Topics in Current Chemistry

, 374:60 | Cite as

Application of Radiation Chemistry to Some Selected Technological Issues Related to the Development of Nuclear Energy

  • Krzysztof Bobrowski
  • Konrad Skotnicki
  • Tomasz Szreder
Part of the following topical collections:
  1. Applications of Radiation Chemistry


The most important contributions of radiation chemistry to some selected technological issues related to water-cooled reactors, reprocessing of spent nuclear fuel and high-level radioactive wastes, and fuel evolution during final radioactive waste disposal are highlighted. Chemical reactions occurring at the operating temperatures and pressures of reactors and involving primary transients and stable products from water radiolysis are presented and discussed in terms of the kinetic parameters and radiation chemical yields. The knowledge of these parameters is essential since they serve as input data to the models of water radiolysis in the primary loop of light water reactors and super critical water reactors. Selected features of water radiolysis in heterogeneous systems, such as aqueous nanoparticle suspensions and slurries, ceramic oxides surfaces, nanoporous, and cement-based materials, are discussed. They are of particular concern in the primary cooling loops in nuclear reactors and long-term storage of nuclear waste in geological repositories. This also includes radiation-induced processes related to corrosion of cladding materials and copper-coated iron canisters, dissolution of spent nuclear fuel, and changes of bentonite clays properties. Radiation-induced processes affecting stability of solvents and solvent extraction ligands as well oxidation states of actinide metal ions during recycling of the spent nuclear fuel are also briefly summarized.


High pressure and temperature water radiolysis Water radiolysis in heterogeneous systems Radiation-induced processes in nuclear fuel cycles Radiation-induced processes in nuclear waste repositories 



This work was supported by the US Department of Energy Office of Science, Office of Basic Energy Science under award number DE-FC02-04ER15533 (KB), the Euratom-Fission Collaborative Project SACSESS, FP7-Fission-2012-323282, co-financed by the Grant No. 2924/7. PR-EURATOM/2013/2 donated by the Ministry of Science and Higher Education (Poland) (TS), and the Strategic Research Project P/J/7/170071/12 financed by the National Research and Development Centre (KS). One of us (KB) would like to thank Professor Ian Carmichael for his hospitality during the stay. This is document number NDRL-5116 from the Notre Dame Radiation Laboratory.


  1. 1.
    Takagi J, Mincher BJ, Yamaguchi M, Katsumura Y (2011) Radiation chemistry in nuclear engineering. In: Hatano Y, Katsumura Y, Mozumder A (eds) Charged Particle and Photon Interactions with Matter. CRC Press, Boca Raton, pp 959–1023Google Scholar
  2. 2.
    Chmielewski AG, Szołucha MM (2016) Radiation chemistry for modern nuclear energy development. Radiat Phys Chem 124:235–240CrossRefGoogle Scholar
  3. 3.
    Mincher BJ (2015) Radiation chemistry in the reprocessing and recycling of spent nuclear fuels. In: Taylor R (ed) Reprocessing and Recycling of Spent Nuclear Fuel. Elsevier, Amsterdam, pp 191–211CrossRefGoogle Scholar
  4. 4.
    Jonsson M (2014) An overview of interfacial radiation chemistry in nuclear technology. Isr J Chem 54:292–301CrossRefGoogle Scholar
  5. 5.
    Lin M, Katsumura Y (2011) Radiation chemistry of high temperature and supercritical water and alcohols. In: Hatano Y, Katsumura Y, Mozumder A (eds) Charged Particle and Photon Interactions with Matter. CRC Press, Boca Raton, pp 401–424Google Scholar
  6. 6.
    LaVerne JA (2011) Radiation chemistry of water with ceramic oxides. In: Hatano Y, Katsumura Y, Mozumder A (eds) Charged Particle and Photon Interactions with Matter, 1st edn. CRC Press, Boca Raton, pp 425–444Google Scholar
  7. 7.
    Mincher BJ, Modolo G, Mezyk SP (2010) Review: the effects of radiation chemistry on solven extraction 4: separation of the trivalent actinides and considerations for radiation-resistant solvent systems. Solv Extr Ion Exchange 28:415–436CrossRefGoogle Scholar
  8. 8.
    Mincher BJ, Modolo G, Mezyk SP (2009) Review article: the effects of radiation chemistry on solbvent extraction 3: a review of actinide and lanthanide extraction. Solv Extr Ion Exchange 27:579–606CrossRefGoogle Scholar
  9. 9.
    Mincher BJ (2010) An overview of selected radiation chemical reactions affecting fuel cycle solvent extraction. In: Wai C (ed.) Nuclear Energy and Environment. ACS Symposium Series: American Chemical Society, Washington, DC, pp. 181–192Google Scholar
  10. 10.
    Miller W, Russell A, Chapman N, McKinley I, Smellie J (2000) Geological Disposal of Radioactive Wastes and Natural Analogues. Pergamon Press, AmsterdamGoogle Scholar
  11. 11.
    Garrett BC, Dixon DA, Camaioni DM, Chipman DM, Johnson MA, Jonah CD, Kimmel GA, Miller JH, Rescigno TN, Rossky PJ, Xantheas SS, Colson SD, Laufer AH, Ray D, Barbara PF, Bartels DM, Becker KH, Bowen KH Jr, Bradforth SE, Carmichael I, Coe JV, Corrales LR, Cowin JP, Dupuis M, Eisenthal KB, Franz JA, Gutowski MS, Jordan KD, Kay BD, LaVerne JA, Lymar SV, Madey TE, McCurdy CW, Meisel D, Mukamel S, Nilsson AR, Orlando TM, Petrik NG, Pimblott SM, Rustad JR, Schenter GK, Singer SJ, Tokmakoff A, Wang LS, Wettig C, Zwier TS (2005) Role of water in electron-initiated processes and radical chemistry: issues and scientific advances. Chem Rev 105:355–390CrossRefGoogle Scholar
  12. 12.
    Buxton GV (2008) An overview of the radiation chemistry of liquids. In: Spotheim-Maurizot M, Mostafavi M, Douki T, Belloni J (eds) Radiation Chemistry: From Basics to Applications in Material and Life Sciences. EDP Sciences, France, pp 3–16Google Scholar
  13. 13.
    Elliot AJ, Bartels D (2009) The reaction set, rate constants and G values for the simulation of the radiolysis of light water over the range 20 to 350 °C based on information available in 2008. AECL EACL 153-127160-450-00,Google Scholar
  14. 14.
    Bartels DM, Henshaw J, Sims HE (2013) Modeling the critical hydrogen concentration in the AECL test reactor. Radiat Phys Chem 82:16–24CrossRefGoogle Scholar
  15. 15.
    Kanjana K, Haygarth KS, Wu W, Bartels DM (2013) Laboratory studies in search of the critical hydrogen concentration. Radiat Phys Chem 82:25–34CrossRefGoogle Scholar
  16. 16.
    Katsumura Y, Kiuchi K, Domae M, Karasawa H, Saito N, Yotsuyanagi T (2005) Research program on water chemistry of supercritical pressure water under radiation field. In: Nakahara M, Matubayasi N, Ueno M, Watanabe K (eds) Properties of Water and Steam in Kyoto Water, Steam and Aqueous Solutions for Electric Power: Advances in Science and Technology Kyoto. Maruzen Co. Ltd., TokyoGoogle Scholar
  17. 17.
    Katsumura Y, Sunaryo G, Hiroishi D, Ishigure K (1998) Fast neutron radiolysis of water at elevated temperatures relevant to water chemistry. Prog Nucl Energy 32:113–121CrossRefGoogle Scholar
  18. 18.
    Sunaryo GR, Katsumura Y, Ishigure K (1995) Radiolysis of water at elevated temperatures-III. Simulation of radiolytic products at 25 and 250 °C under the irradiation with γ-rays and fast neutrons. Radiat Phys Chem 45:703–714CrossRefGoogle Scholar
  19. 19.
    Bartels DM, Takahashi K, Cline JA, Marin TW, Jonah CD (2005) Pulse radiolysis of supercritical water. 3. Spectrum and thermodynamics of the hydrated electron. J Phys Chem A 109:1299–1307CrossRefGoogle Scholar
  20. 20.
    Wu G, Katsumura Y, Muroya Y, Li X, Terada Y (2000) Hydrated electron in subcritical and supercritical water. A pulse radiolysis study. Chem Phys Lett 325:531–536CrossRefGoogle Scholar
  21. 21.
    Hare PM, Price EA, Stanisky CM, Janik I, Bartels DM (2010) Solvated electron extinction coefficient and oscillator strength in high temperature water. J Phys Chem A 114:1766–1775CrossRefGoogle Scholar
  22. 22.
