Skip to main content

Advertisement

Log in

Radiation Grafting for the Functionalization and Development of Smart Polymeric Materials

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Gamma radiation has been shown particularly useful for the functionalization of surfaces with stimuli-responsive polymers. This method involves the formation of active sites (free radicals) onto the polymeric backbone as a result of the high-energy radiation exposition over the polymeric material. Thus, a microenvironment suitable for the reaction among monomer and/or polymer and the active sites is formed and then leading to propagation to form side-chain grafts. The modification of polymers using high-energy irradiation can be performed by the following methods: direct or simultaneous, pre-irradiation oxidative, and pre-irradiation. The most frequently used ones correspond to the pre-irradiation oxidative method as well as the direct one. Radiation-grafting has many advantages over other conventional methods because it does not require the use of catalyst nor additives to initiate the reaction and usually no changes on the mechanical properties with respect to the pristine polymeric matrix are observed. This chapter is focused on the synthesis of smart polymers and coatings obtained by the use of gamma radiation. In addition, the diverse applications of these materials in the biomedical area are also reported, with focus in drug delivery, sutures, and biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mulder K, Knot M (2001) A history of systems development and entrenchment. Technol Soc 23:265–286. doi:10.1016/S0160-791X(01)00013-6

    Article  Google Scholar 

  2. Odian G (2004) Principles of polymerization, 4th edn. Wiley, New Jersey. ISBN 0-471-27400-3

    Book  Google Scholar 

  3. Bhattacharya A, Misra BN (2004) Grafting: a versatile means to modify polymers: techniques, factors and applications. Prog Polym Sci 29:767–814. doi:10.1016/j.progpolymsci.2004.05.002

    Article  CAS  Google Scholar 

  4. Bucio E, Burillo G (2009) Radiation-induced grafting of sensitive polymers. J Radioanal Nucl Chem 280:239–243. doi:10.1007/s10967-009-0505-9

    Article  CAS  Google Scholar 

  5. Chapiro A (1962) Radiation chemistry of polymeric systems. Interscience Publishers, New York

    Google Scholar 

  6. Hadjichristidis N, Pispas S, Pitsikalis M, Iatrou H, Lohse DJ (2002) Encyclopedia of polymer science and technology. Graft Copolymers chapter. Wiley, New York. doi:10.1002/0471440264.pst150

    Google Scholar 

  7. Stevens M (1999) Polymer chemistry. An Introduction, 3rd edn. Oxford University Press, New York. ISBN 0-19-512444-8

    Google Scholar 

  8. Zdyrko B, Luzinov I (2011) Polymer brushes by the ‘‘grafting to’’ method. Macromol Rapid Commun 32:859–869. doi:10.1002/marc.201100162

    Article  CAS  Google Scholar 

  9. Berger S, Synytska A, Ionov L, Eichhorn KJ, Stamm M (2008) Stimuli-responsive bicomponent polymer Janus particles by “grafting from”/“grafting to” approaches. Macromolecules 41:9669–9676. doi:10.1021/ma802089h

    Article  CAS  Google Scholar 

  10. El-Sayed AH, Ishigaki I, Okamoto J (1981) Radiation grafting of acrylic acid onto fluorine-containing polymers. I. Kinetic study of preirradiation grafting onto poly(tetrafluoroethylene). J Appl Polym Sci 26:3117–3124. doi:10.1002/pol.1984.170220309

    Article  Google Scholar 

  11. Fijiki K, Tsubokawa N, Sone Y (1990) Radical grafting from carbon black. Graft copolymerization of vinyl monomers initiated by azo groups introduced onto carbon black surface. Polym J 22:661–670. doi:10.1295/polymj.22.661

    Article  Google Scholar 

  12. Kato K, Uchida E, Kang E-T, Uyama Y, Ikada Y (2003) Polymer surface with graft chains. Prog Polym Sci 28:209–259. doi:10.1016/S0079-6700(02)00032-1

    Article  CAS  Google Scholar 

  13. Chapiro A (1964) Radiation chemistry of polymers, basic mechanisms in the radiation chemistry of aqueous media. Radiat Res Suppl. 4:179–191

    Article  Google Scholar 

  14. Ramírez-Fuentes YS, Bucio E, Burillo G (2007) Radiation-induced grafting of N-isopropylacrylamide and acrylic acid onto polypropylene films by two step method. Nucl Instrum Methods B 265:183–186. doi:10.1016/j.nimb.2007.08.046

    Article  CAS  Google Scholar 

  15. Hanh TT, Huy HT, Hien NQ (2015) Pre-irradiation grafting of acrylonitrile onto chitin for adsorption of arsenic in water. Radiat Phys Chem 106:235–241. doi:10.1016/j.radphyschem.2014.08.004

    Article  CAS  Google Scholar 

  16. Tsoulfanidis N (1995) Measurement and detection of radiation, 2nd edn. Taylor & Francis, Missouri. ISBN 1-56032-317-5

    Google Scholar 

  17. Leroy C, Rancoita P-G (2009) Principles or radiation interaction in matter and detection, 2nd edn. World Scientific Publishing, Massachusetts. ISBN 9789812818270

