Advertisement

Ni- and Fe-catalyzed Carboxylation of Unsaturated Hydrocarbons with CO2

  • Francisco Juliá-Hernández
  • Morgane Gaydou
  • Eloisa Serrano
  • Manuel van Gemmeren
  • Ruben MartinEmail author
Review
Part of the following topical collections:
  1. Ni- and Fe-Based Cross-Coupling Reactions

Abstract

The sustainable utilization of available feedstock materials for preparing valuable compounds holds great promise to revolutionize approaches in organic synthesis. In this regard, the implementation of abundant and inexpensive carbon dioxide (CO2) as a C1 building block has recently attracted considerable attention. Among the different alternatives in CO2 fixation, the preparation of carboxylic acids, relevant motifs in pharmaceuticals and agrochemicals, is particularly appealing, thus providing a rapid and unconventional entry to building blocks that are typically prepared via waste-producing protocols. While significant advances have been realized, the utilization of simple unsaturated hydrocarbons as coupling partners in carboxylation events is undoubtedly of utmost academic and industrial relevance, as two available feedstock materials can be combined in a catalytic fashion. This review article aims to describe the main achievements on the direct carboxylation of unsaturated hydrocarbons with CO2 by using cheap and available Ni or Fe catalytic species.

Keywords

Nickel Iron CO2 Carboxylation Unsaturated hydrocarbons Catalysis Carboxylic acids Cross-coupling 

Notes

Acknowledgments

We thank ICIQ, European Research Council (ERC-277883), MINECO (CTQ2015-65496-R & Severo Ochoa Excellence Accreditation 2014-2018, SEV-2013-0319) and Cellex Foundation for support. E. Serrano, M. van Gemmeren and F. Juliá-Hernández thank MINECO, Alexander von Humboldt Foundation and COFUND for predoctoral and postdoctoral fellowships, respectively.

References

  1. 1.
    Aresta M (1999) Recovery and utilisation of carbon dioxide. RUCADI, EU ReportGoogle Scholar
  2. 2.
    von der Assen N, Voll P, Peters M, Bardow A (2014) Life cycle assessment of CO2 capture and utilization: a tutorial review. Chem Soc Rev 43:7982–7994CrossRefGoogle Scholar
  3. 3.
    Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. technological use of CO2. Chem Rev 114:1709–1742CrossRefGoogle Scholar
  4. 4.
    Assen N, Muller LJ, Steingrube A, Voll P, Bardow A (2016) Selecting CO2 sources for CO2 utilization by environmental-merit-order Curves. Environ Sci Technol 50:1093–1101CrossRefGoogle Scholar
  5. 5.
    Meylan FD, Moreau V, Erkman S (2015) CO2 utilization in the perspective of industrial ecology, an overview. J CO2 Util 12:101–108Google Scholar
  6. 6.
    Mikkelsen M, Jørgensen M, Krebs FC (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci 3:43–81CrossRefGoogle Scholar
  7. 7.
    Wang S, Du G, Xi C (2016) Copper-catalyzed carboxylation reactions using carbon dioxide. Org Biomol Chem 14:3666–3676CrossRefGoogle Scholar
  8. 8.
    Sekine K, Yamada T (2016) Silver-catalyzed carboxylation. Chem Soc Rev. doi: 10.1039/c5cs00895f Google Scholar
  9. 9.
    Yu D, Teong SP, Zhang Y (2015) Transition metal complex catalyzed carboxylation reactions with CO2. Coord Chem Rev 293–294:279–291CrossRefGoogle Scholar
  10. 10.
    Guo C-X, Yu B, Ma R, He L-N (2015) Metal-promoted carboxylation of alkynes/allenes with carbon dioxide. Curr Green Chem 2:14–25CrossRefGoogle Scholar
  11. 11.
    Industrial-scale preparation of low molecular weight acids is mainly carried out by carbonylation and/or oxidation of the corresponding alcohols and light olefins. See for instance: Samel U-R, Kohler W, Gamer A O, Keuser U, Yang S-T, Jin Y, Lin M, Wang Z (2014) Propionic acid and derivatives. Ullmann’s Encyclopedia of Industrial Chemistry 1–20Google Scholar
  12. 12.
    Correa A, Martin R (2009) Metal-catalyzed carboxylation of organometallic reagents with carbon dioxide. Angew Chem Int Ed 48:6201–6204CrossRefGoogle Scholar
  13. 13.
    Brill M, Lazreg F, Cazin CSJ, Nolan SP (2016) Transition metal-catalyzed carboxylation of organic substrates with carbon dioxide. Top Organomet Chem 53:225–278Google Scholar
  14. 14.
