Luminescent Rare-earth-based Nanoparticles: A Summarized Overview of their Synthesis, Functionalization, and Applications

  • Alberto Escudero
  • Carolina Carrillo-Carrión
  • Mikhail V. Zyuzin
  • Wolfgang J. Parak
Review
Part of the following topical collections:
  1. Photoactive Semiconductor Nanocrystal Quantum Dots

Abstract

Rare-earth-based nanoparticles are currently attracting wide research interest in material science, physics, chemistry, medicine, and biology due to their optical properties, their stability, and novel applications. We present in this review a summarized overview of the general and recent developments in their synthesis and functionalization. Their luminescent properties are also discussed, including the latest advances in the enhancement of their emission luminescence. Some of their more relevant and novel biomedical, analytical, and optoelectronic applications are also commented on.

Keywords

Luminescence Nanoparticles Rare earths Synthesis Bioimaging Biosensing 

References

  1. 1.
    Wang G, Peng Q, Li Y (2011) Acc Chem Res 44:322CrossRefGoogle Scholar
  2. 2.
    Stouwdam JW, van Veggel FCJM (2002) Nano Lett 2:733CrossRefGoogle Scholar
  3. 3.
    Lage MM, Righi A, Matinaga FM, Gesland JY, Moreira RL (2004) J Phys Condens Matter 16:3207CrossRefGoogle Scholar
  4. 4.
    Yan RX, Li YD (2005) Adv Funct Mater 15:763CrossRefGoogle Scholar
  5. 5.
    Epple M, Ganesan K, Heumann R, Klesing J, Kovtun A, Neumann S, Sokolova V (2010) J Mater Chem 20:18CrossRefGoogle Scholar
  6. 6.
    Gupta BK, Rathee V, Narayanan TN, Thanikaivelan P, Saha A, Govind, Singh SP, Shanker V, Marti AA, Ajayan PM (2011) Small 7:1767CrossRefGoogle Scholar
  7. 7.
    Kaczmarek AM, Van Deun R (2013) Chem Soc Rev 42:8835CrossRefGoogle Scholar
  8. 8.
    Maldiney T, Richard C, Seguin J, Wattier N, Bessodes M, Scherman D (2011) ACS Nano 5:854CrossRefGoogle Scholar
  9. 9.
    Maldiney T, Lecointre A, Viana B, Bessière A, Bessodes M, Gourier D, Richard C, Scherman D (2011) J Am Chem Soc 133:11810CrossRefGoogle Scholar
  10. 10.
    Richardson FS (1982) Chem Rev 82:541CrossRefGoogle Scholar
  11. 11.
    Liping L, Minglei Z, Wenming T, Xiangfeng G, Guangshe L, Liusai Y (2010) Nanotechnology 21:195601CrossRefGoogle Scholar
  12. 12.
    Eliseeva SV, Bunzli J-CG (2010) Chem Soc Rev 39:189CrossRefGoogle Scholar
  13. 13.
    Riedinger A, Zhang F, Dommershausen F, Rocker C, Brandholt S, Nienhaus GU, Koert U, Parak WJ (2010) Small 6:2590CrossRefGoogle Scholar
  14. 14.
    Pandey A, Roy MK, Pandey A, Zanella M, Sperling RA, Parak WJ, Samaddar AB, Verma HC (2009) IEEE Trans NanoBioscience 8:43CrossRefGoogle Scholar
  15. 15.
    Wang F, Liu X (2009) Chem Soc Rev 38:976CrossRefGoogle Scholar
  16. 16.
    Zhou B, Shi B, Jin D, Liu X (2015) Nat Nano 10:924CrossRefGoogle Scholar
  17. 17.
    Auzel F (2004) Chem Rev 104:139CrossRefGoogle Scholar
  18. 18.
    Haase M, Schäfer H (2011) Angew Chem Int Ed 50:5808CrossRefGoogle Scholar
  19. 19.