    Book  Google Scholar 

  18. Kimura Y, Chen J, Asano M, Maekawa Y, Katakai R, Yoshida M (2007) Nucl Instrum Methods B 263:463–467. doi:10.1016/j.nimb.2007.07.010

    Article  CAS  Google Scholar 

  19. Mandal DK, Bhunia H, Bajpai PK, Chaudharib CV, Dubeyb KA, Varshney L (2016) Radiation-induced grafting of acrylic acid onto polypropylene film and its biodegradability. Radiat Phys Chem 123:37–45. doi:10.1016/j.radphyschem.2016.02.011

    Article  CAS  Google Scholar 

  20. Nasef MM, Güven O (2012) Radiation-grafted copolymers for separation and purification purposes: status, challenges and future directions. Prog Polym Sci 37:1597–1656. doi:10.1016/j.progpolymsci.2012.07.004

    Article  CAS  Google Scholar 

  21. Alvarez-Lorenzo C, Bucio E, Burillo G, Concheiro A (2010) Medical devices modified at the surface by Gamma-ray grafting for drug loading and delivery. Expert Opin Drug Deliv 7:173–185. doi:10.1517/17425240903483174

    Article  CAS  Google Scholar 

  22. Dennis GR, Garnett JL, Zilic E (2003) Cure grafting—a complementary technique to preirradiation and simultaneous processes? Radiat Phys Chem 67:391–395. doi:10.1016/S0969-806X(03)00073-2

    Article  CAS  Google Scholar 

  23. Desmet G, Takács E, Wojnárovits L, Borsa J (2011) Cellulose functionalization via high-energy irradiation-initiated grafting of glycidyl methacrylate and cyclodextrin immobilization. Radiat Phys Chem 80:1358–1362. doi:10.1016/j.radphyschem.2011.07.009

    Article  CAS  Google Scholar 

  24. Magaña H, Palomino K, Cornejo-Bravo JM, Alvarez- Lorenzo C, Concheiro A, Bucio E (2015) Radiation-grafting of acrylamide onto silicone rubber films for diclofenac delivery. Radiat Phys Chem 107:164–170. doi:10.1016/j.radphyschem.2014.10.011

    Article  CAS  Google Scholar 

  25. Gupta B, Jain R, Anjum N, Singh H (2006) Preirradiation grafting of acrylonitrile onto polypropylene monofilament for biomedical applications: I. Influence of synthesis conditions. Radiat Phys Chem 75:161–167. doi:10.1016/j.radphyschem.2005.04.003

    Article  CAS  Google Scholar 

  26. Meléndez-Ortiz HI, Varca GHC, Lugão AB, Bucio E (2015) Smart polymers and coatings obtained by ionizing radiation: synthesis and biomedical applications. OJP Chem 5:17–33. doi:10.4236/ojpchem.2015.53003

    Google Scholar 

  27. Hoffman AS, Stayton PS, Bulmus V, Chen G, Chen J, Cheung C (2000) Really smart bioconjugates of smart polymers and receptor proteins. J Biomed Mater Res 52:577–586. doi:10.1002/1097-4636(20001215)

    Article  CAS  Google Scholar 

  28. Klier J, Scranton AB, Peppas NA (1990) Self-associating networks of poly(methacrylic acid-g-ethylene glycol). Macromolecules 23:4944–4949. doi:10.1021/ma00225a011

    Article  CAS  Google Scholar 

  29. Osada Y (1987) Conversion of chemical into mechanical energy by synthetic polymers (chemomechanical systems). Adv Polym Sci 82:1–46. doi:10.1007/BFb0024041

    Article  CAS  Google Scholar 

  30. Richardson MJ (1989) Thermal analysis. In: Allen G, Bevington JC (eds) Comprehensive polymer science and supplements. Pergamon, Amsterdam, pp 867–901. doi:10.1016/B978-0-08-096701-1.00036-7

    Chapter  Google Scholar 

  31. Li Z, Tang M, Dai J, Wang T, Bai R (2016) Effect of multiwalled carbon nanotube-grafted polymer brushes on the mechanical and swelling properties of polyacrylamide composite hydrogels. Polymer 85:67–76. doi:10.1016/j.polymer.2016.01.025

    Article  CAS  Google Scholar 

  32. Meléndez-Ortiz HI, Bucio E, Isoshima T, Hara M (2010) Surface characterization of binary graft copolymers (PP-g-DMAEMA)-g-NIPAAm and (PP-g-4VP)-g-NIPAAm by using SEM and AFM. Smart Coat Book Ref Am Chem Soc Publ 1050:107–120. doi:10.1021/bk-2010-1050.ch008

    Google Scholar 

  33. Wu F, Zhang S, Chen Z, Zhang B, Yang W, Liu Z, Yang M (2016) Interfacial relaxation mechanisms in polymer nanocomposites through the rheological study on polymer/grafted nanoparticles. Polymer 90:264–275. doi:10.1016/j.polymer.2016.03.034

