (2015) Future Sci OA 1(1):FS044-1–9

  62. Keefer LK, Nims RW, Davies KM, Wink DA (1996) Methods Enzymol 268:281–293

    Article  CAS  Google Scholar 

  63. Wang PG, Xian M, Tang X, Wu X, Wen Z, Cai T, Janczuk AJ (2002) Chem Rev 102:1091–1134

    Article  CAS  Google Scholar 

  64. Schloßbauer A, Sauer AM, Cauda V, Schmidt A, Engelke H, Rothbauer U, Zolghadr K, Leonhardt H, Bräuchle C, Bein T (2012) Adv Healthcare Mater 1:316–320

    Article  Google Scholar 

  65. Ford PC (2013) Nitric Oxide 34:56–64

    Article  CAS  Google Scholar 

  66. Jacques SL (2013) Phys Med Biol 58:R37–R61

    Article  Google Scholar 

  67. Neuman D, Ostrowsky AD, Absalonson RO, Strouse GF, Ford PC (2007) J Am Chem Soc 129:4146–4147

    Article  CAS  Google Scholar 

  68. Neuman D, Ostrowsky AD, Mikhailovsky AA, Absalonson RO, Strouse GF, Ford PC (2008) J Am Chem Soc 130:168–175

    Article  CAS  Google Scholar 

  69. Burks PT, Ostrowski AD, Mikhailovsky AA, Chan EM, Wagenknecht PS, Ford PC (2012) J Am Chem Soc 134:13266–13275

    Article  CAS  Google Scholar 

  70. Franco LP, Cicillini AS, Biazzotto JC, Schiavon MA, Mikhailovsky A, Burks P, Garcia J, Ford PC, da Silva RS (2014) J Phys Chem A 118:12184–12191

    Article  CAS  Google Scholar 

  71. Tan L, Wan A, Zhu X, Li H (2014) Analyst 139:3398–3406

    Article  CAS  Google Scholar 

  72. Tan L, Wan A, Zhu X, Li H (2014) Chem Commun 50:5725–5728

    Article  CAS  Google Scholar 

  73. Xu Z, Wu Z, Sun J, Gui RJ (2015) Mat Chem Phys 162:286–290

    Article  CAS  Google Scholar 

  74. Jin H, Gui R, Sun J, Wang Y (2016) Anal Chim Acta 922:48–54

    Article  CAS  Google Scholar 

  75. Ratanatawanate C, Chyao A, Balkus KJ Jr (2011) J Am Chem Soc 133:3492–3497

    Article  CAS  Google Scholar 

  76. Tasker HS, Jones HO (1909) J Chem Soc 95:1910–1918

    Article  CAS  Google Scholar 

  77. Williams DLH (1996) Chem Commun 1085–1091

  78. Singh SP, Wishnok JS, Keshive M, Deen WM, Tannenbaum SR (1996) Proc Natl Acad Sci 93:14428–14433

    Article  CAS  Google Scholar 

  79. Ratanatawanate C, Tao Y, Balkus KJ Jr (2009) J Phys Chem C 113:10755–10760

    Article  CAS  Google Scholar 

  80. Tan L, Wan A, Li H (2013) ACS Appl Mat Interf 5:11163–11171

    Article  CAS  Google Scholar 

  81. Tan L, Wan A, Li H (2013) Langmuir 29:15032–15042

    Article  CAS  Google Scholar 

  82. Callari FL, Sortino S (2008) Chem Commun 1971–1973

  83. Caruso EB, Petralia S, Conoci S, Giuffrida S, Sortino S (2007) J Am Chem Soc 129:480–481

    Article  CAS  Google Scholar 

  84. Fowley C, McHale AP, McCaughan B, Fraix A, Sortino S, Callan JF (2015) Chem Commun 51:81–84

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The National Science Foundation (CHE-1049860) is acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Françisco M. Raymo or Jaume Garcia-Amorós.

Additional information

This article is part of the Topical Collection “Photoactive Semiconductor Nanocrystal Quantum Dots”; edited by Alberto Credi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sansalone, L., Tang, S., Zhang, Y. et al. Semiconductor Quantum Dots with Photoresponsive Ligands. Top Curr Chem (Z) 374, 73 (2016). https://doi.org/10.1007/s41061-016-0073-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-016-0073-8

Keywords

Navigation