    Hare PM, Price EA, Bartels DM (2008) Hydrated electron extinction coefficient revisited. J Phys Chem A 112:6800–6802CrossRefGoogle Scholar
  23. 23.
    Wu G, Katsumura Y, Muroya Y, Li X, Terada Y (2001) Pulse radiolysis of high temperature and supercritical water: experimental setup and e−aq observation. Radiat Phys Chem 60:395–398CrossRefGoogle Scholar
  24. 24.
    Elliot AJ, Buxton GV (1992) Temperature dependence of the reactions OH + O and OH + HO2 in water up to 200 [degree]C. J Chem Soc, Faraday Trans 88(17):2465–2470CrossRefGoogle Scholar
  25. 25.
    Elliot AJ, McCracken DR, Buxton GV, Wood ND (1990) Estimation of rate constants for near-diffusion-controlled reactions in water at high temperatures. J Chem Soc, Faraday Trans 86:1539–1547CrossRefGoogle Scholar
  26. 26.
    Janik I, Bartels DM, Jonah CD (2007) Hydroxyl radical self-recombination reaction and absorption spectrum in water up to 350 °C. J Phys Chem A 111:1835–1843CrossRefGoogle Scholar
  27. 27.
    Wu G, Katsumura Y, Lin M, Morioka T, Muroya Y (2002) Temperature dependence of ketyl radical in aqueous benzophenone solution up to 400 °C. A pulse radiolysis study. Phys Chem Chem Phys 4:3980–3988CrossRefGoogle Scholar
  28. 28.
    Wu G, Katsumura Y, Lin M, Murota T (2001) Temperature dependence of (SCN)2·− in water at 25–400 °C. Absorption spectrum, equilibrium constant, and decay. J Phys Chem A 105:4933–4939CrossRefGoogle Scholar
  29. 29.
    Katsumura Y, Wu G, Lin M, Muroya Y, Morioka T, Terada Y, Li X (2001) Observation of hydrated electron, (SCN)2·− and CO3·− radical in high temperature and supercritical water. Res Chem Intermed 22:755–763CrossRefGoogle Scholar
  30. 30.
    Mostafavi M, Lin M, Wu G, Katsumura Y, Muroya Y (2002) Pulse radiolysis study of absorption spectra of Ag0 and Ag2+ in water from room temperature up to 380 °C. J Phys Chem A 106:3123–3127CrossRefGoogle Scholar
  31. 31.
    Lin M, Katsumura Y, Muroya Y, He H, Miyazaki T, Hiroshi D (2008) Pulse radiolysis of sodium formate aqueous solution up to 400 °C: absorption spectra, kinetics and yield of carboxyl radical CO2·−. Radiat Phys Chem 77:1208–1212CrossRefGoogle Scholar
  32. 32.
    Lin M, Katsumura Y, He W, Muroya Y, Wu G, Han Z, Miyazaki T, Kudo H (2005) Pulse radiolysis of 4,4′-bipyridyl aqueous solutions at elevated temperatures: spectral changes and reaction kinetics up to 400 °C. J Phys Chem A 109:2847–2854CrossRefGoogle Scholar
  33. 33.
    Wu G, Katsumura Y, Muroya Y, Lin M, Murota T (2002) Temperature dependence of carbonate radical in NaHCO3 and Na2CO3 solutions: is the radical a single anion? J Phys Chem A 106:2430–2432CrossRefGoogle Scholar
  34. 34.
    Lin M, Katsumura Y, Muroya Y, He W, Wu G, Han Z, Miyazaki T, Kudo H (2004) Pulse radiolysis study on the estimation of radiolytic yields of water decomposition products in high-temperature and supercritical water: use of methyl viologen as a scavenger. J Phys Chem A 108:8287–8295CrossRefGoogle Scholar
  35. 35.
    Sims HE (2006) Yields of radiolysis products from γ-irradiated supercritical water—a re-analysis data by W. G. Burns and W.R. Marsh. Radiat Phys Chem 75:1047–1050CrossRefGoogle Scholar
  36. 36.
    Burns WG, Marsh WR (1981) Radiation chemistry of high-temperature (300–400 °C) Water. J Chem Soc Faraday I 72:197–215CrossRefGoogle Scholar
  37. 37.
    Lin M, Muroya Y, Baldacchino G, Katsumura Y (2010) Radiolysis of Supercritical Water. In: Wishart JF, Rao BSM (eds) Recent Trends in Radiation Chemsitry. World Scientific, New Jersey, pp 255–277CrossRefGoogle Scholar
  38. 38.
    Sterniczuk M, Yakabuskie PA, Wren JC, Jacob JA, Bartels D (2015) Low LET radiolysis escape yields for reducing radicals and H2 in pressurized high temperature water. Radiat Phys Chem 121:35–42CrossRefGoogle Scholar
  39. 39.
    Shiraishi H, Katsumura Y, Hiroishi D, Ishigure K, Washio M (1988) Pulse-radiolysis study on the yield of hydrated electron at elevated temperatures. J Phys Chem 92:3011–3017CrossRefGoogle Scholar
  40. 40.
    Shiraishi H, Katsumura Y, Ishigure K (1989) On the yield of hydrated electron at elevated temperatures. Radiat Phys Chem 34:705–710Google Scholar
  41. 41.
    Janik D, Janik I, Bartels DM (2007) Neutron and β/γ radiolysis of water up to supercritical conditions. 1. β/γ Yields for H2, ·H atom, and hydrated electron. J Phys Chem A 111:7777–7786CrossRefGoogle Scholar
  42. 42.
    Elliot AJ, Chenier MP, Ouellette DC (1993) Temperature dependence of g values for H2O and D2O irradiated with low linear energy transfer radiation. J Chem Soc Faraday Trans I 89:1193–1197CrossRefGoogle Scholar
  43. 43.
    Christensen HC, Sehested K (1986) The hydrated electron and its reactions at high temperatures. J Phys Chem 90:186–190CrossRefGoogle Scholar
  44. 44.
    Marin TW, Takahashi K, Jonah CD, Cheremisov SD, Bartels DM (2007) Recombination of the hydrated electron at high temperature and pressure in hydrogenated alkaline water. J Phys Chem A 111:11540–11551CrossRefGoogle Scholar
  45. 45.
    Christensen H, Sehested K, Logager T (1994) Temperature dependence of the rate constant for reactions of hydrated electrons with H, OH and H2O2. Radiat Phys Chem 43:527–531CrossRefGoogle Scholar
  46. 46.
    Shiraishi H, Sunaryo GR, Ishigure K (1994) Temperature dependence of equilibrium and rate constants of reactions inducing conversion between hydrated electron and atomic hydrogen. J Phys Chem 98:5164–5173CrossRefGoogle Scholar
  47. 47.
    Takahashi K, Bartels DM, Cline JA, Jonah CD (2002) Reaction rates of the hydrated electron with NO2 and NO3 and hydronium ions as a function of temperature from125 to 380 °C. Chem Phys Lett 357:358–364CrossRefGoogle Scholar
  48. 48.
    Stanisky CM, Bartels DM, Takahashi K (2010) Rate constants for the reaction of hydronium ions with hydrated electrons up to350 °C. Radiat Phys Chem 79:64–65CrossRefGoogle Scholar
  49. 49.
    Muroya Y, Lin M, de Waele V, Hatano Y, Katsumura Y, Mostafavi M (2010) First observation of picosecond kinetics of hydrated electrons in supercritical water. J Phys Chem Lett 1:331–335CrossRefGoogle Scholar
  50. 50.
    Cline J, Takahashi K, Marin TW, Jonah CD, Bartels DM (2002) Pulse radiolysis of supercritical water. 1. Reactions between hydrophobic and anionic species. J Phys Chem A 106:12260–12269CrossRefGoogle Scholar
  51. 51.
    Marin TW, Cline JA, Takahashi K, Bartels DM, Jonah CD (2002) Pulse radiolysis of supercritical water. 2. Reaction of nitrobenzene with hydrated electrons and hydroxyl radicals. J Phys Chem A 106:12270–12279CrossRefGoogle Scholar
  52. 52.
    Lin CC (2009) A review of corrosion product transport and radiation field buildup in boiling water reactors. Prog Nucl Energy 51:207–224CrossRefGoogle Scholar
  53. 53.
    Tsaia T-L, Lina T-Z, Sua T-Y, Weia H-J, Mena L-C, Wenba T-J (2012) Identification of chemical composition of CRUD depositing on fuel surface of a boiling water reactor (BWR-6) plant. Energy Procedia 14:867–872CrossRefGoogle Scholar
  54. 54.
    Kanjana K, Courtin B, MacConnell A, Bartels DM (2015) Reactions of hexa-aquo transition metal ions with the hydrated electron up to 300 °C. J Phys Chem A 119:11094–11104CrossRefGoogle Scholar
  55. 55.