    Article  CAS  Google Scholar 

  34. Percot A, Zhu XX, Lafleur M (2000) A simple FTIR spectroscopic method for the determination of the lower critical solution temperature of N-isopropylacrylamide copolymers and related hydrogels. J Polym Sci Part B: Polym Phys 38:907–915. doi:10.1002/(SICI)1099-0488(20000401)38:7<907:AID-POLB1>3.0.CO;2-5

    Article  CAS  Google Scholar 

  35. Kwan S, Marić M (2016) Thermoresponsive polymers with tunable cloud point temperatures grafted from chitosan via nitroxide mediated polymerization. Polymer 86:69–82. doi:10.1016/j.polymer.2016.01.039

    Article  CAS  Google Scholar 

  36. Mutalik S, Suthar NA, Managuli RS, Shetty PK, Avadhani K, Kalthur G, Kulkarni RV, Thomas R (2016) Development and performance evaluation of novel nanoparticles of a grafted copolymer loaded with curcumin. Int J Biol Macromol 86:709–720. doi:10.1016/j.ijbiomac.2015.11.092

    Article  CAS  Google Scholar 

  37. Wyart Y, Georges G, Deumié C, Amra C, Moulin P (2008) Membrane characterization by optical methods: ellipsometry of the scattered field. J Membr Sci 318:145–153. doi:10.1016/j.memsci.2008.02.039

    Article  CAS  Google Scholar 

  38. Wu Q, Wu B (1995) Study of membrane morphology by image analysis of electron micrographs. J Membr Sci 105:113–120. doi:10.1016/0376-7388(95)00055-H

    Article  CAS  Google Scholar 

  39. Rieger J (2001) The glass transition temperature Tg of polymers—comparison of the values from differential thermal analysis (DTA, DSC) and dynamic mechanical measurements (torsion pendulum). Polym Test 20:199–204. doi:10.1016/S0142-9418(00)00023-4

    Article  CAS  Google Scholar 

  40. Gu H, Wang C, Gong S, Mei Y, Li H, Ma W (2016) Investigation on contact angle measurement methods and wettability transition of porous surfaces. Surf Coat Technol 292:72–77. doi:10.1016/j.surfcoat.2016.03.014

    Article  CAS  Google Scholar 

  41. Letellier P, Mayaffre A, Turmine M (2007) Drop size effect on contact angle explained by nonextensive thermodynamics. Young’s equation revisited. J Colloid Interface Sci 314:604–614. doi:10.1016/j.jcis.2007.05.085

    Article  CAS  Google Scholar 

  42. Kalia S, Sabaa MW (2013) Polysaccharide based graft copolymers. Springer, Berlin, Heidelberg. doi:10.1007/978-3-642-36566-9_2

    Book  Google Scholar 

  43. Ferraz CC, Varca GHC, Ruiz JC, Lopes PS, Mathor MB, Lugão AB, Bucio E (2014) Radiation-grafting of thermo- and pH-responsive poly(N-vinylcaprolactam-co-acrylic acid) onto silicone rubber and polypropylene films for biomedical purposes. Radiat Phys Chem 97:298–303. doi:10.1016/j.radphyschem.2013.12.027

    Article  CAS  Google Scholar 

  44. Pathania D, Sharma R (2012) Synthesis and characterization of graft copolymers of methacrylic acid onto gelatinized potato starch using chromic acid initiator in presence of air. Adv Mater Lett 3:136–142. doi:10.5185/amlett.2011.829

    Article  CAS  Google Scholar 

  45. Zhang J, Peppas NA (2000) Synthesis and characterization of pH- and temperature-sensitive poly (methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules 33:102–107. doi:10.1021/ma991398q

    Article  CAS  Google Scholar 

  46. Tsukasa S, Kazutaka K, Takaki S, Tomoo S (1998) UCST and LCST behavior in polymer blends containing poly (methyl methacrylate-stat-styrene). Polymer 39:773–780. doi:10.1016/S0032-3861(97)00339-X

    Article  Google Scholar 

  47. Bucio E, Burillo G (2007) Radiation grafting of pH and thermosensitive N-isopropylacrylamide and acrylic acid onto PTFE films by two-steps process. Radiat Phys Chem 76:1724–1727. doi:10.1016/j.radphyschem.2007.02.109

    Article  CAS  Google Scholar 

  48. Hoffman AS (2013) Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv Drug Deliv Rev 65:10–16. doi:10.1016/j.addr.2012.11.004

    Article  CAS  Google Scholar 

  49. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360. doi:10.1002/adma.200501612

    Article  CAS  Google Scholar 

  50. Zhou L, Yuan W, Yuan J, Hong X (2008) Preparation of double-responsive SiO2-g-DMAEMA nanoparticles via ATRP. Mater Lett 62:1372–1375. doi:10.1016/j.matlet.2007.08.057

    Article  CAS  Google Scholar 

  51. Bignotti F, Penco M, Sartore L, Peroni I, Mendichi R, Casolaro M, D’Amore A (2000) Synthesis, characterization and solution behavior of thermo- and pH-responsive polymers bearing l-leucine residues in the side chains. Polymer 41:8247–8256. doi:10.1016/S0032-3861(00)00177-4

