Light-Harvesting Antennae Based on Silicon Nanocrystals



Silicon (Si) nanocrystals are relatively strong light emitters, but are weak light absorbers as a result of their indirect band gap. One way to enhance light absorption is to functionalize the nanocrystals with chromophores that are strong light absorbers. By designing systems that enable efficient energy transfer from the chromophore to the Si nanocrystal, the brightness of the nanocrystals can be significantly increased. There have now been a few experimental systems in which covalent attachment of chromophores, efficient energy transfer and significantly increased brightness have been demonstrated. This review discusses progress on these systems and the remaining challenges.


Quantum dots Luminescence Brightness Energy transfer Indirect band gap semiconductor 


  1. 1.
    Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell, OxfordCrossRefGoogle Scholar
  2. 2.
    Serin JM, Brousmiche DW, Fréchet JMJ (2002) A FRET-based ultraviolet to near-infrared frequency converter. J Am Chem Soc 124:11848–11849. doi:10.1021/ja027564i CrossRefGoogle Scholar
  3. 3.
    Miller RA, Presley AD, Francis MB (2007) Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins. J Am Chem Soc 129:3104–3109. doi:10.1021/ja063887t CrossRefGoogle Scholar
  4. 4.
    Frischmann PD, Mahata K, Wurthner F (2013) Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies. Chem Soc Rev 42:1847–1870. doi:10.1039/C2CS35223K CrossRefGoogle Scholar
  5. 5.
    Puntoriero F, Sartorel A, Orlandi M et al (2011) Photoinduced water oxidation using dendrimeric Ru(II) complexes as photosensitizers. Coord Chem Rev 255:2594–2601. doi:10.1016/j.ccr.2011.01.026 CrossRefGoogle Scholar
  6. 6.
    Voegtle F, Gestermann S, Kauffmann C et al (2000) Coordination of Co2 + ions in the interior of poly(propylene amine) dendrimers containing fluorescent dansyl units in the periphery. J Am Chem Soc 122:10398–10404CrossRefGoogle Scholar
  7. 7.
    Hwang S-H, Moorefield CN, Newkome GR (2008) Dendritic macromolecules for organic light-emitting diodes. Chem Soc Rev 37:2543–2557. doi:10.1039/B803932C CrossRefGoogle Scholar
  8. 8.
    Tang M-C, Tsang DP-K, Chan MM-Y et al (2013) Dendritic luminescent Gold(III) complexes for highly efficient solution-processable organic light-emitting devices. Angew Chem Int Ed 52:446–449. doi:10.1002/anie.201206457 CrossRefGoogle Scholar
  9. 9.
    Ceroni P (2011) Energy up-conversion by low-power excitation: new applications of an old concept. Chem Eur J 17:9560–9564. doi:10.1002/chem.201101102 CrossRefGoogle Scholar
  10. 10.
    Balzani V, Bergamini G, Ceroni P, Marchi E (2011) Designing light harvesting antennas by luminescent dendrimers. New J Chem 35:1944–1954. doi:10.1039/C1NJ20142E CrossRefGoogle Scholar
  11. 11.
    Balzani V, Ceroni P, Maestri M, Vicinelli V (2003) Light-harvesting dendrimers. Curr Opin Chem Bio 7:657–665. doi:10.1016/j.cbpa.2003.10.001 CrossRefGoogle Scholar
  12. 12.
    Li W-S, Aida T (2009) Dendrimer porphyrins and phthalocyanines. Chem Rev 109:6047–6076. doi:10.1021/cr900186c CrossRefGoogle Scholar
  13. 13.
    Ceroni P, Credi A, Venturi M (2014) Light to investigate (read) and operate (write) molecular devices and machines. Chem Soc Rev 43:4068. doi:10.1039/c3cs60400d CrossRefGoogle Scholar
  14. 14.
    Calzaferri G (2012) Nanochannels: hosts for the supramolecular organization of molecules and complexes. Langmuir 28:6216–6231. doi:10.1021/la3000872 CrossRefGoogle Scholar
  15. 15.
    Leem G, Morseth ZA, Puodziukynaite E et al (2014) Light harvesting and charge separation in a π-conjugated antenna polymer bound to TiO2. J Phys Chem C 118:28535–28541. doi:10.1021/jp5113558 CrossRefGoogle Scholar
  16. 16.