    Correa A, Leon T, Martin R (2014) Ni-catalyzed carboxylation of C(sp2)- and C(sp3)-O bonds with CO2. J Am Chem Soc 136:1062–1069CrossRefGoogle Scholar
  15. 15.
    Moragas T, Gaydou M, Martin R (2016) Ni-catalyzed carboxylation of benzylic C–N bonds with CO2. Angew Chem Int Ed 55:5053–5057CrossRefGoogle Scholar
  16. 16.
    Wang X, Liu Y, Martin R (2015) Ni-catalyzed divergent cyclization/carboxylation of unactivated primary and secondary alkyl halides with CO2. J Am Chem Soc 137:6476–6479CrossRefGoogle Scholar
  17. 17.
    Aresta M, Dibenedetto A, Quaranta E (2016) Interaction of CO2 with C–C multiple bonds. Reaction mechanisms in carbon dioxide conversion: doi: 10.1007/978-3-662-46831-9_5
  18. 18.
    Aresta M, Nobile CF, Albano VG, Forni E, Manassero M (1975) New nickel–carbon dioxide complex: synthesis, properties, and crystallographic characterization of (carbon dioxide)-bis(tricyclohexylphosphine)nickel. J Chem Soc Chem Commun. doi: 10.1039/c39750000636 Google Scholar
  19. 19.
    Rintjema J, Peña Carrodeguas L, Laserna V, Sopeña S, Kleij AW (2015) Metal complexes catalyzed cyclization with CO2. Top Organomet Chem 53:39–71Google Scholar
  20. 20.
    Coates GW, Moore DR (2004) Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: discovery, reactivity, optimization, and mechanism. Angew Chem Int Ed 43:6618–6639CrossRefGoogle Scholar
  21. 21.
    Sa-A G, Sivaram S (1996) Organic carbonates. Chem Rev 96:951–976CrossRefGoogle Scholar
  22. 22.
    Federsel C, Jackstell R, Beller M (2010) State-of-the-art catalysts for hydrogenation of carbon dioxide. Angew Chem Int Ed 49:6254–6257CrossRefGoogle Scholar
  23. 23.
    Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727CrossRefGoogle Scholar
  24. 24.
    Goeppert A, Czaun M, Jones JP, Surya Prakash GK, Olah GA (2014) Recycling of carbon dioxide to methanol and derived products—closing the loop. Chem Soc Rev 43:7995–8048CrossRefGoogle Scholar
  25. 25.
    Matthessen R, Fransaer J, Binnemans K, De Vos DE (2014) Electrocarboxylation: towards sustainable and efficient synthesis of valuable carboxylic acids. Beilstein J Org Chem 10:2484–2500CrossRefGoogle Scholar
  26. 26.
    Nogi K, Fujihara T, Terao J, Tsuji Y (2016) Carboxyzincation employing carbon dioxide and zinc powder: cobalt-catalyzed multicomponent coupling reactions with alkynes. J Am Chem Soc 138:5547–5550CrossRefGoogle Scholar
  27. 27.
    Beller M, Gu X-F (2013) Transition metal catalyzed carbonylation reactions. Springer, New YorkCrossRefGoogle Scholar
  28. 28.
    Fujihara T, Nogi K, Xu T, Terao J, Tsuji Y (2012) Nickel-catalyzed carboxylation of aryl and vinyl chlorides employing carbon dioxide. J Am Chem Soc 134:9106–9109CrossRefGoogle Scholar
  29. 29.
    Liu Y, Cornella J, Martin R (2014) Ni-catalyzed carboxylation of unactivated primary alkyl bromides and sulfonates with CO2. J Am Chem Soc 136:11212–11215CrossRefGoogle Scholar
  30. 30.
    Inoue Y, Itoh Y, Hashimoto H (1977) Incorporation of carbon dioxide in alkyne oligomerization catalyzed by nickel(0) complexes. Formation of substituted 2-pyrones. Chem Lett 6:855–856CrossRefGoogle Scholar
  31. 31.
    Burkhart G, Hoberg H (1982) Oxanickelacyclopentene derivatives from Nickel(0), carbon dioxide, and alkynes. Angew Chem Int Ed 21:76CrossRefGoogle Scholar
  32. 32.
    Sakaki S, Mine K, Taguchi D, Arai T (1993) Formation of the oxanickelacyclopentene complex from nickel(0), carbon dioxide, and alkyne. An ab initio MO/SD-CI study. Bull Chem Soc Jpn 66:3289–3299CrossRefGoogle Scholar
  33. 33.