    Article  CAS  Google Scholar 

  52. Burillo G, Bucio E, Arenas E, Lopez GP (2007) Temperature and pH sensitive swelling behavior of binary DMAEMA/4VP grafts on polypropylene films. Macromol Mater Eng 292:214–219. doi:10.1002/mame.200600394

    Article  CAS  Google Scholar 

  53. Bucio E, Burillo G, Adem E, Coqueret X (2005) Temperature sensitive behavior of poly(N-isopropylacrylamide) grafted onto EB-irradiated polypropylene. Macromol Mater Eng 290:745–752. doi:10.1002/mame.200500074

    Article  CAS  Google Scholar 

  54. Adem E, Avalos-Borja M, Bucio E, Burillo G, Castellon FF, Cota L (2005) Surface characterization of binary grafting of AAc/NIPAAm onto poly(tetrafluoroethylene) (PTFE). Nucl Instrum Methods B 234:471–476. doi:10.1016/j.nimb.2005.02.009

    Article  CAS  Google Scholar 

  55. Yan L, Zhu Q, Kenkare PU (2000) Lower critical solution temperature of linear PNIPA obtained from a Yukawa potential of polymer chains. J Appl Polym Sci 78:1971–1976. doi:10.1002/1097-4628(20001209)78:11<1971:AID-APP170>3.0.CO;2-P

    Article  CAS  Google Scholar 

  56. Feil H, Bae YH, Feijen J, Kim SW (1993) Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules 26:2496–2500. doi:10.1021/ma00062a016

    Article  CAS  Google Scholar 

  57. Heskins M, Guillet JE (1969) Solution properties of poly(N-isopropylacrylamide). J Macromol Sci Chem 2:1441–1455. doi:10.1007/s00396-012-2694-y

    Article  Google Scholar 

  58. Grinberg VY, Dubovik AS, Kuznetsov DV, Grinberg NV, Grosberg AY, Tanaka T (2000) Studies of the thermal volume transition of poly(N-isopropylacrylamide) hydrogels by high-sensitivity differential scanning microcalorimetry. 2. Thermodynamic functions. Macromolecules 33:8685–8692. doi:10.1021/ma000527w

    Article  CAS  Google Scholar 

  59. Gil ES, Hudson SM (2004) Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci 29:1173–1222. doi:10.1016/j.progpolymsci.2004.08.003

    Article  CAS  Google Scholar 

  60. Siegel RA (1993) Hydrophobic weak polyelectrolyte gels: studies of swelling equilibria and kinetics. Adv Polym Sci 109:233–267. doi:10.1007/3-540-56791-7_6

    Article  CAS  Google Scholar 

  61. Tonge SR, Tighe BJ (2001) Responsive hydrophobically associating polymers: a review of structure and properties. Adv Drug Deliv Rev 53:109–122. doi:10.1016/S0169-409X(01)00223-X

    Article  CAS  Google Scholar 

  62. Stubbs M, McSheehy PMJ, Griffiths JR (1999) Causes and consequences of acidic pH in tumors: a magnetic resonance study. Adv Enzyme Regul 39:13–30. doi:10.1016/S0065-2571(98)00018-1

    Article  CAS  Google Scholar 

  63. Bhattacharya A (2000) Radiation and industrial polymers. Prog Polym Sci 25:371–401. doi:10.1016/S0079-6700(00)00009-5

    Article  CAS  Google Scholar 

  64. Ward MA, Georgiou TK (2011) Thermoresponsive polymers for biomedical application. Polymers 3:1215–1242. doi:10.3390/polym3031215

    Article  CAS  Google Scholar 

  65. Yager KG, Barrett CJ (2008) Azobenzene polymers for photonic applications. Wiley, Hoboken. doi:10.1002/9780470439098.ch1

    Google Scholar 

  66. Andrade A, Ferreira R, Fabris J, Domingues R (2011) Coating nanomagnetic particles for biomedical applications. In: Fazel-Rezai R (ed) Biomedical engineering—frontiers and challenges. InTech, Rijeka. doi:10.5772/19519

    Google Scholar 

  67. Contreras-García A, Alvarez-Lorenzo C, Taboada C, Concheiro A, Bucio E (2011) Stimuli-responsive networks grafted onto polypropylene for the sustained delivery of NSAIDs. Acta Biomater 7:996–1008. doi:10.1016/j.actbio.2010.10.001

    Article  CAS  Google Scholar 

  68. Gagliardi M (2012) In vitro haematic proteins adsorption and cytocompatibility study on acrylic copolymer to realize coatings for drug-eluting stents. Mater Sci Eng C 32:2445–2451. doi:10.1016/j.msec.2012.07.020

    Article  CAS  Google Scholar 

  69. Li X, Li P, Saravanan R, Basu A, Mishra B, Lim SH, Su X, Tambyah PA, Leong SS (2014) Antimicrobial functionalization of silicone surfaces with engineered short peptides having broad spectrum antimicrobial and salt-resistant properties. Acta Biomater 10:258–266. doi:10.1016/j.actbio.2013.09.009