    McCracken DR, Tsang KT, Laughton PJ (1998) Aspects of the physics and chemistry of water radiolysis by fast neutrons and fast electrons in nuclear reactors. Report AECL-11895. AECL,Google Scholar
  56. 56.
    Christensen H, Sehested K (1983) Reaction of hydroxyl radicals with hydrogen at elevated temperatures. Determination of the activation energy. J Phys Chem 87:118–120CrossRefGoogle Scholar
  57. 57.
    Marin TW, Jonah CD, Bartels D (2003) Reaction of OH radicals with H2 in sub-critical water. Chem Phys Lett 371:144–149CrossRefGoogle Scholar
  58. 58.
    Janik I, Bartels DM, Marin TW, Jonah CD (2007) Reaction of O2 with the hydrogen atom in water up to 350 °C. J Phys Chem A 111:79–88CrossRefGoogle Scholar
  59. 59.
    Christensen H, Sehested K, Corfitzen H (1982) Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures. J Phys Chem 86:1588–1590CrossRefGoogle Scholar
  60. 60.
    Buxton GV, Elliot AJ (1993) Temperature dependence of the rate constant for the reaction H + OH in liquid water up to 200 °C. J Chem Soc, Faraday Trans 89:485–488CrossRefGoogle Scholar
  61. 61.
    Lundström T, Christensen H, Sehested K (2002) The reaction of ·OH with H· at elevated temperatures. Radiat Phys Chem 64:29–33CrossRefGoogle Scholar
  62. 62.
    Lundström T, Christensen H, Sehested K (2004) reactions of HO2 radical with OH, H, Fe2+ and Cu2+ at elevated temperatures. Radiat Phys Chem 69:211–216CrossRefGoogle Scholar
  63. 63.
    Marin TW, Jonah CD, Bartels DM (2005) Reaction of hydrogen atoms with hydroxide ions in high-temperature and high-pressure water. J Phys Chem A 109:1843–1848CrossRefGoogle Scholar
  64. 64.
    Swiatla-Wójcik D, Buxton GV (2005) On the possible role of the reaction H + H2O·− > H2 + OH in the radiolysis of water at high temperatures. Radiat Phys Chem 74:210–219CrossRefGoogle Scholar
  65. 65.
    Hartig KJ, Getoff N (1982) Reactivity of hydrogen atoms with liquid water. J Photochem 18:29–38CrossRefGoogle Scholar
  66. 66.
    Bartels D (2009) Comment on the possible role of the reaction H + H2O·− > H2 + OH in the radiolysis of water at high temperatures. Radiat Phys Chem 78:191–194CrossRefGoogle Scholar
  67. 67.
    Swiatla-Wójcik D, Buxton GV (2010) Reply to comment on the possiblerole of the reaction H + H2O > H2 + OH in the radiolysis of water at high temperatures. Radiat Phys Chem 79:52–56CrossRefGoogle Scholar
  68. 68.
    Lundstrom T, Christensen H, Sehested K (2001) The reaction of hydrogen atoms with hydrogen peroxide as a function of temperature. Radiat Phys Chem 61:109–113CrossRefGoogle Scholar
  69. 69.
    Mezyk SP, Bartels DM (1995) Direct EPR measurement of Arrhenius parameters for the reaction of H atoms with H2O2 and D atoms with D2O2 in aqueous solution. J Chem Soc Faraday Trans 91:3127–3132CrossRefGoogle Scholar
  70. 70.
    Elliot AJ (1989) A pulse radiolysis study of the temperature dependence of reactions involving H, OH and e−aq in aqueous solutions. Radiat Phys Chem 34:753–758Google Scholar
  71. 71.
    Sehested K, Christensen H (1990) The rate constant of the bimolecular reaction of hydrogen atoms at elevated temperatures. Radiat Phys Chem 36:499–500Google Scholar
  72. 72.
    Yamashita S, Taguchi M, Baldacchino G, Katsumura Y (2011) Radiation chemistry of liquid water with heavy ions: steady-state and pulse radiolysis studies. In: Hatano Y, Katsumura Y, Mozumder A (eds) Charged Particle and Photon Interactions with Matter. CRC Press, Boca Raton, pp 325–354Google Scholar
  73. 73.
    LaVerne JA (2004) Radiation chemical effects of heavy ions. In: Mozumder A, Hatano Y (eds) Charged Particle and Photon Interactions with Matter. Marcel Dekker, New York, pp 403–429Google Scholar
  74. 74.
    Meesungnoen J, Jay-Gerrin J-P (2011) Radiation chemistry of liquid water with heavy ions: Monte Carlo simulation studies. In: Hatano Y, Katsumura Y, Mozumder A (eds) Charged Particle and Photon Interactions with Matter. CRC Press, Boca Raton, pp 355–400Google Scholar
  75. 75.
    Baldacchino G, Katsumura Y (2010) Chemical processes in heavy ion track. In: Wishart JF, Rao BSM (eds) Recent Trends in Radiation Chemistry. World Scientific, New Jersey, pp 231–253CrossRefGoogle Scholar
  76. 76.
    Meisel D (2004) Radiation effects in nanoparticle suspensions. In: Lin-Marzan L, Kamat P (eds) Nanoscale Materials, 1st edn. Springer, Berlin, pp 119–134CrossRefGoogle Scholar
  77. 77.
    Kumbhar AG, Belapurkar AD, Venkateswaran G, Bera S, Naik DB, Kishore K, Sanjukta A, Mythili R (2011) Hydrogen generation by gamma irradiation of aqueous turbid solution of titanium. Curr Sci 100:895–900Google Scholar
  78. 78.
    Kumbhar AG, Belapurkar AD, Venkateswaran G, Kishore K (2005) Impact of different metal turbidities on radiolytic hydrogen generation in nuclear power plant. Power Plant Chem 7:674–679Google Scholar
  79. 79.
    Schofield J, Reiff SC, Pimblott SM, LaVerne JA (2016) Radiolytic hydrogen generation at silicon carbide-water interfaces. J Nucl Mater 469:43–50CrossRefGoogle Scholar
  80. 80.
    Reiff SC, LaVerne JA (2015) Radiation-induced chemical changes to iron oxides. J Nucl Mater 119:7358–7365Google Scholar
  81. 81.
    Reiff SC, LaVerne JA (2015) Gamma and He ion radiolysis of copper oxides. J Phys Chem C 119:8821–8828CrossRefGoogle Scholar
  82. 82.
    Kumbhar AG, Bhardwaj YK, Naik DB (2014) Hydrogen generation by gamma radiolysis of aqueous suspension of nano zirconia. Curr Sci 107:88–93Google Scholar
  83. 83.
    Merga G, Milosavljevic BH, Meisel D (2006) Radiolytic hydrogen yields in aqueous suspensions of gold particles. J Phys Chem B 110:5403–5408CrossRefGoogle Scholar
  84. 84.
    Matsumoto Y, Doa T-M-D, Inoue M, Nagaishi R, Ogawa T (2015) Hydrogen generation by water radiolysis with immersion of oxidation products of Zircaloy-4. J Nucl Sci Technol 52:1303–1307CrossRefGoogle Scholar
  85. 85.
    Chelnokov E, Cuba V, Simeone D, Guigner JM, Schmidhammer U, Mostafavi M, Le Caër S (2014) Electron transfer at oxide/water interfaces induced by ionizing radiation. J Phys Chem C 118:7865–7873CrossRefGoogle Scholar
  86. 86.
    Petrik NG, Alexandrov AB, Vall AI (2001) Interfacial energy transfer during gamma radiolysis of water on the surface of ZrO2 and some other oxides. J Phys Chem B 105:5935–5944CrossRefGoogle Scholar
  87. 87.
    LaVerne JA, Tandon L (2002) H2 production in the radiolysis of water on CeO2 and ZrO2. J Phys Chem B 106:380–386CrossRefGoogle Scholar
  88. 88.
    LaVerne JA, Tandon L (2003) H2 production in the radiolysis of water on UO2 and other oxides. J Phys Chem B 107:13623–13628CrossRefGoogle Scholar
  89. 89.
    Sattonnay G (2001) Behavior of a water-uranium dioxide interface subjected to irradiation: effects of water radiolysis on the alteration of uranium dioxide. J Phys IV 11(PR1):243–250Google Scholar
  90. 90.
    LaVerne JA (2005) H2 formation from the radiolysis of liquid water with zirconia. J Phys Chem B Lett 109:5395–5397CrossRefGoogle Scholar
  91. 91.
    Carrasco-Flores EA, LaVerne JA (2007) Surface species produced in the radiolysis of zirconia nanoparticles. J Chem Phys 127:234703–234709CrossRefGoogle Scholar
  92. 92.