    Sakaki S, Mine K, Hamada T, Arai T (1995) Formation of the oxanickelacyclopentene complex from nickel(0), carbon dioxide, and alkyne. An ab initio MO/SD-CI Study. Part II. Reactivity and regioselectivity of hydroxyacetylene. Bull Chem Soc Jpn 68:1873–1882CrossRefGoogle Scholar
  34. 34.
    Graham DC, Bruce MI, Metha GF, Bowie JH, Buntine MA (2008) Regioselective control of the nickel-mediated coupling of acetylene and carbon dioxide—a DFT study. J Organomet Chem 693:2703–2710CrossRefGoogle Scholar
  35. 35.
    Li J, Jia G, Lin Z (2008) Theoritical studies on coupling reactions of carbon dioxide with alkynes mediated by Nickel(0) complexes. Organometallics 27:3892–3900CrossRefGoogle Scholar
  36. 36.
    Saito S, Nakagawa S, Koizumi T, Hirayama K, Yamamoto Y (1999) Nickel-mediated regio- and chemoselective carboxylation of alkynes in the presence of carbon dioxide. J Org Chem 64:3975–3978CrossRefGoogle Scholar
  37. 37.
    Aoki M, Kaneko M, Izumi S, Ukai K, Iwasawa N (2004) Bidentate amidine ligands for nickel(0)-mediated coupling of carbon dioxide with unsaturated hydrocarbons. Chem Commun 36(22):2568–2569CrossRefGoogle Scholar
  38. 38.
    Takimoto M, Shimizu K, Mori M (2001) Nickel-promoted alkylative or arylative carboxylation of alkynes. Org Lett 3:3345–3347CrossRefGoogle Scholar
  39. 39.
    Shimizu K, Takimoto M, Mori M (2003) Novel synthesis of heterocycles having a functionalized carbon center via Nickel-mediated carboxylation: total synthesis of Erythrocarine. Org Lett 5:2323–2325CrossRefGoogle Scholar
  40. 40.
    Shimizu K, Takimoto M, Sato Y, Mori M (2006) Total synthesis of (±)-erythrocarine using dienyne metathesis. J Organomet Chem 691:5466–5475CrossRefGoogle Scholar
  41. 41.
    Saito N, Sun Z, Sato Y (2015) Nickel-promoted highly regioselective carboxylation of aryl ynol ether and its application to the synthesis of chiral beta-aryloxypropionic acid derivatives. Chem Asian J 10:1170–1176CrossRefGoogle Scholar
  42. 42.
    Inoue Y, Itoh Y, Hashimoto H (1978) Oligomerization of 3-hexyne by nickel(0) complexes under CO2. Incorporation of CO2 and novel cyclotrimerization. Chem Lett 7:633–634CrossRefGoogle Scholar
  43. 43.
    Inoue Y, Itoh Y, Kazama H, Hashimoto H (1980) Reaction of dialkyl-substituted alkynes with carbon dioxide catalyzed by nickel(0) complexes. Incorporation of carbon dioxide in alkyne dimers and novel cyclotrimerization of the alkynes. Bull Chem Soc Jpn 53:3329–3333CrossRefGoogle Scholar
  44. 44.
    Walther D, Schönberg H, Dinjus E (1987) Aktivierung von kohlendioxid an übergangsmetallzentren: selektive cooligomerisation mit hexin durch das katalysatorsystem acetonitril/trialkylphosphan/nickel(0) und struktur eines nickel(0)-komplexes mit side-on gebundenem acetonitril. J Org Chem 334:377–388CrossRefGoogle Scholar
  45. 45.
    Tsuda T, Kunisada K, Nagahama N, Morikawa S, Saegusa T (1989) Nickel(0)-catalyzed cycloaddition of ethoxyethyne with carbon dioxide to 4,5-diethoxy-α-pyrone. Synth Commun 19:1575–1581CrossRefGoogle Scholar
  46. 46.
    Tsuda T, Hasegawa N, Saegusa T (1990) Nickel(0)-catalysed novel co-oligomerization of ethoxy(trimethylsilyl)ethyne with carbon dioxide to 4,6-diethoxy-3-[1-ethoxy-2,2-bis(trimethylsilyl)vinyl]-5-(trimethylsilyl)-2-pyrone. J Chem Soc, Chem Commun 945–947Google Scholar
  47. 47.
    Hoberg H, Schaefer D, Burkhart G, Krüger C, Romao MJ (1984) Nickel(0)-induzierte C-C verknüpfung zwischen kohlendioxid und alkinen sowie alkenen. J Organomet Chem 266:203–224CrossRefGoogle Scholar
  48. 48.