    Winiger CB, Li S, Kumar GR et al (2014) Long-distance electronic energy transfer in light-harvesting supramolecular polymers. Angew Chem Int Ed 53:13609–13613. doi:10.1002/anie.201407968 CrossRefGoogle Scholar
  17. 17.
    Pu F, Wu L, Ran X et al (2015) G-quartet-based nanostructure for mimicking light-harvesting antenna. Angew Chem Int Ed 54:892–896. doi:10.1002/anie.201409832 CrossRefGoogle Scholar
  18. 18.
    Woller JG, Hannestad JK, Albinsson B (2013) Self-assembled nanoscale DNA–porphyrin complex for artificial light harvesting. J Am Chem Soc 135:2759–2768. doi:10.1021/ja311828v CrossRefGoogle Scholar
  19. 19.
    Garo F, Häner R (2012) A DNA-based light-harvesting antenna. Angew Chem Int Ed 51:916–919. doi:10.1002/anie.201103295 CrossRefGoogle Scholar
  20. 20.
    McVey BFP, Tilley RD (2014) Solution synthesis, optical properties, and bioimaging applications of silicon nanocrystals. Acc Chem Res 47:3045–3051. doi:10.1021/ar500215v CrossRefGoogle Scholar
  21. 21.
    Mastronardi ML, Henderson EJ, Puzzo DP, Ozin GA (2012) Small silicon, big opportunities: the development and future of colloidally-stable monodisperse silicon nanocrystals. Adv Mater 24:5890–5898. doi:10.1002/adma.201202846 CrossRefGoogle Scholar
  22. 22.
    Gonzalez CM, Iqbal M, Dasog M et al (2014) Detection of high-energy compounds using photoluminescent silicon nanocrystal paper based sensors. Nanoscale 6:2608–2612. doi:10.1039/C3NR06271F CrossRefGoogle Scholar
  23. 23.
    Yi Y, Zhu G, Liu C et al (2013) A label-free silicon quantum dots-based photoluminescence sensor for ultrasensitive detection of pesticides. Anal Chem 85:11464–11470. doi:10.1021/ac403257p CrossRefGoogle Scholar
  24. 24.
    Hessel CM, Reid D, Panthani MG et al (2012) Synthesis of ligand-stabilized silicon nanocrystals with size-dependent photoluminescence spanning visible to near-infrared wavelengths. Chem Mater 24:393–401. doi:10.1021/cm2032866 CrossRefGoogle Scholar
  25. 25.
    Hodes G (2007) When small is different: some recent advances in concepts and applications of nanoscale phenomena. Adv Mater 19:639–655. doi:10.1002/adma.200601173 CrossRefGoogle Scholar
  26. 26.
    Kovalev D, Diener J, Heckler H et al (2000) Optical absorption cross sections of Si nanocrystals. Phys Rev B 61:4485–4487CrossRefGoogle Scholar
  27. 27.
    Algar WR, Kim H, Medintz IL, Hildebrandt N (2014) Emerging non-traditional Förster resonance energy transfer configurations with semiconductor quantum dots: investigations and applications. Coord Chem Rev 263–264:65–85. doi:10.1016/j.ccr.2013.07.015 CrossRefGoogle Scholar
  28. 28.
    Medintz IL, Mattoussi H (2009) Quantum dot-based resonance energy transfer and its growing application in biology. Phys Chem Chem Phys 11:17–45. doi:10.1039/B813919A CrossRefGoogle Scholar
  29. 29.
    Enghag P (2004) Encyclopedia of the Elements: technical data-history-processing-applications. In: Encyclopedia of the Elements: Technical Data - History - Processing - Applications. Wiley, WeinheimGoogle Scholar
  30. 30.
    Buriak JM (2014) Illuminating silicon surface hydrosilylation: an unexpected plurality of mechanisms. Chem Mater 26:763–772. doi:10.1021/cm402120f CrossRefGoogle Scholar
  31. 31.
    Kelly JA, Henderson EJ, Veinot JGC (2010) Sol-gel precursors for group 14 nanocrystals. Chem Commun 46:8704–8718. doi:10.1039/C0CC02609C CrossRefGoogle Scholar
  32. 32.