    Jonsson M (2010) Radiation-induced processes at solid-liquid interfaces. In: Wishart JF, Rao BSM (eds) Recent Trends in Radiation Chemistry. World Scientific, New Jersey, pp 301–323Google Scholar
  93. 93.
    Skotnicki K, Bobrowski K (2015) Molecular hydrogen formation during water radiolysis in the presence of zirconium dioxide. J Radioanal Nucl Chem 304:473–480CrossRefGoogle Scholar
  94. 94.
    Barzykin AV, Tachiya M (2003) Diffusion of probe molecules in polymer gels as observed by fluorescence quenching techniques. J Phys Chem B 107(13):2953–2957CrossRefGoogle Scholar
  95. 95.
    Steytler DC, Dore JC, Wright CJ (1983) Neutron-diffraction studies of water in meso-pores and micro-pores. Mol Phys 48:1031–1051CrossRefGoogle Scholar
  96. 96.
    Gallo P, Ricci MA, Rovere M (2002) Layer analysis of the structure of water confined in vycor glass. J Chem Phys 116:342–346CrossRefGoogle Scholar
  97. 97.
    Musat R, Renault JP, Candelaresi M, Palmer DJ, Le Caer S, Righini R, Righini R, Pommeret S (2008) Finite size effects on hydrogen bonds in confined water. Angew Chem Int Ed 47:8033–8035CrossRefGoogle Scholar
  98. 98.
    Wang M, Duan F-L (2015) Effect of interfacial hydrogen bonds on the structure and dynamics of confined water. Acta Phys Sin 64:201–218Google Scholar
  99. 99.
    Kayal A, Chandra A (2015) Exploring the structure and dynamics of nano-confined water molecules using molecular dynamics simulations. Mol Simul 41:463–470CrossRefGoogle Scholar
  100. 100.
    Tan HS, Piletic IR, Fayer MD (2005) Orientational dynamics of water confined on a nanometer length scale in reverse micelles. J Chem Phys 122:174501CrossRefGoogle Scholar
  101. 101.
    Cringus D, Lindner J, Milder MTW, Pshenichnikov MS, Vohringer P, Wiersma DA (2005) Femtosecond water dynamics in reverse-micellar nanodroplets. Chem Phys Lett 408:162–168CrossRefGoogle Scholar
  102. 102.
    Dokter AM, Woutersen S, Bakker HJ (2007) Ultrafast dynamics of water in cationic micelles. J Chem Phys 126:124507CrossRefGoogle Scholar
  103. 103.
    Piletic IR, Moilanen DE, Spry DB, Levinger NE, Fayer MD (2006) Testing the core/shell model of nanoconfined water in reverse micelles using linear and nonlinear IR spectroscopy. J Phys Chem A 110:4985–4999CrossRefGoogle Scholar
  104. 104.
    Cringus D, Bakulin A, Lindner J, Voehringer P, Pshenichnikov MS, Wiersma DA (2007) Ultrafast energy transfer in water—AOT reverse micelles. J Phys Chem B 111:14193–14207CrossRefGoogle Scholar
  105. 105.
    Akhmatskaya E, Todd BD, Daivis PJ, Evans DJ, Gubbins KE, Pozhar LA (1997) A study of viscosity inhomogeneity in porous media. J Chem Phys 106:4684–4695CrossRefGoogle Scholar
  106. 106.
    Nakazato C, Masuda T (1986) Reactivity of electrons produced in gamma-irradiated zeolite toward several electron scavengers. Bull Chem Soc Jpn 59:2237–2239CrossRefGoogle Scholar
  107. 107.
    Aoki M, Nakazato C, Masuda T (1988) Hydrogen formation from water adsorbed on zeolite during gamma-iradiation. Bull Chem Soc Jpn 61:1899–1902CrossRefGoogle Scholar
  108. 108.
    Nakashima M, Aratono Y (1993) Radiolytic hydrogen gas formation from water adsorbed on type A zeolites. Radiat Phys Chem 41:461–465CrossRefGoogle Scholar
  109. 109.
    Nakashima M, Masaki NM (1996) Radiolytic hydrogen gas formation from water adsorbed on type Y zeolites. Radiat Phys Chem 47:241–245CrossRefGoogle Scholar
  110. 110.
    Foley S, Rotureau P, Pin S, Baldacchino G, Renault J-P, Mialocq J-C (2005) Radiolysis of confined water: production and reactivity of hydroxyl radicals Angew Chem Int Ed 44:110–112Google Scholar
  111. 111.
    Le Caer S, Rotureau P, Brunet F, Charpentier T, Blain G, Renault J-P, Mialocq J-C (2005) Radiolysis of confined water: hydrogen production at low dose rate. Chem Phys Chem 6:2585–2596CrossRefGoogle Scholar
  112. 112.
    Le Caer S, Rotureau P, Vigneron G, Blain G, Renault J-P, Mialocq J-C (2005) Irradiation of controlled pore glasses with 10 MeV electrons. Rev Adv Mat Sci 10:161–165Google Scholar
  113. 113.
    Le Caer S, Renault J-P, Mialocq J-C (2007) Hydrogen peroxide formation in the radiolysis of hydrated nanoporous glasses: a low and high dose rate study. Chem Phys Lett 450:91–95CrossRefGoogle Scholar
  114. 114.
    Rotureau P, Renault J-P, Lebeau B, Patarin J, Mialocq J-C (2005) Radiolysis of confined water: molecular hydrogen formation. Chem Phys Chem 6:1316–1323CrossRefGoogle Scholar
  115. 115.
    Fourdrin C, Aarrachi H, Latrille C, Esnouf S, Bergaya F, Le Caër S (2013) Water radiolysis in exchanged-montmorillonites: the H2 production mechanisms. Environ Sci Technol 47(16):9530–9537CrossRefGoogle Scholar
  116. 116.
    Musat R, Moreau S, Poidevin F, Mathon MH, Pommeret S, Renault JP (2010) Radiolysis of water in nanoporous gold. Phys Chem Chem Phys 12:12868–12874CrossRefGoogle Scholar
  117. 117.
    Moreau S, Fenart M, Renault JP (2014) Radiolysis of water in the vicinity of passive surfaces. Corrosion Sci 83:255–260CrossRefGoogle Scholar
  118. 118.
    Musat RM, Cook AR, Renault J-P, Crowell RA (2012) Nanosecond pulse radiolysis of nanoconfined water. J Phys Chem C 116:13104–13110CrossRefGoogle Scholar
  119. 119.
    Avallone E, Baumeister C, Sadegh M (2007) Marks’ Standard Handbook for Mechanical Engineers. New YorkGoogle Scholar
  120. 120.
    Lowinska-Kluge APP (2008) Effect of gamma irradiation on cement composites observed with XRD and SEM methods in the range of radiation dose 0–1409 MGy. Acta Phys Pollut A 114(2):399–411CrossRefGoogle Scholar
  121. 121.
    Vagelis G. Papadakis (1991) Physical and chemical characteristics affecting the durability of concrete. Mater J 88(2):186–196Google Scholar
  122. 122.
    Bouniol P, Bjergbakke E (2008) A comprehensive model to describe radiolytic processes in cement medium. J Nucl Mater 372:1–15CrossRefGoogle Scholar
  123. 123.
    Bouniol P (2010) The influence of iron on water radiolysis in cement-based materials. J Nucl Mater 403:167–183CrossRefGoogle Scholar
  124. 124.
    Foct F, Di Giandomenico MV, Bouniol P (2013) Modelling of hydrogen production from pore water radiolysis in cemented intermediate level waste. Paper presented at the International Workshop Nucperf 2012: Long-Term Performance of Cementitious Barriers and Reinforced Concrete in Nuclear Power Plant and Radioactive Waste Storage and Disposal,Google Scholar
  125. 125.
    Bouniol P, Muzeau B, Dauvois V (2013) Experimental evidence of the influence of iron on pore water radiolysis in cement-based materials. J Nucl Mater 437:208–215CrossRefGoogle Scholar
  126. 126.
    Poinssot C, Boullis B, Bourg S (2015) Role of recycling in advanced nuclear fuel cycles. In: Taylor R (ed) Reprocessing and Recycling of Spent Nuclear Fuel. Woodhead Publishing, Oxford, pp 27–48CrossRefGoogle Scholar
  127. 127.
    Bourg S, Geist A, Narbutt J (2015) SACSESS—the EURATOM FP7 project on actinide separation from spent nuclear fuels. Nukleonika 60:809–814Google Scholar
  128. 128.
    Herbst RS, Baron P, Nilsson M (2011) Standard and advanced separation: PUREX processes for nuclear fuel reprocessing. In: Nash KL, Nash GJ (eds) Advanced Separation Techniques for Nuclear Fuel Reprocessing and Radioactive Waste Treatment. Woodhead Publishing, Oxford, pp 141–175CrossRefGoogle Scholar
  129. 129.