    Mori M (2007) Regio- and stereoselective synthesis of tri- and tetrasubstituted alkenes by introduction of CO2 and alkylzinc reagents into alkynes. Eur J Org Chem 2007:4981–4993CrossRefGoogle Scholar
  49. 49.
    Shimizu K, Takimoto M, Sato Y, Mori M (2005) Nickel-catalyzed regioselective synthesis of tetrasubstituted alkene using alkylative carboxylation of disubstituted alkyne. Org Lett 7:195–197CrossRefGoogle Scholar
  50. 50.
    Sato Y, Mori M, Shimizu K, Takimoto M (2006) Effective synthesis of tamoxifen using nickel-catalyzed arylative carboxylation. Synlett 2006:3182–3184CrossRefGoogle Scholar
  51. 51.
    Buchwald SL, Nielsen RB (1989) Selective, zirconium-mediated cross-coupling of alkynes: synthesis of isomerically pure 1,3-dienes and 1,4-diiodo 1,3-dienes. J Am Chem Soc 111:2870–2874CrossRefGoogle Scholar
  52. 52.
    Fujihara T, Horimoto Y, Mizoe T, Sayyed FB, Tani Y, Terao J, Sakaki S, Tsuji Y (2014) Nickel-catalyzed double carboxylation of alkynes employing carbon dioxide. Org Lett 16:4960–4963CrossRefGoogle Scholar
  53. 53.
    Li S, Yuan W, Ma S (2011) Highly regio- and stereoselective three-component nickel-catalyzed syn-hydrocarboxylation of alkynes with diethyl zinc and carbon dioxide. Angew Chem Int Ed 50:2578–2582CrossRefGoogle Scholar
  54. 54.
    Fujihara T, Xu T, Semba K, Terao J, Tsuji Y (2011) Copper-catalyzed hydrocarboxylation of alkynes using carbon dioxide and hydrosilanes. Angew Chem Int Ed 50:523–527CrossRefGoogle Scholar
  55. 55.
    Li S, Ma S (2011) Highly selective nickel-catalyzed methyl-carboxylation of homopropargylic alcohols for α-alkylidene-γ-butyrolactones. Org Lett 13:6046–6049CrossRefGoogle Scholar
  56. 56.
    Li S, Ma S (2012) CO2-activation for gamma-butyrolactones and its application in the total synthesis of (±)-heteroplexisolide E. Chem Asian J 7:2411–2418CrossRefGoogle Scholar
  57. 57.
    Wang X, Nakajima M, Martin R (2015) Ni-catalyzed regioselective hydrocarboxylation of alkynes with CO2 by using simple alcohols as proton sources. J Am Chem Soc 137:8924–8927CrossRefGoogle Scholar
  58. 58.
    Trost BM, Ball ZT (2005) Addition of metalloid hydrides to alkynes: hydrometallation with Boron, Silicon, and Tin. Synthesis 6:853–887CrossRefGoogle Scholar
  59. 59.
    Fu M-C, Shang R, Cheng W-M, Fu Y (2016) Nickel-catalyzed regio- and stereoselective hydrocarboxylation of alkynes with formic acid through catalytic CO recycling. ACS Catal 6:2501–2505CrossRefGoogle Scholar
  60. 60.
    Hoberg H, Schaefer D (1982) Nickel(0)-induzierte C-C verknupfung zwischen alkenen und kohlendioxid. J Organomet Chem 236:C28–C30CrossRefGoogle Scholar
  61. 61.
    Hoberg H, Schaefer D (1983) Nickel(0)-induzierte C-C verknupfung zwischen kohlendioxid und etylen sowie mono- oder di-substituierten alkenen. J Organomet Chem 1983:C51–C53CrossRefGoogle Scholar
  62. 62.
    Hoberg H, Peres Y, Milchereit A (1986) C-C Verknupfung von alkenen mit CO2 an Nickel(0); Herstellung von zimtsaure aus styrol. J Organomet Chem 307:C38–C40CrossRefGoogle Scholar
  63. 63.
    Hoberg H, Ballesteros A, Sigan A, Jegat C, Barhausen D, Milchereit A (1991) Ligandgesteuerte ringkontraktion von Nickela-funfin vierringkomplexe-neuartige startsysteme fur die praparative Chemie. J Organomet Chem 407:C23–C29CrossRefGoogle Scholar
  64. 64.
    Greenburg ZR, Jin D, Williard PG, Bernskoetter WH (2014) Nickel promoted functionalization of CO2 to anhydrides and ketoacids. Dalton Trans 43:15990–15996CrossRefGoogle Scholar
  65. 65.