    Zhou J, Liu Q, Feng W, Sun Y, Li F (2015) Chem Rev 115:395CrossRefGoogle Scholar
  20. 20.
    Wisser MD, Chea M, Lin Y, Wu DM, Mao WL, Salleo A, Dionne JA (2015) Nano Lett 15:1891CrossRefGoogle Scholar
  21. 21.
    Núñez N, Sabek J, García-Sevillano J, Cantelar E, Escudero A, Ocaña M (2013) Eur J Inorg Chem 2013:1301CrossRefGoogle Scholar
  22. 22.
    Escudero A, Moretti E, Ocaña M (2014) CrystEngComm 16:3274CrossRefGoogle Scholar
  23. 23.
    Núñez NO, Rivera S, Alcántara D, de la Fuente JM, García-Sevillano J, Ocaña M (2013) Dalton Trans 42:10725CrossRefGoogle Scholar
  24. 24.
    Abdesselem M, Schoeffel M, Maurin I, Ramodiharilafy R, Autret G, Clément O, Tharaux P-L, Boilot J-P, Gacoin T, Bouzigues C, Alexandrou A (2014) ACS Nano 8:11126CrossRefGoogle Scholar
  25. 25.
    Núñez NO, Zambrano P, García-Sevillano J, Cantelar E, Rivera-Fernández S, de la Fuente JM, Ocaña M (2015) Eur J Inorg Chem 2015:4546CrossRefGoogle Scholar
  26. 26.
    Boyer J-C, van Veggel FCJM (2010) Nanoscale 2:1417CrossRefGoogle Scholar
  27. 27.
    Mialon G, Türkcan S, Dantelle G, Collins DP, Hadjipanayi M, Taylor RA, Gacoin T, Alexandrou A, Boilot J-P (2010) J Phys Chem C 114:22449CrossRefGoogle Scholar
  28. 28.
    Ostrowski AD, Chan EM, Gargas DJ, Katz EM, Han G, Schuck PJ, Milliron DJ, Cohen BE (2012) ACS Nano 6:2686CrossRefGoogle Scholar
  29. 29.
    Shao W, Chen G, Damasco J, Wang X, Kachynski A, Ohulchanskyy TY, Yang C, Ågren H, Prasad PN (2014) Opt Lett 39:1386CrossRefGoogle Scholar
  30. 30.
    Yin W, Zhou L, Gu Z, Tian G, Jin S, Yan L, Liu X, Xing G, Ren W, Liu F, Pan Z, Zhao Y (2012) J Mater Chem 22:6974CrossRefGoogle Scholar
  31. 31.
    Punjabi A, Wu X, Tokatli-Apollon A, El-Rifai M, Lee H, Zhang Y, Wang C, Liu Z, Chan EM, Duan C, Han G (2014) ACS Nano 8:10621CrossRefGoogle Scholar
  32. 32.
    Dantelle G, Calderón-Villajos R, Zaldo C, Cascales C, Gacoin T (2014) ACS Appl Mater Interfaces 6:22483CrossRefGoogle Scholar
  33. 33.
    Zou W, Visser C, Maduro JA, Pshenichnikov MS, Hummelen JC (2012) Nat Photon 6:560CrossRefGoogle Scholar
  34. 34.
    Gnach A, Bednarkiewicz A (2012) Nano Today 7:532CrossRefGoogle Scholar
  35. 35.
    Liu Y, Tu D, Zhu H, Chen X (2013) Chem Soc Rev 42:6924CrossRefGoogle Scholar
  36. 36.
    Liu Y, Tu D, Zhu H, Ma E, Chen X (2013) Nanoscale 5:1369CrossRefGoogle Scholar
  37. 37.
    Dong H, Du S-R, Zheng X-Y, Lyu G-M, Sun L-D, Li L-D, Zhang P-Z, Zhang C, Yan C-H (2015) Chem Rev 115:10725CrossRefGoogle Scholar
  38. 38.
    Sedlmeier A, Gorris HH (2015) Chem Soc Rev 44:1526CrossRefGoogle Scholar
  39. 39.