    Nash KL, Nilsson M (2015) Introduction to the reprocessing and recycling of spent nuclear fuels. In: Taylor R (ed) Reprocessing and Recycling of Spent Nuclear Fuel. Woodhead Publishing, Oxford, pp 3–25CrossRefGoogle Scholar
  130. 130.
    Modolo G, Geist A, Miguirditchian M (2015) Minor actinide separations in the reprocessing of spent nuclear fuels: recent advances in Europe. In: Taylor R (ed) Reprocessing and Recycling of Spent Nuclear Fuel. Woodhead Publishing, Oxford, pp 245–287CrossRefGoogle Scholar
  131. 131.
    Todd TA (2015) Development of closed nuclear fuel cycles in the United States. In: Taylor R (ed) Reprocessing and Recycling of Spent Nuclear Fuel. Woodhead Publishing, Oxford, pp 525–530Google Scholar
  132. 132.
    Hood GC, Reilly CA (1960) Ionization of strong electrolytes. 8. Temperature coefficient of dissociation of strong acids by proton magnetic resonance. J Chem Phys 32:127–130CrossRefGoogle Scholar
  133. 133.
    Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O) in aqueous solution. J Phys Chem Ref Data 17:513–886CrossRefGoogle Scholar
  134. 134.
    Wolff RK, Bronskill MJ, Hunt JW (1970) Picosecond pulse radiolysis studies. 2. Reactions of electrons with concentrated scavengers. J Chem Phys 53:4211–4242CrossRefGoogle Scholar
  135. 135.
    Lam KY, Hunt JW (1975) Picosecond pulse-radiolysis. 6. Fast electron reactions in concentrated solutions of scavengers in water and alcohols. Int J Radiat Phys Chem 7:317–338CrossRefGoogle Scholar
  136. 136.
    Gratzel M, Henglein A, Taniguch S (1970) Pulse radiolysis of NO3(−)-reduction and formation and decomposition of pernitrous acid in aqueous solution ber bunsenges. Phys Chem 74:292Google Scholar
  137. 137.
    Logager T, Sehested K (1993) Formation and decay of peroxynitrous acid—a pulse-radiolysis study. J Phys Chem 97:6664–6669CrossRefGoogle Scholar
  138. 138.
    Wardman P (1989) The reduction potentials of one-electron couples involving free radicals in aqueous solution. J Phys Chem Ref Data 18:1637–1753CrossRefGoogle Scholar
  139. 139.
    Gratzel M, Henglein A, Lilie J, Beck G (1969) Pulse radiolysis of some elementary oxidation-reduction processes of nitrite. Ber Bunsenges Phys Chem 73:646Google Scholar
  140. 140.
    Olah GA, Lin HC, Olah JA, Narang SC (1978) Electrophilic and free radical nitration of benzene and toluene with various nitrating agents. Proc Nat Acad Sci USA 75:1045–1049CrossRefGoogle Scholar
  141. 141.
    Katsumura Y (1998) NO2· and NO3· radicals in radiolysis of nitric acid solutions. In: Alfassi ZB (ed) N-Centered Radicals. Vol the Chemistry of Free Radicals. Wiley, Chichester, pp 393–412Google Scholar
  142. 142.
    Katsumura Y, Jiang P-Y, Nagaishi R, Oishi T, Ishigure K, Yoshida Y (1991) Pulse radiolysis study of aqueous nitric acid solutions. Formation mechanism, yield, and reactivity of NO3 radical. J Phys Chem 95:4435–4439CrossRefGoogle Scholar
  143. 143.
    Nagaishi R, Jiang PY, Katsumura Y, Ishigure K (1994) Primary yields of water radiolysis in concentrated nitric-acid solutions. J Chem Soc Faraday Trans 90:591–595CrossRefGoogle Scholar
  144. 144.
    Jiang PY, Nagaishi R, Yotsuyanagi T, Katsumura Y, Ishigure K (1994) Gamma-radiolysis study of concentrated nitric-acid solutions. J Chem Soc Faraday Trans 90:93–95CrossRefGoogle Scholar
  145. 145.
    Balcerzyk A, El Omar AK, Schmidhammer U, Pernot P, Mostafavi M (2012) Picosecond pulse radiolysis study of highly concentrated nitric acid solutions: formation mechanism of NO3 radical. J Phys Chem A 116:7302–7307CrossRefGoogle Scholar
  146. 146.
    Pikaev AK, Sibirska GK, Shirshov EM, Glazunov PY, Spitsyn VI (1974) Pulse-radiolysis of concentrated aqueous-solutions of nitric-acid. Dokl Akad Nauk SSR 215:645–648Google Scholar
  147. 147.
    Daniels M (1969) Radiation chemistry of aqueous nitrate system. 3. Pulse electron radiolysis of concentrated sodium nitrate solutions. J Phys Chem 73:3710CrossRefGoogle Scholar
  148. 148.
    Sworski TJ, Matthews RW, Mahlman HA (1968) radiation chemistry of concentrated nano3 solutions—dependence of G(HNO2) on NaNO3 concentrations. Adv Chem Ser 82:164–181CrossRefGoogle Scholar
  149. 149.
    Mincher BJ, Elias G, Martin LR, Mezyk SP (2009) Radiation chemistry and the nuclear fuel cycle. J Radioanal Nucl Chem 282:645–649CrossRefGoogle Scholar
  150. 150.
    Garaix G, Horne GP, Venault L, Moisy P, Pimblott SM, Marignier JL, Mostafavi M (2016) Decay mechanism of NO3· radical in highly concentrated nitrate and nitric acidic solutions in the absence and presence of hydrazine. J Phys Chem B 120(22):5008–5014CrossRefGoogle Scholar
  151. 151.
    Vladimirova MV, Milovanova AS (1972) α-Radiolysis of HNO3 solutions and acid NaNO3 solutions. Khimya Vysokikh Energii 6:69–72Google Scholar
  152. 152.
    Matthews RW, Mahlman HA, Sworski TJ (1972) Elementary processes in the radiolysis of aqueous nitric acid solutions. Determination of both GOH and GNO3. J Phys Chem 76:2680–2684CrossRefGoogle Scholar
  153. 153.
    Park JY, Lee YN (1988) Solubility and decomposition kinetics of nitrous-acid in aqueous-solution. J Phys Chem 92:6294–6302CrossRefGoogle Scholar
  154. 154.
    Bhattacharyya PK, Veeraraghavan R (1977) Reaction between nitrous-acid and hydrogen-peroxide in perchloric-acid medium. Int J Chem Kinet 9:629–640CrossRefGoogle Scholar
  155. 155.
    Vione D, Maurino V, Minero C, Borghesi D, Lucchiari M, Pelizzetti E (2003) New processes in the environmental chemistry of nitrite. 2. The role of hydrogen peroxide. Environ Sci Technol 37:4635–4641CrossRefGoogle Scholar
  156. 156.
    Belova EV, Egorov GF (1997) Radiochemical behavior of hydrazine nitrate in aqueous nitric acid solutions. At Energ 83(2):622–626CrossRefGoogle Scholar
  157. 157.
    Dukes EK (1960) Kinetics and mechanisms for the oxidation of trivalent plutonium by nitrous acid. J Am Chem Soc 82(1):9–13CrossRefGoogle Scholar
  158. 158.
    Mossini E, Macerata E, Giola M, Brambilla L, Castiglioni C, Mariani M (2015) Radiation-induced modifications on physico chemical properties of diluted nitric acid solutions within advanced spent nuclear fuel reprocessing. J Radioanal Nucl Chem 304:395–400CrossRefGoogle Scholar
  159. 159.
    Mossini E, Macerata E, Giola M, Brambilla L, Castiglioni C, Mariani M (2015) Physico chemical properties of irradiated i-SANEX diluents. Nukleonika 60:893–898Google Scholar
  160. 160.
    Foldiak G (1981) Radiation Chemistry of Hydrocarbons. Elsevier, AmsterdamGoogle Scholar
  161. 161.
    Busi F (1982) Labile species and fast processes in liquid alkanes. In: Baxendale JH, Busi F (eds) The Study of Fast Processes and Transient Species by Electron Pulse Radiolysis. D. Reidel Publishing Company, Amsterdam, pp 417–431CrossRefGoogle Scholar
  162. 162.
    Warman J (1982) The dynamics of electrons and ions in non-polar liquids. In: Baxendale JH, Busi F (eds) The Study of Fast Processes and Transient Species by Electron Pulse Radiolysis. D. Reidel Publishing Company, Dordrecht, p 433CrossRefGoogle Scholar
  163. 163.