    Murakami M, Ishida N, Miura T (2006) Solvent and ligand partition reaction pathways in nickel-mediated carboxylation of methylenecyclopropanes. Chem Comm 14(6):643–645CrossRefGoogle Scholar
  66. 66.
    Guo C-H, Tian L-C, Jia J, Wu H-S (2014) Theoretical study on the nickel(0)-mediated coupling of carbon dioxide and benzylidenecyclopropane: mechanism and selectivity. Comput Theor Chem 1044:44–54CrossRefGoogle Scholar
  67. 67.
    Aresta M, Quaranta E, Tommasi I (1988) Reduction of coordinated carbon dioxide to carbon monoxide via protonation by thiols and other Bronsted acids by Ni-systems: a contribution to the understanding of the mode of action of the enzyme carbon monoxide dehydrogenase. J Chem Soc, Chem Commun. doi: 10.1039/c39880000450 Google Scholar
  68. 68.
    Aresta M, Gobetto R, Quaranta E, Tommasi I (1992) A bonding-reactivity relationship of Ni(PCy3)2(CO2): a comparative solid-state-solution nuclear magnetic resonance study (31P, 13C) as a diagnostic tool to determine the mode of bonding of CO2 to a metal center. Inorg Chem 31:4286–4290CrossRefGoogle Scholar
  69. 69.
    Papai I, Schubert G, Mayer I, Besenyei G, Aresta M (2004) Mechanistic details of Nickel(0)-assisted oxidative coupling of CO2 with C2H4. Organometallics 23:5252–5259CrossRefGoogle Scholar
  70. 70.
    Yang G, Schäffner B, Blug M, Hensen EJM, Pidko EA (2014) A mechanistic study of Ni-catalyzed carbon dioxide coupling with ethylene towards the manufacture of acrylic acid. Chem Cat Chem 6:800–807Google Scholar
  71. 71.
    Plessow PN, Schäfer A, Limbach M, Hofmann P (2014) Acrylate formation from CO2 and ethylene mediated by Nickel complexes: a theoretical study. Organometallics 33:3657–3668CrossRefGoogle Scholar
  72. 72.
    Hoberg H, Peres Y, Kruger C, Tsay Y-H (1987) A 1-oxa-2-nickela-5-cyclopentanone from ethene and carbon dioxide: preparation, structure, and reactivity. Angew Chem Int Ed 26:771–773CrossRefGoogle Scholar
  73. 73.
    Hoberg H, Jenni K, Angermund K, Kruger C (1987) C-C-Linkages of ethene with CO2 on an Iron(0) complex - Synthesis and crystal structure analysis of [(PEt3)2Fe(C2H4)2]. Angew Chem Int Ed 26:153–155CrossRefGoogle Scholar
  74. 74.
    Kirillov E, Carpentier JF, Bunel E (2015) Carboxylic acid derivatives via catalytic carboxylation of unsaturated hydrocarbons: whether the nature of a reductant may determine the mechanism of CO2 incorporation? Dalton Trans 44:16212–16223CrossRefGoogle Scholar
  75. 75.
    Lapidus AL, Pirozhkov SD, Koryakin AA (1978) Catalytic synthesis of propionic acid by carboxylation of ethylene with carbon dioxide. Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya 12:2814–2816Google Scholar
  76. 76.
    Williams CM, Johnson JB, Rovis T (2008) Nickel-catalyzed reductive carboxylation of styrenes using CO2. J Am Chem Soc 130:14936–14937CrossRefGoogle Scholar
  77. 77.
    Yuan R, Lin Z (2014) Computational insight into the mechanism of Nickel-catalyzed reductive carboxylation of styrenes using CO2. Organometallics 33:7147–7156CrossRefGoogle Scholar
  78. 78.
    Shirakawa E, Ikeda D, Masui S, Yoshida M, Hayashi T (2012) Iron-copper cooperative catalysis in the reactions of alkyl Grignard reagents: exchange reaction with alkenes and carbometalation of alkynes. J Am Chem Soc 134:272–279CrossRefGoogle Scholar
  79. 79.
    Greenhalgh MD, Thomas SP (2012) Iron-catalyzed, highly regioselective synthesis of alpha-aryl carboxylic acids from styrene derivatives and CO2. J Am Chem Soc 134:11900–11903CrossRefGoogle Scholar
  80. 80.
    Rio I, Claver C, van Leeuwen PWNM (2001) On the mechanism of the hydroxycarbonylation of styrene with palladium systems. Eur J Inorg Chem 2001:2719–2738Google Scholar
  81. 81.
