Topics in Current Chemistry

, 374:57 | Cite as

Iron-Catalyzed C–H Functionalization Processes

  • Gianpiero Cera
  • Lutz Ackermann
Part of the following topical collections:
  1. Ni- and Fe-Based Cross-Coupling Reactions


Iron-catalyzed C–H activation has recently emerged as an increasingly powerful tool for the step-economical transformation of unreactive C–H bonds. Particularly, the recent development of low-valent iron catalysis has set the stage for novel C–H activation strategies via chelation assistance. The low-cost, natural abundance, and low toxicity of iron prompted its very recent application in organometallic C–H activation catalysis. An overview of the use of iron catalysis in C–H activation processes is summarized herein up to May 2016.


Iron C–H activation Chelation assistance Arylation Alkylation Alkenylation Amination 



















Directing group












Electron-donating group




Electron-withdrawing group


Functional group










Picolinic acid














Single electron transfer






Transition metal


  1. 1.
    Ackermann L (2009) Modern arylation methods. Wiley, WeinheimCrossRefGoogle Scholar
  2. 2.
    Johansson Seechurn CC, Kitching MO, Colacot TJ, Snieckus V (2012) Angew Chem Int Ed 51:5062CrossRefGoogle Scholar
  3. 3.
    Jana R, Pathak TP, Sigman M (2011) Chem Rev 111:1417CrossRefGoogle Scholar
  4. 4.
    Cahiez G, Moyeux A (2010) Chem Rev 110:1435CrossRefGoogle Scholar
  5. 5.
    Hartwig JF (2009) Organotransition metal chemistry: from bonding to catalysis. University Science Books, SausalitoGoogle Scholar
  6. 6.
    Ilies L, Nakamura E (2014) Iron-catalyzed cross-coupling reactions: in the chemistry of organoiron compounds. Wiley, ChichesterGoogle Scholar
  7. 7.
    Czaplik WM, Mayer M, Cvengros J, Von Wangelin AJ (2009) Chem Sus Chem 2:396CrossRefGoogle Scholar
  8. 8.
    Sherry BD, Fuerstner A (2008) Acc Chem Res 41:1500CrossRefGoogle Scholar
  9. 9.
    Tani S, Uehara TN, Yamaguchi J, Itami K (2014) Chem Sci 5:123CrossRefGoogle Scholar
  10. 10.
    Borie C, Ackermann L, Nechab M (2016) Chem Soc Rev 45:1368CrossRefGoogle Scholar
  11. 11.
    Rouquet G, Chatani N (2013) Angew Chem Int Ed 52:11726CrossRefGoogle Scholar
  12. 12.
    Chen X, Engle KM, Wang DH, Yu JQ (2009) Angew Chem Int Ed 48:5094CrossRefGoogle Scholar
  13. 13.
    Bergman RG (2007) Nature 446:391CrossRefGoogle Scholar
  14. 14.
    Moselage M, Li J, Ackermann L (2016) ACS Catal 6:498CrossRefGoogle Scholar
  15. 15.
    Liu W, Ackermann L (2016) ACS Catal 6:3743CrossRefGoogle Scholar
  16. 16.
    Su B, Cao ZC, Shi ZJ (2015) Acc Chem Res 48:886CrossRefGoogle Scholar
  17. 17.
    Ackermann L (2014) J Org Chem 79:8948CrossRefGoogle Scholar
  18. 18.
    Nakao Y (2011) Chem Rev 11:242Google Scholar
  19. 19.
    Ye B, Cramer N (2015) Acc Chem Res 48:1308CrossRefGoogle Scholar
  20. 20.
    Ackermann L, Li J (2015) Nat Chem 7:686CrossRefGoogle Scholar
  21. 21.
    Ackermann L (2014) Acc Chem Res 47:281CrossRefGoogle Scholar
  22. 22.
    Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F (2012) Angew Chem Int Ed 51:10236CrossRefGoogle Scholar
  23. 23.
    Neufeldt SR, Sanford MS (2012) Acc Chem Res 45:936CrossRefGoogle Scholar
  24. 24.
