Topics in Current Chemistry

, 374:65 | Cite as

Interfacing Luminescent Quantum Dots with Functional Molecules for Optical Sensing Applications

Review
Part of the following topical collections:
  1. Photoactive Semiconductor Nanocrystal Quantum Dots

Abstract

Semiconductor quantum dots possess unique size-dependent electronic properties and are of high potential interest for the construction of functional nanodevices. Photoinduced electron- and energy-transfer processes between quantum dots and surface-bound molecular species open up attractive routes to implement chemical switching of luminescence, which is at the basis of luminescence sensing. In this article, we discuss the general principles underlying the rational design of this kind of multicomponent species. Successively, we illustrate a few prominent examples, taken from the recent literature, of luminescent chemosensors constructed by attaching molecular species to the surface of quantum dots.

Keywords

Chemosensor Energy transfer Electron transfer Luminescence Nanocrystal  Nanoscience 

Notes

Acknowledgments

Financial support from the Italian Ministry of Education, University and Research (PRIN 2010CX2TLM “InfoChem”), the Université Franco-Italienne (Vinci programme) and the University of Bologna is gratefully acknowledged.

References

  1. 1.
    Bawendi MG, Steigerwald ML, Brus LE (1990) Ann Rev Phys Chem 41:477–496CrossRefGoogle Scholar
  2. 2.
    Efros AL, Rosen M (2000) Ann Rev Mater Sci 30:475–521CrossRefGoogle Scholar
  3. 3.
    Alivisatos AP (1996) Science 271:933–937CrossRefGoogle Scholar
  4. 4.
    Efros AL (1982) Sov Phys Semicond 16:772–775Google Scholar
  5. 5.
    Brus LE (1983) J Chem Phys 79:5566–5571CrossRefGoogle Scholar
  6. 6.
    Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706–8715CrossRefGoogle Scholar
  7. 7.
    Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Nat Methods 5:763–775CrossRefGoogle Scholar
  8. 8.
    Hötzer B, Medintz IL, Hildebrandt N (2012) Small 8:2297–2326CrossRefGoogle Scholar
  9. 9.
    Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Science 307:538–544CrossRefGoogle Scholar
  10. 10.
    Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV (2010) Chem Rev 110:389–458CrossRefGoogle Scholar
  11. 11.
    Kamat PV, Tvrdy K, Baker DR, Radich JG (2010) Chem Rev 110:6664–6688CrossRefGoogle Scholar
  12. 12.
    de Mello Donegá C (2011) Chem Soc Rev 40:1512–1546CrossRefGoogle Scholar
  13. 13.
    Doane TL, Burda C (2012) Chem Soc Rev 41:2885–2911CrossRefGoogle Scholar
  14. 14.
    Amelia M, Lincheneau C, Silvi S, Credi A (2012) Chem Soc Rev 41:5728–5743CrossRefGoogle Scholar
  15. 15.
    Shirasaki Y, Supran GJ, Bawendi MG, Bulović V (2013) Nat Photon 7:13–23CrossRefGoogle Scholar
  16. 16.
    Fernée MJ, Tamarat P, Lounis B (2014) Chem Soc Rev 43:1311–1337CrossRefGoogle Scholar
  17. 17.
    Schmid G (2004) Nanoparticles: from theory to applications. Wiley, WeinheimGoogle Scholar
  18. 18.
    Klimov VI (2005) Semiconductor and metal nanocrystals. Dekker, New YorkGoogle Scholar
  19. 19.
    Rogach AL (2008) Semiconductor nanocrystal quantum dots. Springer, ViennaCrossRefGoogle Scholar
  20. 20.
    Callan JF, Raymo FM (2013) Quantum dot sensors: technology and commercial applications. Pan Stanford Publishing, SingaporeCrossRefGoogle Scholar
  21. 21.
    Yin Y, Alivisatos AP (2005) Nature 437:664–670CrossRefGoogle Scholar
  22. 22.
    de Mello Donegá C, Liljeroth P, Vanmaekelbergh D (2005) Small 1:1152–1162CrossRefGoogle Scholar
  23. 23.
    Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Angew Chem Int Ed 46:4630–4660CrossRefGoogle Scholar
  24. 24.