    Smith BRJ, Loganathan M, Shantha MS (2010) A review of the water gas shift reaction kinetics. Int J Chem React Eng 8:1542Google Scholar
  82. 82.
    Ostapowicz TG, Schmitz M, Krystof M, Klankermayer J, Leitner W (2013) Carbon dioxide as a C(1) building block for the formation of carboxylic acids by formal catalytic hydrocarboxylation. Angew Chem Int Ed 52:12119–12123CrossRefGoogle Scholar
  83. 83.
    González-Sebastián L, Flores-Alamo M, García JJ (2012) Nickel-catalyzed reductive hydroesterification of styrenes using CO2 and MeOH. Organometallics 31:8200–8207CrossRefGoogle Scholar
  84. 84.
    Wu L, Liu Q, Fleischer I, Jackstell R, Beller M (2014) Ruthenium-catalysed alkoxycarbonylation of alkenes with carbon dioxide. Nat Commun 5:3091Google Scholar
  85. 85.
    Yu B, Diao Z-F, Guo C-X, He L-N (2013) Carboxylation of olefins/alkynes with CO2 to industrially relevant acrylic acid derivatives. J CO2 Util 1:60–68Google Scholar
  86. 86.
    Limbach M (2015) Acrylates from alkenes and CO2, the stuff that dreams are made of. Adv Organomet Chem 63:175–202Google Scholar
  87. 87.
    Graham DC, Mitchell C, Bruce MI, Metha GF, Bowie JH, Buntine MA (2007) Production of acrylic acid through Nickel-mediated coupling of ethylene and carbon dioxide—a DFT Study. Organometallics 26:6784–6792CrossRefGoogle Scholar
  88. 88.
    Fischer R, Langer J, Malassa A, Walther D, Gorls H, Vaughan G (2006) A key step in the formation of acrylic acid from CO2 and ethylene: the transformation of a nickelalactone into a nickel-acrylate complex. Chem Comm 2510–2512Google Scholar
  89. 89.
    Bruckmeier C, Lehenmeier MW, Reichardt R, Vagin S, Rieger B (2010) Formation of methyl acrylate from CO2 and ethylene via methylation of nickelalactones. Organometallics 29:2199–2202CrossRefGoogle Scholar
  90. 90.
    Lee SY, Cokoja M, Drees M, Li Y, Mink J, Herrmann WA, Kuhn FE (2011) Transformation of nickelalactones to methyl acrylate: on the way to a catalytic conversion of carbon dioxide. Chem Sus Chem 4:1275–1279CrossRefGoogle Scholar
  91. 91.
    Lee SYT, Ghani AA, D’Elia V, Cokoja M, Herrmann WA, Basset J-M, Kühn FE (2013) Liberation of methyl acrylate from metallalactone complexes via M–O ring opening (M=Ni, Pd) with methylation agents. New J Chem 37:3512CrossRefGoogle Scholar
  92. 92.
    Plessow PN, Weigel L, Lindner R, Schäfer A, Rominger F, Limbach M, Hofmann P (2013) Mechanistic details of the Nickel-mediated formation of acrylates from CO2, ethylene and methyl iodide. Organometallics 32:3327–3338CrossRefGoogle Scholar
  93. 93.
    Jin D, Schmeier TJ, Williard PG, Hazari N, Bernskoetter WH (2013) Lewis acid induced β-elimination from a nickelalactone: efforts toward acrylate production from CO2 and ethylene. Organometallics 32:2152–2159CrossRefGoogle Scholar
  94. 94.
    Guo W, Michel C, Schwiedernoch R, Wischert R, Xu X, Sautet P (2014) Formation of acrylates from ethylene and CO2 on Ni complexes: a mechanistic viewpoint from a hybrid DFT approach. Organometallics 33:6369–6380CrossRefGoogle Scholar
  95. 95.
    Jin D, Williard PG, Hazari N, Bernskoetter WH (2014) Effect of sodium cation on metallacycle beta-hydride elimination in CO2-ethylene coupling to acrylates. Chem Eur J 20:3205–3211CrossRefGoogle Scholar
  96. 96.
    Lejkowski ML, Lindner R, Kageyama T, Bodizs GE, Plessow PN, Muller IB, Schafer A, Rominger F, Hofmann P, Futter C, Schunk SA, Limbach M (2012) The first catalytic synthesis of an acrylate from CO2 and an alkene-a rational approach. Chem Eur J 18:14017–14025CrossRefGoogle Scholar
  97. 97.