    Zheng W, Huang P, Tu D, Ma E, Zhu H, Chen X (2015) Chem Soc Rev 44:1379CrossRefGoogle Scholar
  40. 40.
    Boyer J-C, Vetrone F, Cuccia LA, Capobianco JA (2006) J Am Chem Soc 128:7444CrossRefGoogle Scholar
  41. 41.
    Yi GS, Chow GM (2006) Adv Funct Mater 16:2324CrossRefGoogle Scholar
  42. 42.
    Dong C, van Veggel FCJM (2009) ACS Nano 3:123CrossRefGoogle Scholar
  43. 43.
    Wang X, Zhuang J, Peng Q, Li Y (2005) Nature 437:121CrossRefGoogle Scholar
  44. 44.
    Wang F, Deng R, Liu X (2014) Nat Protocols 9:1634CrossRefGoogle Scholar
  45. 45.
    Zhengquan L, Yong Z (2008) Nanotechnology 19:345606CrossRefGoogle Scholar
  46. 46.
    Naccache R, Vetrone F, Mahalingam V, Cuccia LA, Capobianco JA (2009) Chem Mat 21:717CrossRefGoogle Scholar
  47. 47.
    Quintanilla M, Nunez NO, Cantelar E, Ocana M, Cusso F (2011) Nanoscale 3:1046CrossRefGoogle Scholar
  48. 48.
    Rodríguez-Liviano S, Núñez NO, Rivera-Fernández S, de la Fuente JM, Ocaña M (2013) Langmuir 29:3411CrossRefGoogle Scholar
  49. 49.
    Nuñez NO, García M, García-Sevillano J, Rivera-Fernández S, de la Fuente JM, Ocaña M (2014) Eur J Inorg Chem 2014:6075CrossRefGoogle Scholar
  50. 50.
    Becerro AI, González-Mancebo D, Cantelar E, Cussó F, Stepien G, de la Fuente JM, Ocaña M (2016) Langmuir 32:411CrossRefGoogle Scholar
  51. 51.
    Rodríguez-Liviano S, Becerro AI, Alcántara D, Grazú V, de la Fuente JM, Ocaña M (2013) Inorg Chem 52:647CrossRefGoogle Scholar
  52. 52.
    Becerro AI, Rodríguez-Liviano S, Fernández-Carrión AJ, Ocaña M (2013) Cryst Growth Des 13:526CrossRefGoogle Scholar
  53. 53.
    Becerro AI, Criado J, Gontard LC, Obregón S, Fernández A, Colón G, Ocaña M (2014) Cryst Growth Des 14:3319CrossRefGoogle Scholar
  54. 54.
    Becerro AI, Ocana M (2015) RSC Adv 5:34517CrossRefGoogle Scholar
  55. 55.
    Escudero A, Calvo ME, Rivera-Fernández S, de la Fuente JM, Ocaña M (2013) Langmuir 29:1985CrossRefGoogle Scholar
  56. 56.
    Rodríguez-Liviano S, Aparicio FJ, Rojas TC, Hungría AB, Chinchilla LE, Ocaña M (2012) Cryst Growth Des 12:635CrossRefGoogle Scholar
  57. 57.
    Gemini L, Hernández MC, Kling R (2016) Proc. SPIE 9722:972205CrossRefGoogle Scholar
  58. 58.
    Pellegrino T, Kudera S, Liedl T, Muñoz Javier A, Manna L, Parak WJ (2005) Small 1:48CrossRefGoogle Scholar
  59. 59.
    Thanh NTK, Green LAW (2010) Nano Today 5:213CrossRefGoogle Scholar
  60. 60.
    Wilhelm S, Kaiser M, Wurth C, Heiland J, Carrillo-Carrion C, Muhr V, Wolfbeis OS, Parak WJ, Resch-Genger U, Hirsch T (2015) Nanoscale 7:1403CrossRefGoogle Scholar
  61. 61.