    Article  CAS  Google Scholar 

  70. Costa F, Carvalho IF, Montelaro RC, Gomes P, Martins MCL (2011) Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater 7:1431–1440. doi:10.1016/j.actbio.2010.11.005

    Article  CAS  Google Scholar 

  71. Kho K, Cheow WS, Lie RH, Hadinoto K (2010) Aqueous re-dispersibility of spray-dried antibiotic-loaded polycaprolactone nanoparticle aggregates for inhaled antibiofilm therapy. Powder Technol 203:432–439. doi:10.1016/j.powtec.2010.06.003

    Article  CAS  Google Scholar 

  72. Adal KA, Farr BM (1996) Central venous catheter-related infections: a review. Nutrition 12:208–213. doi:10.1016/S0899-9007(96)91126-0

    Article  CAS  Google Scholar 

  73. Ma Z, Mao Z, Gao C (2007) Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf B 60:137–157. doi:10.1016/j.colsurfb.2007.06.019

    Article  CAS  Google Scholar 

  74. Takashima K, Shimomura R, Kitou T, Terada H, Yoshinaka K, Ikeuchi K (2007) Contact and friction between catheter and blood vessel. Tribol Int 40:319–328. doi:10.1016/j.colsurfb.2007.06.019

    Article  CAS  Google Scholar 

  75. Oehr C (2003) Plasma surface modification of polymers for biomedical use. Nucl Instrum Methods B 208:40–47. doi:10.1016/S0168-583X(03)00650-5

    Article  CAS  Google Scholar 

  76. Bilek MMM (2014) Biofunctionalization of surfaces by energetic ion implantation: review of progress on applications in implantable biomedical devices and antibody microarrays. Appl Surf Sci 310:3–10. doi:10.1016/j.apsusc.2014.03.097

    Article  CAS  Google Scholar 

  77. Fadeeva E, Truong VK, Stiesch M, Chichkov BN, Crawford RJ, Wang J, Ivanova EP (2011) Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation. Langmuir 27:3012–3019. doi:10.1021/la104607g

    Article  CAS  Google Scholar 

  78. Melendez-Ortiz HI, Díaz-Rodríguez P, Alvarez-Lorenzo C, Concheiro A, Bucio E (2014) Binary graft modification of polypropylene for anti-inflammatory drug-device combo products. J Pharm Sci 103:1269–1277. doi:10.1021/la104607g

    Article  CAS  Google Scholar 

  79. Buddy D (1995) Polymers: chemical, biological and surface analytical challenges. Biosens Bioelectron 10:797–804. doi:10.1016/0956-5663(95)99218-A

    Article  Google Scholar 

  80. Nowatzki PJ, Koepsel RR, Stoodley P, Min K, Harper A, Murata H, Donfack J, Hortelano ER, Ehrlich GD, Russell AJ (2012) Salicylic acid-releasing polyurethane acrylate polymers as anti-biofilm urological catheter coatings. Acta Biomater 8:1869–1880. doi:10.1016/j.actbio.2012.01.032

    Article  CAS  Google Scholar 

  81. Aguilar MR, San Román J (2014) Introduction to smart polymers and their applications. Smart Polym Appl. doi:10.1533/9780857097026.1 (chapter 1)

    Google Scholar 

  82. Primo GA, Alvarez-Igarzabal CI, Pino GA, Ferrero JC, Rossa M (2016) Surface morphological modification of crosslinked hydrophilic co-polymers by nanosecond pulsed laser irradiation. Appl Surf Sci 369:422–429. doi:10.1016/j.apsusc.2016.02.047

    Article  CAS  Google Scholar 

  83. Kingshott P, Wei J, Bagge-Ravn D, Gadegaard N, Gram L (2003) Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion. Langmuir 19:6912. doi:10.1021/la034032m

    Article  CAS  Google Scholar 

  84. Desai NP, Hossainy SFA, Hubell JA (1992) Surface-immobilized polyethylene oxide for bacterial repellence. Biomaterials 13:417–420. doi:10.1016/0142-9612(92)90160-P

    Article  CAS  Google Scholar 

  85. Kohnen W, Jansen B, Ruiten D, Steinhauser H (1994) Novel antiinfective biomaterials by polymer modification. In: Gebelein CG, Carraher CE (eds) Biotechnology and Bioactive Polymers. Springer US, Boston, MA, pp 317–325. doi:10.1007/978-1-4757-9519-6_31

  86. Moore LE, Ledder RG, Gilbert P, McBain AJ (2008) In vitro study of the effect of cationic biocides on bacterial population dynamics and susceptibility. Appl Environ Microbiol. doi:10.1128/AEM.00573-08

    Google Scholar 

  87. Murata H, Koepsel RR, Matyjaszewski K, Russell AJ (2007) Permanent non-leaching antibacterial surfaces-2: how high density cationics surfaces kill bacterial cells. Biomaterials 28:4870–4879. doi:10.1016/j.biomaterials.2007.06.012