    Manzini S, Huguet N, Trapp O, Paciello RA, Schaub T (2016) Synthesis of acrylates from olefins and CO2 using sodium alkoxides as bases. Catal Today. doi: 10.1016/j.cattod.2016.03.025 Google Scholar
  98. 98.
    Huguet N, Jevtovikj I, Gordillo A, Lejkowski ML, Lindner R, Bru M, Khalimon AY, Rominger F, Schunk SA, Hofmann P, Limbach M (2014) Nickel-catalyzed direct carboxylation of olefins with CO2: one-pot synthesis of alpha, beta-unsaturated carboxylic acid salts. Chem Eur J 20:16858–16862CrossRefGoogle Scholar
  99. 99.
    Jevtovikj I, Manzini S, Hanauer M, Rominger F, Schaub T (2015) Investigations on the catalytic carboxylation of olefins with CO2 towards alpha, beta-unsaturated carboxylic acid salts: characterization of intermediates and ligands as well as substrate effects. Dalton Trans 44:11083–11094CrossRefGoogle Scholar
  100. 100.
    Hendriksen C, Pidko EA, Yang G, Schaffner B, Vogt D (2014) Catalytic formation of acrylate from carbon dioxide and ethene. Chem Eur J 20:12037–12040CrossRefGoogle Scholar
  101. 101.
    Manzini S, Huguet N, Trapp O, Schaub T (2015) Palladium- and Nickel-catalyzed synthesis of sodium acrylate from ethylene, CO2, and phenolate bases: optimization of the catalytic system for a potential process. Eur J Org Chem 2015:7122–7130CrossRefGoogle Scholar
  102. 102.
    Goossen LJ, Goossen K (2008) Nachhaltigkeit durch atomökonomische Synthesen. Aktuelle Wochenschau der GDCh:18Google Scholar
  103. 103.
    Hoberg H, Oster BW (1984) Nickel(0)-induzierte C–C-verknüpfung zwischen 1,2-dienen und kohlendioxid. J Organomet Chem 266:321–326CrossRefGoogle Scholar
  104. 104.
    Takimoto M, Kawamura M, Mori M (2003) Nickel(0)-mediated sequential addition of carbon dioxide and aryl aldehydes into terminal allenes. Org Lett 5:2599–2601CrossRefGoogle Scholar
  105. 105.
    Takimoto M, Kawamura M, Mori M (2004) Nickel-mediated regio- and stereoselective carboxylation of trimethylsilylallene under an atmosphere of carbon dioxide. Synthesis 2004:791–795CrossRefGoogle Scholar
  106. 106.
    Takimoto M, Kawamura M, Mori M, Sato Y (2011) Nickel-promoted carboxylation/cyclization cascade of allenyl aldehyde under an atmosphere of CO2. Synlett 2011:1423–1426CrossRefGoogle Scholar
  107. 107.
    Aoki M, Izumi S, Kaneko M, Ukai K, Takaya J, Iwasawa N (2007) Ni(0)-promoted hydroxycarboxylation of 1,2-dienes by reaction with CO2 and O2. Org Lett 9:1251–1253CrossRefGoogle Scholar
  108. 108.
    Dérien S, Clinet J-C, Duñach E, Périchon J (1990) Coupling of allenes and carbon dioxide catalyzed by electrogenerated nickel complexes. Synlett 2:361–364CrossRefGoogle Scholar
  109. 109.
    Takimoto M, Kawamura M, Mori M, Sato Y (2005) Nickel-catalyzed regio- and stereoselective double carboxylation of trimethylsilylallene under an atmosphere of carbon dioxide and its application to the synthesis of Chaetomellic acid A anhydride. Synlett 2005:2019–2022Google Scholar
  110. 110.
    Walther D, Dinjus E (1982) Aktivierung von Kohlendioxid an Übergangsmetallzentren; Die Metallaringschlußreaktion zwischen Kohlendioxid und 1,3-Dienen am elektronenreichen Nickel (0)-Komplexrumpf. Zeitschrift für Chemie 22:228–229CrossRefGoogle Scholar
  111. 111.
    Walther D, Dinjus E, Seiler J, Thanh NN, Schade W, Leban I (1983) Aktivierung von CO2 an übergangsmetallzentren: struktur and reaktivität eines C–C-kopplungsproduktes von CO2 und 2.3-dimethylbutadien am elektronenreichen Nickel(0). Z Naturforsch B 38:835–840CrossRefGoogle Scholar
  112. 112.