    Dong A, Ye X, Chen J, Kang Y, Gordon T, Kikkawa JM, Murray CB (2011) J Am Chem Soc 133:998CrossRefGoogle Scholar
  62. 62.
    Zhang F, Lees E, Amin F, Rivera_Gil P, Yang F, Mulvaney P, Parak WJ (2011) Small 7:3113CrossRefGoogle Scholar
  63. 63.
    Li L-L, Zhang R, Yin L, Zheng K, Qin W, Selvin PR, Lu Y (2012) Angew Chem Int Edn 51:6121CrossRefGoogle Scholar
  64. 64.
    Jiang G, Pichaandi J, Johnson NJJ, Burke RD, van Veggel FCJM (2012) Langmuir 28:3239CrossRefGoogle Scholar
  65. 65.
    Deng M, Tu N, Bai F, Wang L (2012) Chem. Mat. 24:2592CrossRefGoogle Scholar
  66. 66.
    Carrillo-Carrión C, Parak WJ (2016) J Colloid Interface SciGoogle Scholar
  67. 67.
    Bogdan N, Vetrone F, Ozin GA, Capobianco JA (2011) Nano Lett 11:835CrossRefGoogle Scholar
  68. 68.
    Wang M, Liu J-L, Zhang Y-X, Hou W, Wu X-L, Xu S-K (2009) Mater Lett 63:325CrossRefGoogle Scholar
  69. 69.
    Chen Z, Chen H, Hu H, Yu M, Li F, Zhang Q, Zhou Z, Yi T, Huang C (2008) J Am Chem Soc 130:3023CrossRefGoogle Scholar
  70. 70.
    Cooper DR, Kudinov K, Tyagi P, Hill CK, Bradforth SE, Nadeau JL (2014) Phys Chem Chem Phys 16:12441CrossRefGoogle Scholar
  71. 71.
    Chen YC, Huang SC, Wang YK, Liu YT, Wu TK, Chen TM (2013) Chem Asian J 8:2652CrossRefGoogle Scholar
  72. 72.
    Sukhorukov GB, Donath E, Davis S, Lichtenfeld H, Caruso F, Popov VI, Möhwald H (1998) Polym Adv Technol 9:759CrossRefGoogle Scholar
  73. 73.
    Wang L, Yan R, Huo Z, Wang L, Zeng J, Bao J, Wang X, Peng Q, Li Y (2005) Angewandte Chemie Int Edn 44:6054CrossRefGoogle Scholar
  74. 74.
    Escudero A, Carrillo-Carrión C, Zyuzin MV, Ashraf S, Hartmann R, Núñez NO, Ocaña M, Parak WJ (2016) Nanoscale 8:12221CrossRefGoogle Scholar
  75. 75.
    Guerrero-Martínez A, Pérez-Juste J, Liz-Marzán LM (2010) Adv Mater 22:1182CrossRefGoogle Scholar
  76. 76.
    Hu H, Xiong L, Zhou J, Li F, Cao T, Huang C (2009) Chem Eur J 15:3577CrossRefGoogle Scholar
  77. 77.
    Gai S, Yang P, Li C, Wang W, Dai Y, Niu N, Lin J (2010) Adv Funct Mater 20:1166CrossRefGoogle Scholar
  78. 78.
    Mader HS, Link M, Achatz DE, Uhlmann K, Li X, Wolfbeis OS (2010) Chem Eur J. 16:5416CrossRefGoogle Scholar
  79. 79.
    Gargas DJ, Chan EM, Ostrowski AD, Aloni S, Altoe MVP, Barnard ES, Sanii B, Urban JJ, Milliron DJ, Cohen BE, Schuck PJ (2014) Nat Nano 9:300CrossRefGoogle Scholar
  80. 80.
    Sun L, Ge X, Liu J, Qiu Y, Wei Z, Tian B, Shi L (2014) Nanoscale 6:13242CrossRefGoogle Scholar
  81. 81.