    Das A, Snee PT (2016) ChemPhysChem 17:598–617CrossRefGoogle Scholar
  25. 25.
    Green M (2010) J Mater Chem 20:5797–5809CrossRefGoogle Scholar
  26. 26.
    Morris-Cohen AJ, Malicki M, Peterson MD, Slavin JWJ, Weiss EA (2013) Chem Mater 25:1155–1165CrossRefGoogle Scholar
  27. 27.
    Boles MA, Ling D, Hyeon T, Talapin DV (2016) Nat Mater 15:141–153CrossRefGoogle Scholar
  28. 28.
    Credi A (2012) New J Chem 26:1925–1930CrossRefGoogle Scholar
  29. 29.
    de Silva AP, Gunaratne HQN, GunnlaugssonT Huxley NAJM, McCoy CP, Rademacher JT, Rice TE (1997) Chem Rev 97:1515–1566CrossRefGoogle Scholar
  30. 30.
    Hildebrandt N (2011) ACS Nano 5:5286–5290CrossRefGoogle Scholar
  31. 31.
    Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Science 300:1434–1436CrossRefGoogle Scholar
  32. 32.
    Somers RC, Bawendi MG, Nocera DG (2007) Chem Soc Rev 3:579–591CrossRefGoogle Scholar
  33. 33.
    Raymo FM, Yildiz I (2007) Phys Chem Chem Phys 9:2036–2042CrossRefGoogle Scholar
  34. 34.
    Freeman R, Willner I (2012) Chem Soc Rev 41:4067–4085CrossRefGoogle Scholar
  35. 35.
    Petryayeva E, Algar WR, Medintz IL (2013) Appl Spectr 67:215–252CrossRefGoogle Scholar
  36. 36.
    Tyrakowski CM, Snee PT (2014) Phys Chem Chem Phys 16:837–855CrossRefGoogle Scholar
  37. 37.
    Silvi S, Credi A (2015) Chem Soc Rev 44:4275–4289CrossRefGoogle Scholar
  38. 38.
    Chen Y, Rosenzweig Z (2002) Anal Chem 74:5132–5138CrossRefGoogle Scholar
  39. 39.
    Norris DJ, Efros AL, Rosen M, Bawendi MG (1996) Phys Rev B 53:16347–16354CrossRefGoogle Scholar
  40. 40.
    Reiss P, Protière M, Li L (2009) Small 5:154–168CrossRefGoogle Scholar
  41. 41.
    Chaudhuri RG, Paria S (2012) Chem Rev 112:2373–2433CrossRefGoogle Scholar
  42. 42.
    Kim S, Fisher B, Eisler HJ, Bawendi M (2003) J Am Chem Soc 125:11466–11467CrossRefGoogle Scholar
  43. 43.
    Talapin D, Koeppe R, Gotzinger S, Kornowski A, Lupton J, Rogach A, Benson O, Feldmann J, Weller H (2003) Nano Lett 3:1677–1681CrossRefGoogle Scholar
  44. 44.
    Rabouw FT, de Mello Donega C. Top Curr Chem (in press)Google Scholar
  45. 45.
    Palui G, Aldeek F, Wang W, Mattoussi H (2015) Chem Soc Rev 44:193–227CrossRefGoogle Scholar
  46. 46.
    Lesnyak V, Gaponik N, Eychmüller A (2013) Chem Soc Rev 42:2905–2929CrossRefGoogle Scholar
  47. 47.
    Ulusoy M, Jonczyk R, Walter JG, Springer S, Lavrentieva A, Stahl F, Green M, Scheper T (2016) Bioconjugate Chem 27:414–426CrossRefGoogle Scholar
  48. 48.
    Wang F, Tang R, Kao JLF, Dingman SD, Buhro WE (2009) J Am Chem Soc 131:4983–4994CrossRefGoogle Scholar
  49. 49.
    Green MLH (1995) J Organomet Chem 500:127–148CrossRefGoogle Scholar
  50. 50.
    Anderson NC, Hendricks MP, Choi JJ, Owen JS (2013) J Am Chem Soc 135:18536–18548CrossRefGoogle Scholar
  51. 51.
    Owen J (2015) Science 347:615–616CrossRefGoogle Scholar
  52. 52.
    Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Nat Mater 4:435–446CrossRefGoogle Scholar
  53. 53.
    Erathodiyil N, Ying JY (2011) Acc Chem Res 44:925–935CrossRefGoogle Scholar
  54. 54.
    Liu W, Howarth M, Greytak AB, Zheng Y, Nocera DG, Ting AY, Bawendi MG (2008) J Am Chem Soc 130:1274–1284CrossRefGoogle Scholar
  55. 55.
    Yildiz I, Deniz E, McCaughan B, Cruickshank SF, Callan JF, Raymo FM (2010) Langmuir 26:11503–11511CrossRefGoogle Scholar
  56. 56.
    Avellini T, Lincheneau C, La Rosa M, Pertegas A, Bolink HJ, Wright IA, Constable EC, Silvi S, Credi A (2014) Chem Commun 50:11020–11022CrossRefGoogle Scholar
  57. 57.
    Palui G, Avellini T, Zhan N, Pan F, Gray D, Alabugin I, Mattoussi H (2012) J Am Chem Soc 134:16370–16378CrossRefGoogle Scholar
  58. 58.
    Baly B, Ling J, de Silva AP (2015) Chem Soc Rev 44:4203–4211CrossRefGoogle Scholar