    Article  CAS  Google Scholar 

  88. Crawford RJ, Webb HK, Truong VK, Hasan J, Ivanova EP (2012) Surface topographical factors influencing bacterial attachment. Adv Colloid Interface Sci 179–182:142–149. doi:10.1016/j.cis.2012.06.015

    Article  CAS  Google Scholar 

  89. Ma Z, Mao Z, Gao C (2007) Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf B 60:137–157. doi:10.1016/j.colsurfb.2007.06.019

    Article  CAS  Google Scholar 

  90. Seedat N, Kalhapure RS, Mocktar C, Vepuri S, Jadhav M, Soliman M, Govender T (2016) Co-encapsulation of multi-lipids and polymers enhances the performance of vancomycin in lipid–polymer hybrid nanoparticles: in vitro and in silico studies. Mater Sci Eng C 61:616–630. doi:10.1016/j.msec.2015.12.053

    Article  CAS  Google Scholar 

  91. Glinel K, Thebault P, Humblot V, Pradier CM, Jouenne T (2012) Antibacterial surfaces developed from bio-inspired approaches. Acta Biomater 8:1670–1684. doi:10.1016/j.actbio.2012.01.011

    Article  CAS  Google Scholar 

  92. Maki DG, Tambyah PA (2001) Engineering out the risk of infection with urinary catheters. Emerg Infect Dis 7:342–347. doi:10.3201/eid0702.700342

    Article  CAS  Google Scholar 

  93. Hasan J, Crawford RJ, Ivanova EP (2013) Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol 31:295–304. doi:10.1016/j.tibtech.2013.01.017

    Article  CAS  Google Scholar 

  94. Patriciu A, Mazilu D, Bagga HS, Petrisor D, Kavoussi L, Stoianovici D (2007) An evaluation method for the mechanical performance of guide-wires and catheters in accessing the upper urinary tract. Med Eng Phys 29:918–922. doi:10.1016/j.medengphy.2006.09.002

    Article  Google Scholar 

  95. Tanaka N, Bohnenberger S, Kunkelmann T, Munaro B, Ponti J, Poth A, Sabbioni E, Sakai A, Salovaara S, Sasaki K, Thomas BC, Umeda M (2012) Prevalidation study of the BALB/c 3T3 cell transformation assay for assessment of carcinogenic potential of chemicals. Mutat Res/Genet Toxicol Environ Mutagen 744:20–29. doi:10.1016/j.mrgentox.2011.12.008

    Article  CAS  Google Scholar 

  96. Saxena S, Ray AR, Kapil A, Pavon-Djavid G, Letourneur D, Gupta B, Meddahi-Pelle A (2011) Development of a new polypropylene-based suture: plasma grafting, surface treatment, characterization, and biocompatibility studies. Macromol Biosci 11:373–382. doi:10.1002/mabi.201000298

    Article  CAS  Google Scholar 

  97. Pillai CKS, Sharma CP (2010) Review paper: absorbable polymeric surgical sutures: chemistry, production, properties, biodegradability, and performance. J Biomater Appl 25:291–366. doi:10.1177/0885328210384890

    Article  CAS  Google Scholar 

  98. Viju S, Thilagavathi G (2011) Effect of chitosan coating on the characteristics of silk-braided sutures. J Ind Text 42:256–268. doi:10.1177/1528083711435713

    Article  CAS  Google Scholar 

  99. Chu CC, von Fraunhofer JA, Greisler HP (1996) Wound closure biomaterials and devices. CRC Press, Florida

    Google Scholar 

  100. National Institute for Health and Clinical Excellence (2008) Rozzelle and collection. http://www.ncbi.nlm.nih.gov/books/NBK11822/. Accessed April 2016

  101. Li Y, Kumar KN, Dabkowski JM, Corrigan M, Scott RW, Nüsslein K, Tew GN (2012) New bactericidal surgical suture coating. Langmuir 28:12134–12139. doi:10.1021/la302732w

    Article  CAS  Google Scholar 

  102. Gupta B, Jain R, Singh H (2008) Preparation of antimicrobial sutures by preirradiation grafting onto polypropylene monofilament. Polym Adv Technol 19:1698–1703. doi:10.1002/pat.1146

    Article  CAS  Google Scholar 

  103. García-Vargas M, González-Chomón C, Magariños B, Concheiro A, Alvarez-Lorenzo C, Bucio E (2014) Acrylic polymer-grafted polypropylene sutures for covalent immobilization or reversible adsorption of vancomycin. Int J Pharm 461:286–295. doi:10.1016/j.ijpharm.2013.11.060

    Article  CAS  Google Scholar 

  104. Jain R, Gupta B, Anjum N, Revagade N, Singh H (2004) Preparation of antimicrobial sutures by preirradiation grafting of acrylonitrile onto polypropylene monofilament. II. mechanical, physical, and thermal characteristics. J Appl Polym Sci 93:1224–1229. doi:10.1002/app.20543

    Article  CAS  Google Scholar 

  105. Saxena S, Ray AR, Gupta B (2010) Graft polymerization of acrylic acid onto polypropylene monofilament by RF plasma. J Appl Polym Sci 116:2884–2892. doi:10.1002/app.31823

    CAS  Google Scholar 

  106. Gupta B, Jain R, Nishat Anjum N, Singh H (2004) Preparation of antimicrobial sutures by preirradiation grafting of acrylonitrile onto polypropylene monofilament. III. hydrolysis of the grafted suture. J Appl Polym Sci 94:2509–2516. doi:10.1002/app.21211

    Article  CAS  Google Scholar 

  107. Gupta B, Anjum N, Gulrez SKH, Singh H (2007) Development of antimicrobial polypropylene sutures by graft copolymerization. II. Evaluation of physical properties, drug release, and antimicrobial activity. J Appl Polym Sci 103:3534–3538. doi:10.1002/app.24360

    Article  CAS  Google Scholar 

  108. Bronzino J, Peterson D (2008) The biomedical engineering handbook. 3rd Edition. CRC Press Taylor & Francis Group, Boca Raton, Florida. ISBN 9781439825334

  109. Turner APF, Karube I, Wilson GS (1987) Biosensors: fundamentals and applications. Oxford University Press, Oxford. ISBN 0-19-854724-2. doi:10.1016/S0003-2670(00)85361-1

  110. Ponmozhi J, Torres-Marques CF, Frazão O (2012) Smart sensors/actuators for biomedical applications: review. Measurement 45:1675–1688. doi:10.1016/j.measurement.2012.02.006

    Article  Google Scholar 

  111. Razzak M, Darwis D, Zainuddin Sukirno (2001) Irradiation of PVA and PVP blended hydrogel for wound dressing. Radiat Phys Chem 62:107–113. doi:10.1016/S0969-806X(01)00427-3

    Article  CAS  Google Scholar 

  112. Webb RC, Bonifas AP, Behnaz A, Zhang Y, Yu KJ, Cheng H, Shi M, Bian Z, Liu Z, Kim YS, Yeo WH, Park JS, Song J, Li Y, Huang Y, Gorbach AM, Rogers JA (2013) Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater 12:938–944. doi:10.1038/nmat3755

    Article  CAS  Google Scholar 

  113. Kobayashi M, Chang Y, Oka M (2005) In vivo study of PVA hydrogel artificial meniscus. Biomaterials 26(16):3243–3248. doi:10.1016/j.biomaterials.2004.08.028

    Article  CAS  Google Scholar 

  114. Ottenbrite RM, Park K, Okano T (2010) Biomedical applications of hydrogels handbook. Springer, New York. ISBN 978-1-4419-5918-8. doi:10.1007/978-1-4419-5919-5

  115. Carretta N, Tricoli V, Pichionni F (2000) Ionomeric membranes based on partially sulfonated PS: synthesis, proton conduction and methanol permeation. J Membr Sci 166:189–197. doi:10.1016/S0376-7388(99)00258-6

    Article  CAS  Google Scholar 

  116. Ouyang J, Chu C, Chen F, Xu Q, Yang Y (2005) High conductivity poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) film and its application in polymer optoelectronic devices. Adv Funct Mater 15:203–208. doi:10.1002/adfm.200400016

    Article  CAS  Google Scholar 

  117. Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10:2341–2353. doi:10.1016/j.actbio.2014.02.015

    Article  CAS  Google Scholar 

  118. Wang X, Uchiyama S (2013) Polymers for biosensors construction. In: Rinken T (eds) State of the art in biosensors – general aspects. InTech. doi:10.5772/54428 (chapter 3)

  119. Guimard N, Gomez N, Schmidt C (2007) Conduction polymers in biomedical engineering. Prog Polym Sci 32:876–921. doi:10.1016/j.progpolymsci.2007.05.012

    Article  CAS  Google Scholar 

  120. Ramanavicius A, Ramanaviciene A, Malinauskas A (2006) Electrochemical sensors based on conducting polymer-polypyrrole. Electrochim Acta 51:6025–6037. doi:10.1016/j.electacta.2005.11.052

    Article  CAS  Google Scholar 

  121. Vernitskaya TV, Efimov ON (1997) Polypirrole: a conducting polymer; its synthesis, properties and applications. Russ Chem Rev 66(5):443–457. doi:10.1070/RC1997v066n05ABEH000261

    Article  Google Scholar 

  122. Sun Y, Gou G, Yang B, He M, Tian Y, Cheng J, Liu Y (2012) Simple synthesis of polyaniline microtubes for the application on silver microrods preparation. J Mater Res 27(2):457–462. doi:10.1557/jmr.2011.408

    Article  CAS  Google Scholar 

  123. Weerakoon K, Shu J, Park M, Chin B (2012) Polyaniline sensors for Early detection of insect infestation. J Solid State Sci Technol 1:100–105. doi:10.1149/2.014205jss

    Article  CAS  Google Scholar 

  124. Loo Y, Yoo J, Cross J, Bucholz T, Lee K, Espe M (2007) Improving the electrical conductivity of polymer acid-doped polyaniline by controlling the template molecular weight. J Mater Chem 17:1268–1275. doi:10.1039/b618521e

    Article  CAS  Google Scholar 

  125. Tsumura A, Koezuka H, Ando T (1986) Macromolecular electronic device: field-effect transistor with a polythiophene thin film. Appl Phys Lett 49:1210. doi:10.1063/1.97417

    Article  CAS  Google Scholar 

  126. Clark J, Silva C, Friend R, Spano F (2007) Role of intermolecular coupling on the photophysics of disordered organic semiconductors: aggregate emission in regioregular polythiophene. Phys Rev Lett 98:206406. doi:10.1103/PhysRevLett.98.206406

    Article  CAS  Google Scholar 

  127. Muñoz-Muñoz FD, Bucio E (2013) Surface modification and functionalization of polymer materials by gamma irradiation for biomedical applications. Radiat Synth Mater Compd 10:265-301. ISBN:9781466505223

  128. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20:86–100. doi:10.1016/j.smim.2007.11.004

    Article  CAS  Google Scholar 

  129. Fukano Y, Usul ML, Underwood RA, Isenhat S, Marshall AJ, Hauch KD, Ratner BD, Olerud JE, Fleckman P (2010) Epidermal and dermal integration into sphere-templated porous poly(2-hydroxyethyl methacrylate) implants in mice. J Biomed Mater Res 94:1172–1186. doi:10.1002/jbm.a.32798

    CAS  Google Scholar 

  130. Marshall AJ, Ratner BD (2005) Quantitative characterization of sphere-templated porous biomaterials. AICHE 51(4):1221–1232. doi:10.1002/aic.10390

    Article  CAS  Google Scholar 

  131. Kasálková NS, Slepička P, Kolská Z, Hodačová P, Kučková S, Švorčík V (2014) Grafting of bovine serum albumin proteins on plasma-modified polymers for potential application in tissue engineering. Nanoscale Res Lett 9:161. doi:10.1186/1556-276X-9-161

    Article  CAS  Google Scholar 

  132. Halstenberg V, Panitch A, Rizzi S, Hall H, Hubbell JA (2002) Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: a cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules 3(4):710–723. doi:10.1021/bm015629o

    Article  CAS  Google Scholar 

  133. Akiyama Y, Kikuchi A, Yamato M, Okano T (2004) Ultrathin poly(N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control. Langmuir 20(13):5506–5511. doi:10.1021/la036139f

    Article  CAS  Google Scholar 

  134. Hobzova R, Pradny M, Zhunusbekova NM, Sirc J, Guryca V, Michalek J (2011) Bioactive support for cell cultivation and potential grafting. Part 1: surface modification of 2-hydroxyethyl methacrylate hydrogels for avidin immobilization. E Polymers 11(1):474–490. doi:10.1515/epoly.2011.11.1.474

    Article  Google Scholar 

  135. von Recum H, Okano T, Wan Kim S (1998) Growth factor release from thermally reversible tissue culture substrates. J Control Release 55(2–3):121–130. doi:10.1016/s0168-3659(98)00042-x

    Article  Google Scholar 

  136. Bhat RR, Chaney BN, Rowley J, Liebmann-Vinson A, Genzer J (2005) Tailoring cell adhesion using surface-grafted polymer gradient assemblies. Adv Mater 17(23):2802–2807

    Article  CAS  Google Scholar 

  137. Ohya S, Nakayama Y, Matsuda T (2001) Material design for an artificial extracellular matrix: cell entrapment in poly (N-isopropylacrylamide) (PNIPAM)-grafted gelatin hydrogel. J. Artif. Organs 4(4):308–314. doi:10.1007/BF02480023

    Article  CAS  Google Scholar 

  138. Ross AM, Nandivada H, Ryan AL, Lahann J (2012) Synthetic substrates for long-term stem cell culture. Polymer 53(13):2533–2539. doi:10.1016/j.polymer.2012.03.064

    Article  CAS  Google Scholar 

  139. Fonseca KB, Bidarra SJ, Oliveira MJ, Granja PL, Barrias CC (2011) Molecularly designed alginate hydrogels susceptible to local proteolysis as three-dimensional cellular microenvironments. Acta Biomater 7:1674–1682. doi:10.1016/j.actbio.2010.12.029

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank M. L. Escamilla, A. A. Ramírez, M. Cruz, and B. Leal from ICN-UNAM for their technical assistance. This work was supported by DGAPA-UNAM Grant IN200714.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alejandro Ramos-Ballesteros or Emilio Bucio.

Additional information

This article is part of the Topical Collection “Applications of Radiation Chemistry”; edited by Margherita Venturi, Mila D’Angelantonio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pino-Ramos, V.H., Ramos-Ballesteros, A., López-Saucedo, F. et al. Radiation Grafting for the Functionalization and Development of Smart Polymeric Materials. Top Curr Chem (Z) 374, 63 (2016). https://doi.org/10.1007/s41061-016-0063-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-016-0063-x

Keywords

Navigation