    Shkrob IA, Sauer MC, Trifunac AD (2001) Radiation chemistry of organic liquids: saturated hydrocarbons. In: Jonah CD, Rao BSM (eds) Radiation Chemistry: Present Status and Future Trends. Elsevier, Amsterdam, pp 175–221CrossRefGoogle Scholar
  164. 164.
    Belloni J, Delcourt MO, Houee-Levin C, Mostafavi M (2000) Radiation chemistry. Annu Rep Prog Chem Sect C 96:225–295CrossRefGoogle Scholar
  165. 165.
    Lin J, Tsuji K, Williams F (1968) Radiation-induced trapped electrons in saturated hydrocarbons studied by optical and electron spin resonance spectroscopy. J Am Chem Soc 90:2766CrossRefGoogle Scholar
  166. 166.
    Klassen NV, Teather GG (1985) Cations and electrons in hydrocarbon glasses and liquids studied by pulse-radiolysis. J Phys Chem 89:2048–2053CrossRefGoogle Scholar
  167. 167.
    Richards JT, Thomas JK (1970) Trapping of electrons in low-temperature glasses—a pulse radiolysis study. J Chem Phys 53:218CrossRefGoogle Scholar
  168. 168.
    Lin J, Tsuji K, Williams F (1967) Electrons in organic glasses during photoionization. Esr observations of a photodynamic equilibrium. J Chem Phys 46:4982CrossRefGoogle Scholar
  169. 169.
    Mehnert R, Brede O, Naumann W (1984) Spectral properties and kinetics of cationic transients generated in electron pulse irradiated C7- to C16-alkanes. Ber Bunsenges Phys Chem 88:71–80CrossRefGoogle Scholar
  170. 170.
    Bishop WP, Firestone FR (1970) Radiolysis of liquid normal-pentane. J Phys Chem 74:2274CrossRefGoogle Scholar
  171. 171.
    Spinks JWT, Woods RJ (1990) Introduction to Radiation Chemistry, 3rd edn. Wiley, New YorkGoogle Scholar
  172. 172.
    Dewhurst HA (1957) Radiation chemistry of organic compounds. 1. N-Alkane liquids. J Phys Chem 61:1466–1471CrossRefGoogle Scholar
  173. 173.
    Swallow AJ (1960) Radiation Chemistry of Organic Compounds. Pergamon Press, OxfordGoogle Scholar
  174. 174.
    Kharasch MS, Chang PC, Wagner CD (1958) Radiolysis of 1-hexene. J Org Chem 23:779–780CrossRefGoogle Scholar
  175. 175.
    LaVerne JA, Schuler RH (1984) Track effects in radiation chemistry: core processes in heavy-particle tracks as manifest by the hydrogen yield in benzene radiolysis. J Phys Chem 88(6):1200–1205CrossRefGoogle Scholar
  176. 176.
    Jones KH, Vandusen W, Theard LM (1964) Intermolecular and intramolecular energy transfer in gamma-irradiated alkylbenzenes and related mixtures. Radiat Res 22:202CrossRefGoogle Scholar
  177. 177.
    Freeman GR (1982) Labile species and fast processes in liquid alcohol radiolysis. In: Baxendale JH, Busi F (eds) The Study of Fast Processes and Transient Species by Electron Pulse Radiolysis. D. Reidel Publishing Company, Amsterdam, pp 399–416CrossRefGoogle Scholar
  178. 178.
    Jay-Gerin JP, Ferradini C (1994) Compilation of some physicochemical properties of solvated electrons in polar liquids. J Chim Phys 91:173–187CrossRefGoogle Scholar
  179. 179.
    Szreder T, Kocia R (2015) Electron beam irradiation of r-SANEX and i-SANEX solvent extraction systems: analysis of gaseous products. Nukleonika 60:899–905CrossRefGoogle Scholar
  180. 180.
    Backlund S, Hoiland H, Vikholm I (1984) Water-alcohol interactions in the 2-phase system water-alcohol-alkane. J Solution Chem 13:749–755CrossRefGoogle Scholar
  181. 181.
    Geist A (2010) Extraction of nitric acid into alcohol: kerosene mixtures solvent. Extr Ion Exch 28:596–607CrossRefGoogle Scholar
  182. 182.
    Scholes G, Willson RL (1967) Gamma-radiolysis of aqueous thymine solutions—determination of relative reaction rates of OH. Trans Faraday Soc 63:2983CrossRefGoogle Scholar
  183. 183.
    Mezyk SP, Cullen TD, Elias G, Mincher BJ (2010) Aqueous nitric acid radiation effects on solvent extraction process chemistry. In: Nuclear Energy and the Environment, vol 1046. ACS Symposium Series, pp. 193–203Google Scholar
  184. 184.
    Tripathi SC, Ramanujam A (2003) Effect of radiation-induced physicochemical transformations on density and viscosity of 30 % TBP-n-dodecane-HNO3 system. Sep Sci Technol 38:2307–2326CrossRefGoogle Scholar
  185. 185.
    Chaumont A, Wipff G (2004) Solvation of uranyl(II) and europium(III) cations and their chloro complexes in a room-temperature ionic liquid. A theoretical study of the effect of solvent “humidity. Inorg Chem 43:5891–5901CrossRefGoogle Scholar
  186. 186.
    Chaumont A, Wipff G (2004) Solvation of uranyl(II), europium(III) and europium(II) cations in basic room-temperature ionic liquids: a theoretical study. Chem A Eur J 10:3919–3930CrossRefGoogle Scholar
  187. 187.
    Cocalia VA, Jensen MP, Holbrey JD, Spear SK, Stepinski DC, Rogers RD (2005) Identical extraction behavior and coordination of trivalent or hexavalent f-element cations using ionic liquid and molecular solvents. Dalton Trans 11:1966–1971CrossRefGoogle Scholar
  188. 188.
    Cocalia VA, Gutowski KE, Rogers RD (2006) The coordination chemistry of actinides in ionic liquids: a review of experiment and simulation. Coord Chem Rev 250:755–764CrossRefGoogle Scholar
  189. 189.
    Dietz ML (2006) Ionic liquids as extraction solvents: where do we stand? Sep Sci Technol 41:2047–2063CrossRefGoogle Scholar
  190. 190.
    Nikitenko SI, Cannes C, Le Naour C, Moisy P, Trubert D (2005) Spectroscopic and electrochemical studies of U(IV)-hexachloro complexes in hydrophobic room-temperature ionic liquids [BuMeIm][Tf2N] and [MeBU3N][Tf2N]. Inorg Chem 44:9497–9505CrossRefGoogle Scholar
  191. 191.
    Visser AE, Jensen MP, Laszak I, Nash KL, Choppin GR, Rogers RD (2003) Uranyl coordination environment in hydrophobic ionic liquids: an in situ investigation. Inorg Chem 42:2197–2199CrossRefGoogle Scholar
  192. 192.
    Mincher BJ, Wishart JF (2014) The radiation chemistry of ionic liquids: a review solvent. Extr Ion Exch 32:563–583CrossRefGoogle Scholar
  193. 193.
    Venkatesan KA, Srinivasan TG, Rao PRV (2009) A review on the electrochemical applications of room temperature ionic liquids in nuclear fuel cycle. J Nucl Radiochem Sci 10:R1–R6CrossRefGoogle Scholar
  194. 194.
    Sun X, Luo H, Dai S (2012) Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle. Chem Rev 112:2100–2128CrossRefGoogle Scholar
  195. 195.
    Rao PRV, Venkatesan KA, Rout A, Srinivasan TG, Nagarajan K (2012) Potential applications of room temperature ionic liquids for fission products and actinide. Sep Sci Technol 47:204–222CrossRefGoogle Scholar
  196. 196.
    Takao K, Bell TJ, Ikeda Y (2013) Actinide chemistry in ionic liquids. Inorg Chem 52:3459–3472CrossRefGoogle Scholar
  197. 197.
    Wishart JF, Shkrob IA (2009) The radiation chemistry of ionic liquids and its implications for their use in nuclear fuel processing. In: Ionic Liquids: From Knowledge to Application, vol 1030. ACS Symposium Series, vol 1030. American Chemical Society, pp. 119–134Google Scholar
  198. 198.
    Shkrob IA, Chemerisov SD, Wishart JF (2007) The initial stages of radiation damage in ionic liquids and ionic liquid-based extraction systems. J Phys Chem B 2007:11786–11793CrossRefGoogle Scholar
  199. 199.
    Bosse E, Berthon L, Zorz N, Monget J, Berthon C, Bisel I, Legand S, Moisy P (2008) Stability of [MeBu3 N][Tf2 N] under gamma irradiation. Dalton Trans 7:924–931CrossRefGoogle Scholar
  200. 200.
    Le Rouzo G, Lamouroux C, Dauvois V, Dannoux A, Legand S, Durand D, Moisy P, Moutiers G (2009) Anion effect on radiochemical stability of room-temperature ionic liquids under gamma irradiation. Dalton Trans 31:6175–6184CrossRefGoogle Scholar
  201. 201.