  59. 59.
    Yildiz I, Tomasulo M, Raymo FM (2008) J Mater Chem 18:5577–5584CrossRefGoogle Scholar
  60. 60.
    Medintz IL, Mattoussi H (2009) Phys Chem Chem Phys 11:17–45CrossRefGoogle Scholar
  61. 61.
    Avellini T, Lincheneau C, Vera F, Silvi S, Credi A (2014) Coord Chem Rev 263–264:151CrossRefGoogle Scholar
  62. 62.
    Credi A (2014) Chem Soc Rev 43:3995–4270 (themed issue on photochemistry of supramolecular systems and nanostructured assemblies) CrossRefGoogle Scholar
  63. 63.
    Balzani V, Credi A, Venturi M (2008) Molecular devices and machines—concepts and perspective for the nano world. Wiley, WeinheimCrossRefGoogle Scholar
  64. 64.
    Zhu H, Song N, Lian T (2010) J Am Chem Soc 132:15038–15045CrossRefGoogle Scholar
  65. 65.
    Kaledin AL, Lian T, Hill CL, Musaev DG (2015) J Phys Chem B 119:7651–7658CrossRefGoogle Scholar
  66. 66.
    Zeng P, Kirkwood N, Mulvaney P, Boldt K, Smith TA (2016) Nanoscale 8:10380–10387CrossRefGoogle Scholar
  67. 67.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New YorkCrossRefGoogle Scholar
  68. 68.
    Clapp AR, Medintz IL, Mattoussi H (2006) ChemPhysChem 7:47–57CrossRefGoogle Scholar
  69. 69.
    Aldeek F, Ji X, Mattoussi H (2013) J Phys Chem C 117:15429–15437CrossRefGoogle Scholar
  70. 70.
    Völker J, Zhou X, Ma X, Flessau S, Lin H, Schmittel M, Mews A (2010) Angew Chem Int Ed 49:6865–6868CrossRefGoogle Scholar
  71. 71.
    Han C, Cui Z, Zou Z, Tian SD, Li H (2010) Photochem Photobiol Sci 9:1269–1273CrossRefGoogle Scholar
  72. 72.
    Ruedas-Rama MJ, Orte A, Hall EAH, Alvarez-Pez JM, Talavera EM (2012) Analyst 137:1500–1508CrossRefGoogle Scholar
  73. 73.
    Huber C, Klimant I, Krause C, Werner T, Mayr T, Wolfbeis OS (2000) Fresenius J Anal Chem 368:196–202CrossRefGoogle Scholar
  74. 74.
    Huber C, Krause C, Werner T, Wolfbeis OS (2003) Microchim Acta 142:245–253CrossRefGoogle Scholar
  75. 75.
    Medintz L, Stewart MH, Trammell SA, Susumu K, Delehanty JB, Mei BC, Melinger JS, Blanco-Canosa JB, Dawson PE, Mattoussi H (2010) Nat Mater 9:676–684CrossRefGoogle Scholar
  76. 76.
    Laviron E (1984) J Electroanal Chem 164:213–227CrossRefGoogle Scholar
  77. 77.
    Wraight CA (2004) Front Biosci 9:309–337CrossRefGoogle Scholar
  78. 78.
    Clapp AR, Medinitz L, Fisher BR, Anderson GP, Mattoussi H (2005) J Am Chem Soc 127:1242–1250CrossRefGoogle Scholar
  79. 79.
    Snee PT, Somers RC, Nair G, Zimmer JP, Bawendi MG, Nocera DG (2006) J Am Chem Soc 128:13320–13321CrossRefGoogle Scholar
  80. 80.
    Tang R, Lee H, Achilefu S (2012) J Am Chem Soc 134:4545–4548CrossRefGoogle Scholar
  81. 81.
    Geissler D, Charbonnière LJ, Ziessel RF, Butlin NG, Löhmansröben H-G, Hildebrandt N (2010) Angew Chem Int Ed 49:1396–1401CrossRefGoogle Scholar
  82. 82.
    Lemon CM, Karnas E, Bawendi MG, Nocera DG (2013) Inorg Chem 52:10394–10406CrossRefGoogle Scholar
  83. 83.
    Mongin C, Garakyaraghi S, Razgoniaeva N, Zamkov M, Castellano FN (2016) Science 351:369–372CrossRefGoogle Scholar
  84. 84.
    Scholes GD (2014) Adv Funct Mater 13:1039–1043Google Scholar
  85. 85.
    Amelia M, Lavie-Cambot A, McClenaghan ND, Credi A (2011) Chem Commun 47:325–327CrossRefGoogle Scholar
  86. 86.
    Bottril M, Green M (2011) Chem Commun 47:7039–7050CrossRefGoogle Scholar
  87. 87.
    Ye L, Yong KT, Liu L, Roy I, Hu R, Zhu J, Cai H, Law WC, Liu J, Wang K, Liu J, Liu Y, Hu Y, Zhang X, Swihart MT, Prasad PN (2012) Nat Nanotech 7:453–458CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Dipartimento di Chimica “G. Ciamician”Università di BolognaBolognaItaly
  2. 2.Dipartimento di Scienze e Tecnologie Agro-alimentariUniversità di BolognaBolognaItaly

Personalised recommendations