    Locritani M, Yu Y, Bergamini G et al (2014) Silicon nanocrystals functionalized with pyrene units: efficient light-harvesting antennae with bright near-infrared emission. J Phys Chem Lett 5:3325–3329. doi:10.1021/jz501609e CrossRefGoogle Scholar
  33. 33.
    Rowland CE, Hannah DC, Demortière A et al (2014) Silicon nanocrystals at elevated temperatures: retention of photoluminescence and diamond silicon to β-silicon carbide phase transition. ACS Nano 8:9219–9223. doi:10.1021/nn5029967 CrossRefGoogle Scholar
  34. 34.
    Zhou Z, Brus L, Friesner R (2003) Electronic structure and luminescence of 1.1- and 1.4-nm silicon nanocrystals: oxide shell versus hydrogen passivation. Nano Lett 3:163–167. doi:10.1021/nl025890q CrossRefGoogle Scholar
  35. 35.
    Beard MC, Knutsen KP, Yu P et al (2007) Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett 7:2506–2512. doi:10.1021/nl071486l CrossRefGoogle Scholar
  36. 36.
    Gu L, Hall DJ, Qin Z et al (2013) In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nat Commun 4:2326. doi:10.1038/ncomms3326 Google Scholar
  37. 37.
    Cheng X, Lowe SB, Reece PJ, Gooding JJ (2014) Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chem Soc Rev 43:2680. doi:10.1039/c3cs60353a CrossRefGoogle Scholar
  38. 38.
    Dasog M, Kehrle J, Rieger B, Veinot JGC (2015) Silicon nanocrystals and silicon-polymer hybrids: synthesis, surface engineering, and applications. Angew Chem Int Ed. doi:10.1002/anie.201506065 Google Scholar
  39. 39.
    Sommer A, Cimpean C, Kunz M et al (2011) Ultrafast excitation energy transfer in vinylpyridine terminated silicon quantum dots. J Phys Chem C 115:22781–22788. doi:10.1021/jp206495j CrossRefGoogle Scholar
  40. 40.
    Groenewegen V, Kuntermann V, Haarer D et al (2010) Excited-state relaxation dynamics of 3-vinylthiophene-terminated silicon quantum dots. J Phys Chem C 114:11693–11698. doi:10.1021/jp100266w CrossRefGoogle Scholar
  41. 41.
    Wang G, Ji J, Xu X (2014) Dual-emission of silicon quantum dots modified by 9-ethylanthracene. J Mater Chem C 2:1977. doi:10.1039/c3tc32318h CrossRefGoogle Scholar
  42. 42.
    Mazzaro R, Locritani M, Molloy JK et al (2015) Photoinduced processes between pyrene-functionalized silicon nanocrystals and carbon allotropes—SI. Chem Mater 27:4390–4397. doi:10.1021/acs.chemmater.5b01769 CrossRefGoogle Scholar
  43. 43.
    Fermi A, Locritani M, Carlo D et al (2015) Light-harvesting antennae based on photoactive silicon nanocrystals functionalized with porphyrin chromophores. Faraday Discuss 00:1–15. doi:10.1039/c5fd00098j Google Scholar
  44. 44.
    Rosso-Vasic M, DeCola L, Zuilhof H (2009) Efficient energy transfer between silicon nanoparticles and a Ru-polypyridine complex. J Phys Chem C 113:2235–2240. doi:10.1021/jp804623w CrossRefGoogle Scholar
  45. 45.
    Hessel CM, Henderson EJ, Veinot JGC (2006) Hydrogen silsesquioxane: a molecular precursor for nanocrystalline Si-SiO2 composites and freestanding hydride-surface-terminated silicon nanoparticles. Chem Mater 18:36139–36146. doi:10.1021/cm602803 CrossRefGoogle Scholar
  46. 46.
    Yu Y, Bosoy CA, Hessel CM et al (2013) Silicon nanocrystal superlattices. ChemPhysChem 14:84–87. doi:10.1002/cphc.201200738 CrossRefGoogle Scholar
  47. 47.
    Yu Y, Bosoy CA, Smilgies DM, Korgel BA (2013) Self-assembly and thermal stability of binary superlattices of gold and silicon nanocrystals. J Phys Chem Lett 4:3677–3682. doi:10.1021/jz401964s CrossRefGoogle Scholar
  48. 48.
    Knipping J, Wiggers H, Rellinghaus B et al (2004) Synthesis of high purity silicon nanoparticles in a low pressure microwave reactor. J Nanosci Nanotechnol 4:1039–1044. doi:10.1166/jnn.2004.149 CrossRefGoogle Scholar
  49. 49.
    Tilley RD, Warner JH, Yamamoto K et al (2005) Micro-emulsion synthesis of monodisperse surface stabilized silicon nanocrystals. Chem Commun (Camb). doi:10.1039/b416069j Google Scholar
  50. 50.
    Rosso-Vasic M, Spruijt E, Van Lagen B et al (2008) Alkyl-functionalized oxide-free silicon nanoparticles: synthesis and optical properties. Small 4:1835–1841. doi:10.1002/smll.200800066 CrossRefGoogle Scholar
  51. 51.
    Dasog M, Yang Z, Regli S et al (2013) Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals. ACS Nano 7:2676–2685. doi:10.1021/nn4000644 CrossRefGoogle Scholar
  52. 52.
    Tsybeskov L, Vandyshev JV, Fauchet PM (1994) Blue emission in porous silicon: oxygen-related photoluminescence. Phys Rev B 49:7821–7824CrossRefGoogle Scholar
  53. 53.
    Petkov V, Hessel CM, Ovtchinnikoff J et al (2013) Structure-properties correlation in Si nanoparticles by total scattering and computer simulations. Chem Mater 25:2365–2371. doi:10.1021/cm401099q CrossRefGoogle Scholar
  54. 54.
    Liu N, Chen H-Z, Chen F, Wang M (2008) Förster resonance energy transfer from poly(9-vinyl carbazole) to silicon nanoparticles in their composite films. Chem Phys Lett 451:70–74. doi:10.1016/j.cplett.2007.11.057 CrossRefGoogle Scholar
  55. 55.
    Erogbogbo F, Chang C-W, May J et al (2012) Energy transfer from a dye donor to enhance the luminescence of silicon quantum dots. Nanoscale 4:5163. doi:10.1039/c2nr31003a CrossRefGoogle Scholar
  56. 56.
    Dasog M, De Los Reyes GB, Titova LV et al (2014) Size vs surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups. ACS Nano 8:9636–9648. doi:10.1021/nn504109a CrossRefGoogle Scholar
  57. 57.
    Dohnalová K, Gregorkiewicz T, Kůsová K (2014) Silicon quantum dots: surface matters. J Phys: Condens Matter 26:173201. doi:10.1088/0953-8984/26/17/173201 Google Scholar
  58. 58.
    Li Q, He Y, Chang J, Wang L, Chen H, Tan Y-W, Wang H, Shao Z (2013) Surface-modified silicon nanoparticles with ultrabright photoluminescence and single-exponential decay for nanoscale fluorescence lifetime imaging of temperature. J Am Chem Soc 135:14924–14927CrossRefGoogle Scholar
  59. 59.
    Zhou T, Anderson RT, Li H et al (2015) Bandgap tuning of silicon quantum dots by surface functionalization with conjugated organic groups. Nano Lett 15:3657–3663. doi:10.1021/nl504051x CrossRefGoogle Scholar
  60. 60.
    Balzani V, Ceroni P, Juris A (2014) Photochemistry and photophysics: concepts, research, applications. Wiley, WeinheimGoogle Scholar
  61. 61.
    Star A, Liu Y, Grant K, Ridvan L, Stoddart JF, Steuerman DW, Diehl MR, Boukai A, Heath JR (2003) Noncovalent side-wall functionalization of single-walled carbon nanotubes. Macromolecules 36:553–560. doi:10.1021/ma021417n CrossRefGoogle Scholar
  62. 62.
    Ondic L, Kusova K, Ziegler M et al (2014) A complex study of the fast blue luminescence of oxidized silicon nanocrystals: the role of the core. Nanoscale 6:3837–3845. doi:10.1039/C3NR06454A CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Chemistry “G. Ciamician”University of BolognaBolognaItaly
  2. 2.Department of Chemical Engineering, Texas Materials Institute, Center for Nano- and Molecular Science and TechnologyThe University of Texas at AustinAustinUSA
  3. 3.Centro Interuniversitario per la Conversione Chimica dell’Energia Solare (SOLAR-CHEM), Unità di BolognaBolognaItaly

Personalised recommendations