    Tarábek P, Liu S, Haygarth K, Bartels DM (2009) Hydrogen gas yields in irradiated room-temperature ionic liquids. Radiat Phys Chem 78:168–172CrossRefGoogle Scholar
  202. 202.
    Szreder T, Skrzypczak A (2015) Influence of the benzyl substituent on radiation chemistry of selected ionic liquids: gaseous products analysis. J Radioanal Nucl Chem 307:195–202CrossRefGoogle Scholar
  203. 203.
    Musat RM, Crowell RA, Polyanskiy DE, Thomas MF, Wishart JF, Katsumura Y, Takahashi K (2015) Ultrafast transient absorption spectrum of the room temperature Ionic liquid 1-hexyl-3-methylimidazolium bromide: confounding effects of photo-degradation. Radiat Phys Chem 117:78–82CrossRefGoogle Scholar
  204. 204.
    Shkrob IA, Marin TW, Hatcher JL, Cook AR, Szreder T, Wishart JF (2013) Radiation stability of cations in ionic liquids. 2. Improved radiation resistance through charge de localization in 1-benzylpyridinium. J Phys Chem B 117:14385–14399CrossRefGoogle Scholar
  205. 205.
    Pikaev AK, Gogolev AV, Shilov VP, Fedoseev AM (1990) Reactivity of ions of actinides towards inorganic free radicals in irradiated aqueous solutions. Isot Isot Environ Health Stud 26:465–469CrossRefGoogle Scholar
  206. 206.
    Mincher BJ, Precek M, Mezyk SP, Elias G, Martin LR, Paulenova A (2013) The redox chemistry of neptunium in gamma-irradiated aqueous nitric acid. Radiochim Acta 101:259–265CrossRefGoogle Scholar
  207. 207.
    Paulenova A (2011) Physical and chemical properties of actinides in nuclear fuel reprocessing. In: Nash KL, Lumetta GJ (eds) Advanced Separation Techniques for Nuclear Fuel Reprocessing and Radioactive Waste Treatment. Woodhead Publishing, Oxford, pp 23–57CrossRefGoogle Scholar
  208. 208.
    Mincher BJ, Mezyk SP, Martin LR (2008) A pulse radiolysis investigation of the reactions of tributyl phosphate with the radical products of aqueous nitric acid irradiation. J Phys Chem A 112:6275–6280CrossRefGoogle Scholar
  209. 209.
    Burr JG (1958) The radiolysis of tributyl phosphate. Radiat Res 8:214–221CrossRefGoogle Scholar
  210. 210.
    von Sonntag C, Schulte-Frohlinde D, Sugimori A, Omori T, Koltzenb G, Ansorge G (1972) Radiation-chemistry of DNA model compounds. 2. Alkyl phosphate cleavage of aliphatic phosphates induced by hydrated electrons and by OH radicals. Z Naturforsch Pt B B27:471–475Google Scholar
  211. 211.
    Khaikin GI (1998) Reactions of trialkyl phosphates with hydroxyl radicals and hydrated electrons. High Energy Chem 32:287–289Google Scholar
  212. 212.
    Wilkinson RW, Williams TF (1961) The radiolysis of tri-n-alkyl phosphates. J Chem Soc 1:4098–4107CrossRefGoogle Scholar
  213. 213.
    Tahraoui A, Morris JH (1995) decomposition of solvent extraction media during nuclear reprocessing: literature review. Sep Sci Technol 30:2603–2630CrossRefGoogle Scholar
  214. 214.
    Shkrob IA, Marin TW, Chemerisov SD, Wishart JF (2011) Radiation and radical chemistry of NO3 , HNO3, and dialkylphosphoric acids in room-temperature ionic liquids. J Phys Chem B 115:10927–10942CrossRefGoogle Scholar
  215. 215.
    He H, Lin MZ, Muroya Y, Kudo H, Katsumura Y (2004) Laser photolysis study on the reaction of nitrate radical with tributylphosphate and its analogues-comparison with sulfate radical. Phys Chem Chem Phys 6:1264–1268CrossRefGoogle Scholar
  216. 216.
    Tripathi SC, Sumathi S, Ramanujam A (1999) Effects of solvent recycling on radiolytic degradation of 30 % tributyl phosphate-n-dodecane-HNO3 system. Sep Sci Technol 34:2887–2903CrossRefGoogle Scholar
  217. 217.
    Nash KL, Gatrone RC, Clark GA, Rickert PG, Horwitz EP (1988) Hydrolytic and radiolytic degradation of O-Phi-D(Ib)Cmpo—continuing studies. Sep Sci Technol 23:1355–1372CrossRefGoogle Scholar
  218. 218.
    Berthon L, Morel JM, Zorz N, Nicol C, Virelizier H, Madic C (2001) Diamex process for minor actinide partitioning: hydrolytic and radiolytic degradations of malonamide extractants. Sep Sci Technol 36:709–728CrossRefGoogle Scholar
  219. 219.
    Groenewold GS, Elias G, Mincher BJ, Mezyk SP, LaVerne JA (2012) Characterization of CMPO and its radiolysis products by direct infusion ESI-MS. Talanta 99:909–917CrossRefGoogle Scholar
  220. 220.
    Mincher BJ, Mezyk SP, Elias G, Groenewold GS, Riddle CL, Olson LG (2013) The radiation chemistry of CMPO: part 1. Gamma radiolysis. Solv Extr Ion Exch 31:715–730CrossRefGoogle Scholar
  221. 221.
    Mincher BJ, Mezyk SP, Elias G, Groenewold GS, LaVerne JA, Nilsson M, Pearson J, Schmitt NC, Tillotson RD, Olson LG (2014) The radiation chemistry of CMPO: part 2. Alpha radiolysis. Solv Extr Ion Exch 32:167–168CrossRefGoogle Scholar
  222. 222.
    Hudson MJ, Lewis FW, Harwood LM (2013) The circuitous journey from malonamides to BTPhens: ligands for separating actinides from lanthanides. In: Harmata M (ed) Strategies and Tactics in Organic Synthesis. Academic Press, London, pp 177–202Google Scholar
  223. 223.
    Zarzana CA, Groenewold GS, Mincher BJ, Mezyk SP, Wilden A, Schmidt H, Modolo G, Wishart JF, Cook AR (2015) A comparison of the gamma-radiolysis of TODGA and T(EH)DGA using UHPLC-ESI-MS analysis. Solv Extr Ion Exch 33:431–447CrossRefGoogle Scholar
  224. 224.
    Galan H, Nunez A, Espartero AG, Sedano R, Durana A, de Mendoza J (2012) Radiolytic stability of TODGA: characterization of degraded samples under different experimental conditions. Procedia Chem 7:195–201CrossRefGoogle Scholar
  225. 225.
    Sugo Y, Sasaki Y, Tachimori S (2002) Studies on hydrolysis and radiolysis of N,N,N′,N′-tetraoctyl-3-oxapentane-1,5-diamide. Radiochim Acta 90:161–165CrossRefGoogle Scholar
  226. 226.
    Shkrob IA, Marin TW, Bell JR, Luo H, Dai S, Hatcher JL, Rimmer RD, Wishart JF (2012) Radiation-induced fragmentation of diamide extraction agents in ionic liquid diluents. J Phys Chem B 116:2234–2243CrossRefGoogle Scholar
  227. 227.
    Sugo Y, Izumi Y, Yoshida Y, Nishijima S, Sasaki Y, Kimura T, Sekine T, Kudo H (2007) Influence of diluent on radiolysis of amides in organic solution. Radiat Phys Chem 76:794–800CrossRefGoogle Scholar
  228. 228.
    Berthon L, Journet S, Lalia V, Morel JM, Zorz N, Berthon C, Amerkraz B (2004) Use of chromatographic techniques to study a degraded solvent for minor actinides partitioning: qualitative and quantitative analysis. Paper presented at the Atalante-2004, Nimes, France,Google Scholar
  229. 229.
    Panak PJ, Geist A (2013) Complexation and extraction of trivalent actinides and lanthanides by triazinylpyridine N-donor ligands. Chem Rev 113:1199–1236CrossRefGoogle Scholar
  230. 230.
    Schmidt H, Wilden A, Modolo G, Švehla J, Grüner B, Ekberg C (2015) Gamma radiolytic stability of CyMe4BTBP and the effect of nitric acid. Nukleonika 60:879–884CrossRefGoogle Scholar
  231. 231.
    Nilsson M, Andersson S, Ekberg C, Foreman MRS, Hudson MJ, Skarnemark G (2006) Inhibiting radiolysis of BTP molecules by addition of nitrobenzene. Radiochim Acta 94:103–106CrossRefGoogle Scholar
  232. 232.