    Cheng L, Yang K, Zhang S, Shao M, Lee S, Liu Z (2010) Nano Res 3:722CrossRefGoogle Scholar
  82. 82.
    Chen G, Shen J, Ohulchanskyy TY, Patel NJ, Kutikov A, Li Z, Song J, Pandey RK, Ågren H, Prasad PN, Han G (2012) ACS Nano 6:8280CrossRefGoogle Scholar
  83. 83.
    Wong H-T, Tsang M-K, Chan C-F, Wong K-L, Fei B, Hao J (2013) Nanoscale 5:3465CrossRefGoogle Scholar
  84. 84.
    Wu X, Zhang Y, Takle K, Bilsel O, Li Z, Lee H, Zhang Z, Li D, Fan W, Duan C, Chan EM, Lois C, Xiang Y, Han G (2016) ACS Nano 10:1060CrossRefGoogle Scholar
  85. 85.
    Gorris HH, Ali R, Saleh SM, Wolfbeis OS (2011) Adv Mater 23:1652CrossRefGoogle Scholar
  86. 86.
    Geißler D, Linden S, Liermann K, Wegner KD, Charbonnière LJ, Hildebrandt N (2014) Inorg Chem 53:1824CrossRefGoogle Scholar
  87. 87.
    Qiu X, Hildebrandt N (2015) ACS Nano 9:8449CrossRefGoogle Scholar
  88. 88.
    Tang Ya, Hu J, Elmenoufy AH, Yang X (2015) ACS Appl Mater Interfaces 7: 12261Google Scholar
  89. 89.
    Hemmer E, Quintanilla M, Légaré F, Vetrone F (2015) Chem Mat 27:235CrossRefGoogle Scholar
  90. 90.
    Chen H, Guan Y, Wang S, Ji Y, Gong M, Wang L (2014) Langmuir 30:13085CrossRefGoogle Scholar
  91. 91.
    Mattsson L, Wegner KD, Hildebrandt N, Soukka T (2015) RSC Adv 5:13270CrossRefGoogle Scholar
  92. 92.
    Kumar M, Zhang P (2010) Biosens Bioelectron 25:2431CrossRefGoogle Scholar
  93. 93.
    Esipova TV, Ye X, Collins JE, Sakadžić S, Mandeville ET, Murray CB, Vinogradov SA (2012) Proc Natl Acad Sci 109:20826CrossRefGoogle Scholar
  94. 94.
    Liu Y, Zhou S, Tu D, Chen Z, Huang M, Zhu H, Ma E, Chen X (2012) J Am Chem Soc 134:15083CrossRefGoogle Scholar
  95. 95.
    Rainò G, Stöferle T, Park C, Kim H-C, Topuria T, Rice PM, Chin I-J, Miller RD, Mahrt RF (2011) ACS Nano 5:3536CrossRefGoogle Scholar
  96. 96.
    Johanna V, Tero S (2014) Methods Appl Fluoresc 2:012001CrossRefGoogle Scholar
  97. 97.
    Zhou S, Zheng W, Chen Z, Tu D, Liu Y, Ma E, Li R, Zhu H, Huang M, Chen X (2014) Angew Chem Int Ed 53:12498Google Scholar
  98. 98.
    Xu J, Zhou S, Tu D, Zheng W, Huang P, Li R, Chen Z, Huang M, Chen X (2016) Chem Sci 7:2572CrossRefGoogle Scholar
  99. 99.
    Saleh SM, Ali R, Hirsch T, Wolfbeis OS (2011) J Nanoparticle Res 13:4603CrossRefGoogle Scholar
  100. 100.
    Liu C, Wang Z, Jia H, Li Z (2011) Chem Commun 47:4661CrossRefGoogle Scholar
  101. 101.
    Xu S, Xu S, Zhu Y, Xu W, Zhou P, Zhou C, Dong B, Song H (2014) Nanoscale 6:12573CrossRefGoogle Scholar
  102. 102.