    Bauer I, Knolker HJ (2015) Chem Rev 115:3170CrossRefGoogle Scholar
  25. 25.
    Morris H (2009) Chem Soc Rev 38:282CrossRefGoogle Scholar
  26. 26.
    Czaplik WM, Mayer M, Cvengros V, von Wangelin AJ (2009) Chem Sus Chem 2:396CrossRefGoogle Scholar
  27. 27.
    Enthaler S, Junge K, Beller M (2008) Angew Chem Int Ed 47:3317CrossRefGoogle Scholar
  28. 28.
    Bolm C, Legros J, Le Paih J, Zani L (2004) Chem Rev 104:6217CrossRefGoogle Scholar
  29. 29.
    Enghag P (2004) Encyclopedia of elements. Wiley, WeinheimCrossRefGoogle Scholar
  30. 30.
    Plietker B (2008) Iron catalysis in organic chemistry. Wiley, WeinheimCrossRefGoogle Scholar
  31. 31.
    Toxicity data of the FDA. Accessed 15 May 2016
  32. 32.
    Dyker G (2005) Handbook of C–H transformation. Application in organic synthesis. Wiley, WeinheimCrossRefGoogle Scholar
  33. 33.
    Poli R (2004) J Organomet Chem 689:4291CrossRefGoogle Scholar
  34. 34.
    Ackermann L (2007) Top Organomet Chem 24:35CrossRefGoogle Scholar
  35. 35.
    Dyker G (1999) Angew Chem Int Ed 38:1698CrossRefGoogle Scholar
  36. 36.
    Dick AR, Sanford MS (2006) Tetrahedron 62:2439CrossRefGoogle Scholar
  37. 37.
    Ackermann L, Vicente R, Kapdi AR (2009) Angew Chem Int Ed 48:9792CrossRefGoogle Scholar
  38. 38.
    Sun CL, Li BJ, Shi ZJ (2011) Chem Rev 111:1293CrossRefGoogle Scholar
  39. 39.
    Sun X, Huang X, Sun C (2012) Curr Inorg Chem 2:64CrossRefGoogle Scholar
  40. 40.
    Yoshikai N, Nakamura E (2010) J Org Chem 75:6061CrossRefGoogle Scholar
  41. 41.
    De Montellano PRO (2010) Chem Rev 110:932CrossRefGoogle Scholar
  42. 42.
    MacFaul PA, Wayner DDM, Ingold K (1998) Acc Chem Res 31:159CrossRefGoogle Scholar
  43. 43.
    Chen MS, White MC (2010) Science 327:566CrossRefGoogle Scholar
  44. 44.
    Chen MS, White MC (2007) Science 318:783CrossRefGoogle Scholar
  45. 45.
    Paradine SM, White MC (2012) J Am Chem Soc 134:2036CrossRefGoogle Scholar
  46. 46.
    Wang Z, Zhang Y, Fu H, Jiang Y, Zhao Y (2008) Org Lett 10:1863CrossRefGoogle Scholar
  47. 47.
    Fuerstner A (2009) Angew Chem Int Ed 48:1364CrossRefGoogle Scholar
  48. 48.
    Fuerstner A, Leitner A, Mendez M, Krause H (2002) J Am Chem Soc 124:13856CrossRefGoogle Scholar
  49. 49.
    McNeil E, Ritter T (2015) Acc Chem Res 48:2330CrossRefGoogle Scholar
  50. 50.
    Fuerstner A, Martin R, Majima K (2005) J Am Chem Soc 127:12236CrossRefGoogle Scholar
  51. 51.
    Tamura M, Kochi JK (1971) J Am Chem Soc 93:1487CrossRefGoogle Scholar
  52. 52.
    Neumann SM, Kochi JK (1975) J Org Chem 40:599CrossRefGoogle Scholar
  53. 53.
    Hata G, Kondo H, Miyake A (1968) J Am Chem Soc 90:2278CrossRefGoogle Scholar
  54. 54.
    Barton DHR, Doller D (1992) Acc Chem Res 25:504CrossRefGoogle Scholar
  55. 55.
    Rahtke JW, Muetterties EL (1975) J Am Chem Soc 97:3272CrossRefGoogle Scholar
  56. 56.
    Baker MV, Field LD (1987) J Am Chem Soc 109:2825CrossRefGoogle Scholar
  57. 57.
    Camadanli S, Beck R, Floerke U, Klein HF (2009) Organometallics 28:2300CrossRefGoogle Scholar
  58. 58.
    Sun Y, Tang H, Chen K, Hu L, Yao J, Shaik S, Chen H (2016) J Am Chem Soc 138:3715CrossRefGoogle Scholar
  59. 59.
    Norinder J, Matsumoto A, Yoshikai N, Nakamura E (2008) J Am Chem Soc 130:5858CrossRefGoogle Scholar
  60. 60.