    Sulich A, Grodkowski J, Mirkowski J, Kocia R (2014) Reactions of ligands from BT(B)P family with solvated electrons and benzophenone ketyl radicals in 1-octanol solutions. Pulse radiolysis study. J Radioanal Nucl Chem 300:415–421CrossRefGoogle Scholar
  233. 233.
    Ewing RC (2015) Long-term storage of spent nuclear fuel. Nat Mater 14(3):252–257CrossRefGoogle Scholar
  234. 234.
    Eriksen TE, Shoesmith DW, Jonsson M (2012) Radiation induced dissolution of UO2 based nuclear fuel—a critical review of predictive modelling approaches. J Nucl Mater 420:409–423CrossRefGoogle Scholar
  235. 235.
    Roth O, Jonsson M (2008) Oxidation of UO2[s] in aqueous solution. Cent Eur J Chem 6:1–14Google Scholar
  236. 236.
    Jonsson M (2010) Radiation-induced processes at solid–liquid interfaces. In: Wishart JF, Rao BSM (eds) Recent Trends in Radiation Chemistry. World Scientific, New Jersey, pp 301–323CrossRefGoogle Scholar
  237. 237.
    Yang M, Jonsson M (2015) Surface reactivity of hydroxyl radicals formed upon catalytic decomposition of H2O2 on ZrO2. J Mol Catal A Chem 400:49–55CrossRefGoogle Scholar
  238. 238.
    Barreiro Fidalgo A, Dahlgren B, Brinck T, Jonsson M (2016) Surface reactions of H2O2, H2, and O2 in aqueous systems containing ZrO2. J Phys Chem C 120:1609–1614CrossRefGoogle Scholar
  239. 239.
    Björkbacka Å, Hosseinpour S, Johnson M, Leygraf C, Jonsson M (2013) Radiation induced corrosion of copper for spent nuclear fuel storage. Radiat Phys Chem 92:80–86CrossRefGoogle Scholar
  240. 240.
    Björkbacka Å, Yang M, Gasparrini C, Leygraf C, Jonsson M (2015) Kinetics and mechanisms of reactions between H2O2 and copper and copper oxides. Dalton Trans 44:16045–16051CrossRefGoogle Scholar
  241. 241.
    Lousada CM, Johansson AJ, Brinck T, Jonsson M (2012) Mechanism of H2O2 decomposition on transition metal oxide surfaces. J Phys Chem C 116:9533–9543CrossRefGoogle Scholar
  242. 242.
    Hiroki A, LaVerne JA (2005) Decomposition of hydrogen peroxide at water-ceramic oxide interfaces. J Phys Chem B 109:3364–3370CrossRefGoogle Scholar
  243. 243.
    Jonsson M, Nielsen F, Roth O, Ekeroth E, Nilsson AR, Hossain MM (2007) Radiation induced spent nuclear fuel dissolution under deep repository conditions. Environ Chem Lett 41:7087–7093Google Scholar
  244. 244.
    Ekeroth E, Roth O, Jonsson M (2006) The relative impact of radiolysis products in radiation induced oxidative dissolution of UO2. J Nucl Mater 355:38–46CrossRefGoogle Scholar
  245. 245.
    Jonsson M, Nielsen F, Roth O, Ekeroth E, Nilsson S, Hossain MM (2007) Radiation induced spent nuclear fuel dissolution under deep repository conditions. Environ Sci Technol 41:7087–7093CrossRefGoogle Scholar
  246. 246.
    Ekeroth E, Jonsson M (2003) Oxidation of UO2 by radiolytic oxidants. J Nucl Mater 322:242–248CrossRefGoogle Scholar
  247. 247.
    Hossain MM, Ekeroth E, Jonsson M (2006) Effect of HCO3 on the kinetics of UO2 oxidation by H2O2. J Nucl Mater 358:202–208CrossRefGoogle Scholar
  248. 248.
    Eriksen TE, Jonsson M, Merino J (2008) Modelling of time resolved and long contact time dissolution studies of spent nuclear fuel in 10 mM carbonate solution—a comparison between two different models and experimental data. J Nucl Mater 375:331–339CrossRefGoogle Scholar
  249. 249.
    Nielsen F, Lundahl K, Jonsson M (2008) Simulations of H2O2 concentration profiles in the water surrounding spent nuclear fuel. J Nucl Mater 372:32–35CrossRefGoogle Scholar
  250. 250.
    Nielsen F, Ekeroth E, Eriksen TE, Jonsson M (2008) Simulation of radiation induced dissolution of spent nuclear fuel using the steady-state approach. A comparison to experimental data. J Nucl Mater 374:286–289CrossRefGoogle Scholar
  251. 251.
    Jonsson M, Ekeroth E, Roth O (2004) Oxidation of UO2 by one- and two-electron oxidants. Mater Res Soc Symp Proc 807:77–82CrossRefGoogle Scholar
  252. 252.
    Nillson S, Jonsson M (2011) H2O2 and radiation induced dissolution of UO2 and SIMFUEL pellets. J Nucl Mater 410:89–93CrossRefGoogle Scholar
  253. 253.
    Trummer M, Dahlgren B, Jonsson M (2010) The effect of Y2O3 on the dynamics of oxidative dissolution of UO2. J Nucl Mater 407:195–199CrossRefGoogle Scholar
  254. 254.
    Pehrman R, Trummer M, Lousada CM, Jonsson M (2012) On the redox reactivity of doped UO2 pellets—influence of dopants on the H2O2 decomposition mechanism. J Nucl Mater 430:6–11CrossRefGoogle Scholar
  255. 255.
    Lousada CM, Trummer M, Jonsson M (2013) Reactivity of H2O2 towards different UO2-based materials: the relative impact of radiolysis products revisited. J Nucl Mater 434:434–439CrossRefGoogle Scholar
  256. 256.
    Trummer M, Nilsson S, Jonsson M (2008) On the effects of fission product noble metal inclusions on the kinetics of radiation induced dissolution of spent nuclear fuel. J Nucl Mater 378:55–59CrossRefGoogle Scholar
  257. 257.
    Nilsson S, Jonsson M (2008) On the catalytic effect of Pd(s) on the reduction of UO2 2+ with H2 in aqueous solution. J Nucl Mater 374:290–292CrossRefGoogle Scholar
  258. 258.
    Trummer M, Jonsson M (2010) Resolving the H2 effect on radiation induced dissolution of UO2-based spent nuclear fuel. J Nucl Mater 396:163–169CrossRefGoogle Scholar
  259. 259.
    Yang M, Barreiro Fidalgo A, Sundin S, Jonsson M (2013) Inhibition of radiation induced dissolution of UO2 by sulfide—a comparison with the hydrogen effect. J Nucl Mater 434:38–42CrossRefGoogle Scholar
  260. 260.
    Pusch R, Karnland O, Lajudie A, Decarreau A (1992) MX80 Clay Exposed to High Temperatures and Gamma Radiation. Swedish Nuclear Fuel and Waste Management Co., SockholmGoogle Scholar
  261. 261.
    Sorieul S, Allard T, Wang LM, Grambin-Lapeyre C, Lian J, Calas G, Ewing RC (2008) Radiation stability of smectite. Environ Sci Technol 42:8407–8411CrossRefGoogle Scholar
  262. 262.
    Holmboe M, Wold M, Jonsson M, Garcia-Garcia S (2009) Effects of γ-irradiation on the stability of colloidal Na+-montmorillonite dispersions. Appl Clay Sci 43:86–90CrossRefGoogle Scholar
  263. 263.
    Holmboe M, Norrfors KK, Jonsson M, Wold S (2011) Effect of γ-radiation on radionuclide retention in compacted bentonite. Radiat Phys Chem 80:1371–1377CrossRefGoogle Scholar
  264. 264.
    Holmboe M, Jonsson M, Wold S (2012) Influence of γ-radiation on the reactivity of montmorillonite towards H2O2. Radiat Phys Chem 81:190–194CrossRefGoogle Scholar
  265. 265.
    Barreiro Fidalgo A, Sundin S, Jonsson M (2014) Effect of bentonite on radiation induced dissolution of UO2 in an aqueous system. J Nucl Mater 447:73–76CrossRefGoogle Scholar
  266. 266.
    Lainé M, Allard T, Balan E, Martin F, Von Bardeleben HJ, Robert J-L, Caër SL (2016) Reaction mechanisms in talc under ionizing radiation: evidence of a high stability of H· atoms. J Phys Chem C 120(4):2087–2095CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2016

Authors and Affiliations

  1. 1.Centre of Radiation Research and TechnologyInstitute of Nuclear Chemistry and TechnologyWarsawPoland
  2. 2.Radiation LaboratoryUniversity of Notre DameNotre DameUSA

Personalised recommendations