    Hoberg H, Apotecher B (1984) α, ω-Disäuren aus butadien und kohlendioxid an nickel(0). J Organomet Chem 270:c15–c17CrossRefGoogle Scholar
  113. 113.
    Hoberg H, Schaefer D, Oster BW (1984) Diencarbonsäuren aus 1,3-dienen und CO2 durch C–C-verknüpfung an nickel(0). J Organomet Chem 266:313–320CrossRefGoogle Scholar
  114. 114.
    Hoberg H, Schaefer D (1983) Sorbinsäure aus piperylen und CO2 durch C–C-Verknüpfung an nickel(0). J Organomet Chem 255:C15–C17CrossRefGoogle Scholar
  115. 115.
    Behr A, Kanne U (1986) Nickel complex induced C–C-linkage of carbon dioxide with trienes. J Organomet Chem 317:C41–C44CrossRefGoogle Scholar
  116. 116.
    Hoberg H, Jenni K, Krüger C, Raabe E (1986) C–C-Kupplung von CO2 und Butadien an Eisen(o)-Komplexen—ein neuer Weg zu α, ω-Dicarbonsäuren. Angew Chem 98:819–820CrossRefGoogle Scholar
  117. 117.
    Geyer C, Schindler S (1998) Kinetic analysis of the reaction of isoprene with carbon dioxide and a Nickel(0) complex. Organometallics 17:4400–4405CrossRefGoogle Scholar
  118. 118.
    Takimoto M, Mori M (2001) Cross-coupling reaction of oxo–allylnickel complex generated from 1,3-diene under an atmosphere of carbon dioxide. J Am Chem Soc 123:2895–2896CrossRefGoogle Scholar
  119. 119.
    Takimoto M, Mizuno T, Sato Y, Mori M (2005) Nickel-mediated carboxylative cyclization of enynes. Tetrahedron Lett 46:5173–5176CrossRefGoogle Scholar
  120. 120.
    Takimoto M, Mizuno T, Mori M, Sato Y (2006) Nickel-mediated cyclization of enynes under an atmosphere of carbon dioxide. Tetrahedron 62:7589–7597CrossRefGoogle Scholar
  121. 121.
    Mizuno T, Oonishi Y, Takimoto M, Sato Y (2011) Total synthesis of (–)-Corynantheidine by Nickel-catalyzed carboxylative cyclization of enynes. Eur J Org Chem 2011:2606–2609CrossRefGoogle Scholar
  122. 122.
    Hoberg H, Gross S, Milchereit A (1987) Nickel(0)-catalyzed production of a functionalized cyclopentanecarboxylic acid from 1,3-Butadiene and CO2. Angew Chem Int Ed 26:571–572CrossRefGoogle Scholar
  123. 123.
    Tsuda T, Morikawa S, Sumiya R, Saegusa T (1988) Nickel(0)-catalyzed cycloaddition of diynes and carbon dioxide to give bicyclic α-pyrones. J Org Chem 53:3140–3145CrossRefGoogle Scholar
  124. 124.
    Tsuda T, Morikawa S, Hasegawa N, Saegusa T (1990) Nickel(0)-catalyzed cycloaddition of silyl diynes with carbon dioxide to silyl bicyclic α-pyrones. J Org Chem 55:2978–2981CrossRefGoogle Scholar
  125. 125.
    Tekavec TN, Arif AM, Louie J (2004) Regioselectivity in nickel(0) catalyzed cycloadditions of carbon dioxide with diynes. Tetrahedron 60:7431–7437CrossRefGoogle Scholar
  126. 126.
    Louie J, Gibby JE, Farnworth MV, Tekavec TN (2002) Efficient Nickel-catalyzed [2+2+2] cycloaddition of CO2 and diynes. J Am Chem Soc 124:15188–15189CrossRefGoogle Scholar
  127. 127.
    Cao T, Ma S (2016) Highly stereo- and regioselective hydrocarboxylation of diynes with carbon dioxide. Org Lett 18:1510–1513CrossRefGoogle Scholar
  128. 128.
    Takimoto M, Mori M (2002) Novel catalytic CO2 incorporation reaction: nickel-catalyzed regio- and stereoselective ring-closing carboxylation of bis-1,3-dienes. J Am Chem Soc 124:10008–10009CrossRefGoogle Scholar
  129. 129.
    Takimoto M, Nakamura Y, Kimura K, Mori M (2004) Highly enantioselective catalytic carbon dioxide incorporation reaction: nickel-catalyzed asymmetric carboxylative cyclization of bis-1,3-dienes. J Am Chem Soc 126:5956–5957CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and TechnologyTarragonaSpain
  2. 2.Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain

Personalised recommendations