    Nakano T, Hayashi T (2005) Org Lett 7:491CrossRefGoogle Scholar
  61. 61.
    Cahiez G, Chaboche C, Mamuteau-Betzer F, Ahr M (2005) Org Lett 7:1943CrossRefGoogle Scholar
  62. 62.
    Yoshikai N, Matsumoto A, Norinder J, Nakamura E (2009) Angew Chem Int Ed 48:2925CrossRefGoogle Scholar
  63. 63.
    Ilies L, Konno E, Chen Q, Nakamura E (2012) Asian J Org Chem 1:142CrossRefGoogle Scholar
  64. 64.
    Sirois JJ, Davis R, DeBoef B (2014) Org Lett 16:868CrossRefGoogle Scholar
  65. 65.
    Agrawal T, Cook SP (2013) Org Lett 15:96CrossRefGoogle Scholar
  66. 66.
    Ilies L, Asako S, Nakamura E (2011) J Am Chem Soc 133:7672CrossRefGoogle Scholar
  67. 67.
    Bart SC, Hawrelak EJ, Lobkovsky E, Chirik PJ (2005) Organometallics 24:5518CrossRefGoogle Scholar
  68. 68.
    Radonovich LJ, Eyring MW, Groshens TJ, Klabund KJ (1982) J Am Chem Soc 104:2816CrossRefGoogle Scholar
  69. 69.
    Ilies L, Okabe J, Yoshikai N, Nakamura E (2010) Org Lett 12:2838CrossRefGoogle Scholar
  70. 70.
    Tsuji J, Takahashi H, Morikawa M (1965) Tetrahedron Lett 49:4387CrossRefGoogle Scholar
  71. 71.
    Sekine M, Ilies L, Nakamura E (2013) Org Lett 15:714CrossRefGoogle Scholar
  72. 72.
    Larock RC, Baker BE (1988) Tetrahedron Lett 29:905CrossRefGoogle Scholar
  73. 73.
    Daugulis O, Roane J, Tran LD (2015) Acc Chem Res 48:1053CrossRefGoogle Scholar
  74. 74.
    Baudoin O (2011) Chem Soc Rev 40:4902CrossRefGoogle Scholar
  75. 75.
    Tobisu M, Chatani N (2006) Angew Chem Int Ed 118:1713CrossRefGoogle Scholar
  76. 76.
    Zaitsev VG, Shabashov D, Daugulis O (2005) J Am Chem Soc 127:13154CrossRefGoogle Scholar
  77. 77.
    Shang R, Ilies L, Matsumoto A, Nakamura E (2013) J Am Chem Soc 135:6030CrossRefGoogle Scholar
  78. 78.
    Irastorza A, Airzpurua JM, Correa A (2016) Org Lett 18:1080CrossRefGoogle Scholar
  79. 79.
    Al Mamari HH, Diers E, Ackermann L (2014) Chem Eur J 20:9739CrossRefGoogle Scholar
  80. 80.
    Cera G, Ackermann L (2016) Chem Eur J 22:8475CrossRefGoogle Scholar
  81. 81.
    Ye X, He Z, Weise K, Akhmedov NG, Petersen J, Shi X (2013) Chem Sci 4:3712CrossRefGoogle Scholar
  82. 82.
    Qu Q, Al Mamari HH, Graczyk K, Diers E, Ackermann L (2014) Angew Chem Int Ed 53:3868CrossRefGoogle Scholar
  83. 83.
    Thuy-Boun PS, Villa G, Dang D, Richardson P, Su S, Yu JQ (2013) J Am Chem Soc 135:17508CrossRefGoogle Scholar
  84. 84.
    Karthikeyan J, Haridharan R, Cheng CH (2012) Angew Chem Int Ed 51:12343CrossRefGoogle Scholar
  85. 85.
    Tredwell MJ, Gulias M, Bremeyer NG, Johansonn CCC, Collins BSL, Gaunt MJ (2011) Angew Chem Int Ed 50:1076CrossRefGoogle Scholar
  86. 86.
    Nishikata T, Abela AT, Huang S, Lipshutz BH (2010) J Am Chem Soc 132:4978CrossRefGoogle Scholar
  87. 87.
    Ueno S, Chatani N, Kakiuchi F (2007) J Org Chem 72:3600CrossRefGoogle Scholar
  88. 88.
    Wasa M, Chan KSL, Yu JQ (2011) Chem Lett 40:1004CrossRefGoogle Scholar
  89. 89.
    Waterman R (2013) Organometallics 32:7249CrossRefGoogle Scholar
  90. 90.
    Shang R, Ilies L, Asako S, Nakamura E (2014) J Am Chem Soc 136:14349CrossRefGoogle Scholar
  91. 91.
    Bedford RB, Brenner PB, Carter E, Clifton J, Cogswell PM, Gower NJ, Haddow MF, Harvey JN, Kehl JA, Murphy DM, Neeve EC, Neidig ML, Nunn J, Snyder BER, Taylor J (2014) Organometallics 33:5767CrossRefGoogle Scholar