    Harvey P, Oakland C, Driscoll MD, Hay S, Natrajan LS (2014) Dalton Trans 43:5265CrossRefGoogle Scholar
  103. 103.
    Duan N, Wu S, Zhu C, Ma X, Wang Z, Yu Y, Jiang Y (2012) Anal Chim Acta 723:1CrossRefGoogle Scholar
  104. 104.
    Wu K, Cui J, Kong X, Wang Y (2011) J Appl Phys 110:053510CrossRefGoogle Scholar
  105. 105.
    Li D, Wang Y, Zhang X, Yang K, Liu L, Song Y (2012) Optics Commun 285:1925CrossRefGoogle Scholar
  106. 106.
    Vetrone F, Naccache R, Zamarrón A, Juarranz de la Fuente A, Sanz-Rodríguez F, Martinez Maestro L, Martín Rodriguez E, Jaque D, García Solé J, Capobianco JA (2010) ACS Nano 4: 3254Google Scholar
  107. 107.
    Sedlmeier A, Achatz DE, Fischer LH, Gorris HH, Wolfbeis OS (2012) Nanoscale 4:7090CrossRefGoogle Scholar
  108. 108.
    Liu X, Wang Y, Wang J, Zhang E, Xiong L, Zhao W (2009) Lasers & Electro Optics & The Pacific Rim Conference on Lasers and Electro-Optics, 2009. CLEO/PACIFIC RIM ‘09. Conference on p 1Google Scholar
  109. 109.
    Zhou P, Wang X, Ma Y, Lü H, Liu Z (2012) Laser Phys 22:1744CrossRefGoogle Scholar
  110. 110.
    Sayed FN, Grover V, Sudarsan V, Pandey BN, Asthana A, Vatsa RK, Tyagi AK (2012) J Colloid Interface Sci 367:161CrossRefGoogle Scholar
  111. 111.
    Nathan CG, Kristin AD, Ram S (2013) Annu Rev Mater Res 43:481CrossRefGoogle Scholar
  112. 112.
    Li Y, Zhang J, Luo Y, Zhang X, Hao Z, Wang X (2011) J Mater Chem 21:2895CrossRefGoogle Scholar
  113. 113.
    Than ETTY (2012) Rare Earth Nanotechnology. Pan Stanford Publishing Pte. Ltd., SingaporeCrossRefGoogle Scholar
  114. 114.
    Das S, Yang C-Y, Lu C-H (2013) J Am Ceram Soc 96:1602CrossRefGoogle Scholar
  115. 115.
    Soares MRN, Soares MJ, Fernandes AJS, Rino L, Costa FM, Monteiro T (2011) J Mater Chem 21:15262CrossRefGoogle Scholar
  116. 116.
    Klampaftis E, Ross D, McIntosh KR, Richards BS (2009) Solar Energy Mater Solar Cells 93:1182CrossRefGoogle Scholar
  117. 117.
    Huang CK, Chen YC, Hung WB, Chen TM, Sun KW, Chang WL (2013) Prog Photovolt Res Appl 21:1507CrossRefGoogle Scholar
  118. 118.
    Naccache R, Vetrone F, Capobianco JA (2013) ChemSusChem 6:1308CrossRefGoogle Scholar
  119. 119.
    Yuan C, Chen G, Prasad PN, Ohulchanskyy TY, Ning Z, Tian H, Sun L, Agren H (2012) J Mater Chem 22:16709CrossRefGoogle Scholar
  120. 120.
    Yuan C, Chen G, Li L, Damasco JA, Ning Z, Xing H, Zhang T, Sun L, Zeng H, Cartwright AN, Prasad PN, Ågren H (2014) ACS Appl Mater Interfaces 6:18018CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.AG Biophotonik, Fachbereich PhysikPhilipps-Universität MarburgMarburgGermany
  2. 2.Instituto de Ciencia de Materiales de SevillaCSIC, Universidad de SevillaSevilleSpain
  3. 3.CIC biomaGUNESan SebastianSpain

Personalised recommendations