  92. 92.
    Jia Z, Liu Q, Peng XS, Wong HNC (2016) Nat Commun 7:10614CrossRefGoogle Scholar
  93. 93.
    Ilies L, Ichikawa S, Asako S, Matsubara T, Nakamura E (2014) Adv Synth Catal 357:2175CrossRefGoogle Scholar
  94. 94.
    Ackermann L (2010) Chem Commun 46:4866CrossRefGoogle Scholar
  95. 95.
    Schönherr H, Cernak T (2013) Angew Chem Int Ed 52:12256CrossRefGoogle Scholar
  96. 96.
    Pan F, Lei ZQ, Wang H, Li H, Sun J, Shi ZJ (2013) Angew Chem Int Ed 52:2063CrossRefGoogle Scholar
  97. 97.
    Neufeldt SR, Seigerman CK, Sanford MS (2013) Org Lett 15:2302CrossRefGoogle Scholar
  98. 98.
    Dai HX, Stepan AF, Plummer MS, Zhang YH, Yu JQ (2011) J Am Chem Soc 133:7222CrossRefGoogle Scholar
  99. 99.
    Graczyk K, Haven T, Ackermann L (2015) Chem Eur J 21:8812CrossRefGoogle Scholar
  100. 100.
    Simmons EM, Hartwig JF (2012) Angew Chem Int Ed 51:3066CrossRefGoogle Scholar
  101. 101.
    Shang R, Ilies L, Nakamura E (2015) J Am Chem Soc 137:7660CrossRefGoogle Scholar
  102. 102.
    Asako S, Ilies L, Nakamura E (2013) J Am Chem Soc 135:17755CrossRefGoogle Scholar
  103. 103.
    Asako S, Norinder J, Ilies L, Yoshikai N, Nakamura E (2014) Adv Synth Catal 356:1481CrossRefGoogle Scholar
  104. 104.
    Ilies L, Matsubara T, Ichikawa A, Asako S, Nakamura E (2014) J Am Chem Soc 136:13126CrossRefGoogle Scholar
  105. 105.
    Chatani N, Aihara Y (2013) J Am Chem Soc 135:5308CrossRefGoogle Scholar
  106. 106.
    Finkelstein H (1910) Ber Dtsch Chem Ges 43:1528CrossRefGoogle Scholar
  107. 107.
    Ito S, Fujiwara YI, Nakamura M, Nakamura E (2009) Org Lett 11:4306CrossRefGoogle Scholar
  108. 108.
    Fruchey ER, Monks B, Cook SP (2014) J Am Chem Soc 136:13130CrossRefGoogle Scholar
  109. 109.
    Monks B, Fruchey ER, Cook SP (2014) Angew Chem Int Ed 53:11605CrossRefGoogle Scholar
  110. 110.
    Noda D, Sunada Y, Hatakeyama, Nakamura M, Nagashima H (2009) J Am Chem Soc 131:6078CrossRefGoogle Scholar
  111. 111.
    Fuerstner A, Majima K, Martin R, Krause H, Kattnig E, Goddard R, Lehmann CW (2008) J Am Chem Soc 130:1992CrossRefGoogle Scholar
  112. 112.
    Cera G, Haven T, Ackermann L (2016) Angew Chem Int Ed 55:1484CrossRefGoogle Scholar
  113. 113.
    Plietker B, Dieskau A, Moews K, Jatsch K (2007) Angew Chem Int Ed 47:198CrossRefGoogle Scholar
  114. 114.
    Plietker B (2006) Angew Chem Int Ed 45:1469CrossRefGoogle Scholar
  115. 115.
    Olah GA, Olah JA (1965) J Org Chem 30:2386CrossRefGoogle Scholar
  116. 116.
    Ye X, Xu C, Wojtas L, Akhmedov NG, Chen H, Shi X (2016) Org Lett 18:2970CrossRefGoogle Scholar
  117. 117.
    Jiao J, Murakami K, Itami K (2016) ACS Catal 6:610CrossRefGoogle Scholar
  118. 118.
    Thirunavukkarasu VS, Kozhushkov SI, Ackermann L (2014) Chem Commun 50:29CrossRefGoogle Scholar
  119. 119.
    Matsubara T, Asako S, Ilies L, Nakamura E (2014) J Am Chem Soc 136:646CrossRefGoogle Scholar
  120. 120.
    Wong MY, Yamakawa T, Yoshikai N (2015) Org Lett 17:442CrossRefGoogle Scholar
  121. 121.
    Matsubara T, Ilies L, Nakamura E (2016) Chem Asian J 11:380CrossRefGoogle Scholar
  122. 122.
    Santoro S, Kozhushkov S, Ackermann L, Vaccaro L (2016) Green Chem. doi: 10.1039/C6GC00385K Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations