Abstract
The sustainable utilization of available feedstock materials for preparing valuable compounds holds great promise to revolutionize approaches in organic synthesis. In this regard, the implementation of abundant and inexpensive carbon dioxide (CO2) as a C1 building block has recently attracted considerable attention. Among the different alternatives in CO2 fixation, the preparation of carboxylic acids, relevant motifs in pharmaceuticals and agrochemicals, is particularly appealing, thus providing a rapid and unconventional entry to building blocks that are typically prepared via waste-producing protocols. While significant advances have been realized, the utilization of simple unsaturated hydrocarbons as coupling partners in carboxylation events is undoubtedly of utmost academic and industrial relevance, as two available feedstock materials can be combined in a catalytic fashion. This review article aims to describe the main achievements on the direct carboxylation of unsaturated hydrocarbons with CO2 by using cheap and available Ni or Fe catalytic species.
This is a preview of subscription content, access via your institution.








































References
Aresta M (1999) Recovery and utilisation of carbon dioxide. RUCADI, EU Report
von der Assen N, Voll P, Peters M, Bardow A (2014) Life cycle assessment of CO2 capture and utilization: a tutorial review. Chem Soc Rev 43:7982–7994
Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. technological use of CO2. Chem Rev 114:1709–1742
Assen N, Muller LJ, Steingrube A, Voll P, Bardow A (2016) Selecting CO2 sources for CO2 utilization by environmental-merit-order Curves. Environ Sci Technol 50:1093–1101
Meylan FD, Moreau V, Erkman S (2015) CO2 utilization in the perspective of industrial ecology, an overview. J CO2 Util 12:101–108
Mikkelsen M, Jørgensen M, Krebs FC (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci 3:43–81
Wang S, Du G, Xi C (2016) Copper-catalyzed carboxylation reactions using carbon dioxide. Org Biomol Chem 14:3666–3676
Sekine K, Yamada T (2016) Silver-catalyzed carboxylation. Chem Soc Rev. doi:10.1039/c5cs00895f
Yu D, Teong SP, Zhang Y (2015) Transition metal complex catalyzed carboxylation reactions with CO2. Coord Chem Rev 293–294:279–291
Guo C-X, Yu B, Ma R, He L-N (2015) Metal-promoted carboxylation of alkynes/allenes with carbon dioxide. Curr Green Chem 2:14–25
Industrial-scale preparation of low molecular weight acids is mainly carried out by carbonylation and/or oxidation of the corresponding alcohols and light olefins. See for instance: Samel U-R, Kohler W, Gamer A O, Keuser U, Yang S-T, Jin Y, Lin M, Wang Z (2014) Propionic acid and derivatives. Ullmann’s Encyclopedia of Industrial Chemistry 1–20
Correa A, Martin R (2009) Metal-catalyzed carboxylation of organometallic reagents with carbon dioxide. Angew Chem Int Ed 48:6201–6204
Brill M, Lazreg F, Cazin CSJ, Nolan SP (2016) Transition metal-catalyzed carboxylation of organic substrates with carbon dioxide. Top Organomet Chem 53:225–278
Correa A, Leon T, Martin R (2014) Ni-catalyzed carboxylation of C(sp2)- and C(sp3)-O bonds with CO2. J Am Chem Soc 136:1062–1069
Moragas T, Gaydou M, Martin R (2016) Ni-catalyzed carboxylation of benzylic C–N bonds with CO2. Angew Chem Int Ed 55:5053–5057
Wang X, Liu Y, Martin R (2015) Ni-catalyzed divergent cyclization/carboxylation of unactivated primary and secondary alkyl halides with CO2. J Am Chem Soc 137:6476–6479
Aresta M, Dibenedetto A, Quaranta E (2016) Interaction of CO2 with C–C multiple bonds. Reaction mechanisms in carbon dioxide conversion: doi:10.1007/978-3-662-46831-9_5
Aresta M, Nobile CF, Albano VG, Forni E, Manassero M (1975) New nickel–carbon dioxide complex: synthesis, properties, and crystallographic characterization of (carbon dioxide)-bis(tricyclohexylphosphine)nickel. J Chem Soc Chem Commun. doi:10.1039/c39750000636
Rintjema J, Peña Carrodeguas L, Laserna V, Sopeña S, Kleij AW (2015) Metal complexes catalyzed cyclization with CO2. Top Organomet Chem 53:39–71
Coates GW, Moore DR (2004) Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: discovery, reactivity, optimization, and mechanism. Angew Chem Int Ed 43:6618–6639
Sa-A G, Sivaram S (1996) Organic carbonates. Chem Rev 96:951–976
Federsel C, Jackstell R, Beller M (2010) State-of-the-art catalysts for hydrogenation of carbon dioxide. Angew Chem Int Ed 49:6254–6257
Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727
Goeppert A, Czaun M, Jones JP, Surya Prakash GK, Olah GA (2014) Recycling of carbon dioxide to methanol and derived products—closing the loop. Chem Soc Rev 43:7995–8048
Matthessen R, Fransaer J, Binnemans K, De Vos DE (2014) Electrocarboxylation: towards sustainable and efficient synthesis of valuable carboxylic acids. Beilstein J Org Chem 10:2484–2500
Nogi K, Fujihara T, Terao J, Tsuji Y (2016) Carboxyzincation employing carbon dioxide and zinc powder: cobalt-catalyzed multicomponent coupling reactions with alkynes. J Am Chem Soc 138:5547–5550
Beller M, Gu X-F (2013) Transition metal catalyzed carbonylation reactions. Springer, New York
Fujihara T, Nogi K, Xu T, Terao J, Tsuji Y (2012) Nickel-catalyzed carboxylation of aryl and vinyl chlorides employing carbon dioxide. J Am Chem Soc 134:9106–9109
Liu Y, Cornella J, Martin R (2014) Ni-catalyzed carboxylation of unactivated primary alkyl bromides and sulfonates with CO2. J Am Chem Soc 136:11212–11215
Inoue Y, Itoh Y, Hashimoto H (1977) Incorporation of carbon dioxide in alkyne oligomerization catalyzed by nickel(0) complexes. Formation of substituted 2-pyrones. Chem Lett 6:855–856
Burkhart G, Hoberg H (1982) Oxanickelacyclopentene derivatives from Nickel(0), carbon dioxide, and alkynes. Angew Chem Int Ed 21:76
Sakaki S, Mine K, Taguchi D, Arai T (1993) Formation of the oxanickelacyclopentene complex from nickel(0), carbon dioxide, and alkyne. An ab initio MO/SD-CI study. Bull Chem Soc Jpn 66:3289–3299
Sakaki S, Mine K, Hamada T, Arai T (1995) Formation of the oxanickelacyclopentene complex from nickel(0), carbon dioxide, and alkyne. An ab initio MO/SD-CI Study. Part II. Reactivity and regioselectivity of hydroxyacetylene. Bull Chem Soc Jpn 68:1873–1882
Graham DC, Bruce MI, Metha GF, Bowie JH, Buntine MA (2008) Regioselective control of the nickel-mediated coupling of acetylene and carbon dioxide—a DFT study. J Organomet Chem 693:2703–2710
Li J, Jia G, Lin Z (2008) Theoritical studies on coupling reactions of carbon dioxide with alkynes mediated by Nickel(0) complexes. Organometallics 27:3892–3900
Saito S, Nakagawa S, Koizumi T, Hirayama K, Yamamoto Y (1999) Nickel-mediated regio- and chemoselective carboxylation of alkynes in the presence of carbon dioxide. J Org Chem 64:3975–3978
Aoki M, Kaneko M, Izumi S, Ukai K, Iwasawa N (2004) Bidentate amidine ligands for nickel(0)-mediated coupling of carbon dioxide with unsaturated hydrocarbons. Chem Commun 36(22):2568–2569
Takimoto M, Shimizu K, Mori M (2001) Nickel-promoted alkylative or arylative carboxylation of alkynes. Org Lett 3:3345–3347
Shimizu K, Takimoto M, Mori M (2003) Novel synthesis of heterocycles having a functionalized carbon center via Nickel-mediated carboxylation: total synthesis of Erythrocarine. Org Lett 5:2323–2325
Shimizu K, Takimoto M, Sato Y, Mori M (2006) Total synthesis of (±)-erythrocarine using dienyne metathesis. J Organomet Chem 691:5466–5475
Saito N, Sun Z, Sato Y (2015) Nickel-promoted highly regioselective carboxylation of aryl ynol ether and its application to the synthesis of chiral beta-aryloxypropionic acid derivatives. Chem Asian J 10:1170–1176
Inoue Y, Itoh Y, Hashimoto H (1978) Oligomerization of 3-hexyne by nickel(0) complexes under CO2. Incorporation of CO2 and novel cyclotrimerization. Chem Lett 7:633–634
Inoue Y, Itoh Y, Kazama H, Hashimoto H (1980) Reaction of dialkyl-substituted alkynes with carbon dioxide catalyzed by nickel(0) complexes. Incorporation of carbon dioxide in alkyne dimers and novel cyclotrimerization of the alkynes. Bull Chem Soc Jpn 53:3329–3333
Walther D, Schönberg H, Dinjus E (1987) Aktivierung von kohlendioxid an übergangsmetallzentren: selektive cooligomerisation mit hexin durch das katalysatorsystem acetonitril/trialkylphosphan/nickel(0) und struktur eines nickel(0)-komplexes mit side-on gebundenem acetonitril. J Org Chem 334:377–388
Tsuda T, Kunisada K, Nagahama N, Morikawa S, Saegusa T (1989) Nickel(0)-catalyzed cycloaddition of ethoxyethyne with carbon dioxide to 4,5-diethoxy-α-pyrone. Synth Commun 19:1575–1581
Tsuda T, Hasegawa N, Saegusa T (1990) Nickel(0)-catalysed novel co-oligomerization of ethoxy(trimethylsilyl)ethyne with carbon dioxide to 4,6-diethoxy-3-[1-ethoxy-2,2-bis(trimethylsilyl)vinyl]-5-(trimethylsilyl)-2-pyrone. J Chem Soc, Chem Commun 945–947
Hoberg H, Schaefer D, Burkhart G, Krüger C, Romao MJ (1984) Nickel(0)-induzierte C-C verknüpfung zwischen kohlendioxid und alkinen sowie alkenen. J Organomet Chem 266:203–224
Mori M (2007) Regio- and stereoselective synthesis of tri- and tetrasubstituted alkenes by introduction of CO2 and alkylzinc reagents into alkynes. Eur J Org Chem 2007:4981–4993
Shimizu K, Takimoto M, Sato Y, Mori M (2005) Nickel-catalyzed regioselective synthesis of tetrasubstituted alkene using alkylative carboxylation of disubstituted alkyne. Org Lett 7:195–197
Sato Y, Mori M, Shimizu K, Takimoto M (2006) Effective synthesis of tamoxifen using nickel-catalyzed arylative carboxylation. Synlett 2006:3182–3184
Buchwald SL, Nielsen RB (1989) Selective, zirconium-mediated cross-coupling of alkynes: synthesis of isomerically pure 1,3-dienes and 1,4-diiodo 1,3-dienes. J Am Chem Soc 111:2870–2874
Fujihara T, Horimoto Y, Mizoe T, Sayyed FB, Tani Y, Terao J, Sakaki S, Tsuji Y (2014) Nickel-catalyzed double carboxylation of alkynes employing carbon dioxide. Org Lett 16:4960–4963
Li S, Yuan W, Ma S (2011) Highly regio- and stereoselective three-component nickel-catalyzed syn-hydrocarboxylation of alkynes with diethyl zinc and carbon dioxide. Angew Chem Int Ed 50:2578–2582
Fujihara T, Xu T, Semba K, Terao J, Tsuji Y (2011) Copper-catalyzed hydrocarboxylation of alkynes using carbon dioxide and hydrosilanes. Angew Chem Int Ed 50:523–527
Li S, Ma S (2011) Highly selective nickel-catalyzed methyl-carboxylation of homopropargylic alcohols for α-alkylidene-γ-butyrolactones. Org Lett 13:6046–6049
Li S, Ma S (2012) CO2-activation for gamma-butyrolactones and its application in the total synthesis of (±)-heteroplexisolide E. Chem Asian J 7:2411–2418
Wang X, Nakajima M, Martin R (2015) Ni-catalyzed regioselective hydrocarboxylation of alkynes with CO2 by using simple alcohols as proton sources. J Am Chem Soc 137:8924–8927
Trost BM, Ball ZT (2005) Addition of metalloid hydrides to alkynes: hydrometallation with Boron, Silicon, and Tin. Synthesis 6:853–887
Fu M-C, Shang R, Cheng W-M, Fu Y (2016) Nickel-catalyzed regio- and stereoselective hydrocarboxylation of alkynes with formic acid through catalytic CO recycling. ACS Catal 6:2501–2505
Hoberg H, Schaefer D (1982) Nickel(0)-induzierte C-C verknupfung zwischen alkenen und kohlendioxid. J Organomet Chem 236:C28–C30
Hoberg H, Schaefer D (1983) Nickel(0)-induzierte C-C verknupfung zwischen kohlendioxid und etylen sowie mono- oder di-substituierten alkenen. J Organomet Chem 1983:C51–C53
Hoberg H, Peres Y, Milchereit A (1986) C-C Verknupfung von alkenen mit CO2 an Nickel(0); Herstellung von zimtsaure aus styrol. J Organomet Chem 307:C38–C40
Hoberg H, Ballesteros A, Sigan A, Jegat C, Barhausen D, Milchereit A (1991) Ligandgesteuerte ringkontraktion von Nickela-funfin vierringkomplexe-neuartige startsysteme fur die praparative Chemie. J Organomet Chem 407:C23–C29
Greenburg ZR, Jin D, Williard PG, Bernskoetter WH (2014) Nickel promoted functionalization of CO2 to anhydrides and ketoacids. Dalton Trans 43:15990–15996
Murakami M, Ishida N, Miura T (2006) Solvent and ligand partition reaction pathways in nickel-mediated carboxylation of methylenecyclopropanes. Chem Comm 14(6):643–645
Guo C-H, Tian L-C, Jia J, Wu H-S (2014) Theoretical study on the nickel(0)-mediated coupling of carbon dioxide and benzylidenecyclopropane: mechanism and selectivity. Comput Theor Chem 1044:44–54
Aresta M, Quaranta E, Tommasi I (1988) Reduction of coordinated carbon dioxide to carbon monoxide via protonation by thiols and other Bronsted acids by Ni-systems: a contribution to the understanding of the mode of action of the enzyme carbon monoxide dehydrogenase. J Chem Soc, Chem Commun. doi:10.1039/c39880000450
Aresta M, Gobetto R, Quaranta E, Tommasi I (1992) A bonding-reactivity relationship of Ni(PCy3)2(CO2): a comparative solid-state-solution nuclear magnetic resonance study (31P, 13C) as a diagnostic tool to determine the mode of bonding of CO2 to a metal center. Inorg Chem 31:4286–4290
Papai I, Schubert G, Mayer I, Besenyei G, Aresta M (2004) Mechanistic details of Nickel(0)-assisted oxidative coupling of CO2 with C2H4. Organometallics 23:5252–5259
Yang G, Schäffner B, Blug M, Hensen EJM, Pidko EA (2014) A mechanistic study of Ni-catalyzed carbon dioxide coupling with ethylene towards the manufacture of acrylic acid. Chem Cat Chem 6:800–807
Plessow PN, Schäfer A, Limbach M, Hofmann P (2014) Acrylate formation from CO2 and ethylene mediated by Nickel complexes: a theoretical study. Organometallics 33:3657–3668
Hoberg H, Peres Y, Kruger C, Tsay Y-H (1987) A 1-oxa-2-nickela-5-cyclopentanone from ethene and carbon dioxide: preparation, structure, and reactivity. Angew Chem Int Ed 26:771–773
Hoberg H, Jenni K, Angermund K, Kruger C (1987) C-C-Linkages of ethene with CO2 on an Iron(0) complex - Synthesis and crystal structure analysis of [(PEt3)2Fe(C2H4)2]. Angew Chem Int Ed 26:153–155
Kirillov E, Carpentier JF, Bunel E (2015) Carboxylic acid derivatives via catalytic carboxylation of unsaturated hydrocarbons: whether the nature of a reductant may determine the mechanism of CO2 incorporation? Dalton Trans 44:16212–16223
Lapidus AL, Pirozhkov SD, Koryakin AA (1978) Catalytic synthesis of propionic acid by carboxylation of ethylene with carbon dioxide. Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya 12:2814–2816
Williams CM, Johnson JB, Rovis T (2008) Nickel-catalyzed reductive carboxylation of styrenes using CO2. J Am Chem Soc 130:14936–14937
Yuan R, Lin Z (2014) Computational insight into the mechanism of Nickel-catalyzed reductive carboxylation of styrenes using CO2. Organometallics 33:7147–7156
Shirakawa E, Ikeda D, Masui S, Yoshida M, Hayashi T (2012) Iron-copper cooperative catalysis in the reactions of alkyl Grignard reagents: exchange reaction with alkenes and carbometalation of alkynes. J Am Chem Soc 134:272–279
Greenhalgh MD, Thomas SP (2012) Iron-catalyzed, highly regioselective synthesis of alpha-aryl carboxylic acids from styrene derivatives and CO2. J Am Chem Soc 134:11900–11903
Rio I, Claver C, van Leeuwen PWNM (2001) On the mechanism of the hydroxycarbonylation of styrene with palladium systems. Eur J Inorg Chem 2001:2719–2738
Smith BRJ, Loganathan M, Shantha MS (2010) A review of the water gas shift reaction kinetics. Int J Chem React Eng 8:1542
Ostapowicz TG, Schmitz M, Krystof M, Klankermayer J, Leitner W (2013) Carbon dioxide as a C(1) building block for the formation of carboxylic acids by formal catalytic hydrocarboxylation. Angew Chem Int Ed 52:12119–12123
González-Sebastián L, Flores-Alamo M, García JJ (2012) Nickel-catalyzed reductive hydroesterification of styrenes using CO2 and MeOH. Organometallics 31:8200–8207
Wu L, Liu Q, Fleischer I, Jackstell R, Beller M (2014) Ruthenium-catalysed alkoxycarbonylation of alkenes with carbon dioxide. Nat Commun 5:3091
Yu B, Diao Z-F, Guo C-X, He L-N (2013) Carboxylation of olefins/alkynes with CO2 to industrially relevant acrylic acid derivatives. J CO2 Util 1:60–68
Limbach M (2015) Acrylates from alkenes and CO2, the stuff that dreams are made of. Adv Organomet Chem 63:175–202
Graham DC, Mitchell C, Bruce MI, Metha GF, Bowie JH, Buntine MA (2007) Production of acrylic acid through Nickel-mediated coupling of ethylene and carbon dioxide—a DFT Study. Organometallics 26:6784–6792
Fischer R, Langer J, Malassa A, Walther D, Gorls H, Vaughan G (2006) A key step in the formation of acrylic acid from CO2 and ethylene: the transformation of a nickelalactone into a nickel-acrylate complex. Chem Comm 2510–2512
Bruckmeier C, Lehenmeier MW, Reichardt R, Vagin S, Rieger B (2010) Formation of methyl acrylate from CO2 and ethylene via methylation of nickelalactones. Organometallics 29:2199–2202
Lee SY, Cokoja M, Drees M, Li Y, Mink J, Herrmann WA, Kuhn FE (2011) Transformation of nickelalactones to methyl acrylate: on the way to a catalytic conversion of carbon dioxide. Chem Sus Chem 4:1275–1279
Lee SYT, Ghani AA, D’Elia V, Cokoja M, Herrmann WA, Basset J-M, Kühn FE (2013) Liberation of methyl acrylate from metallalactone complexes via M–O ring opening (M=Ni, Pd) with methylation agents. New J Chem 37:3512
Plessow PN, Weigel L, Lindner R, Schäfer A, Rominger F, Limbach M, Hofmann P (2013) Mechanistic details of the Nickel-mediated formation of acrylates from CO2, ethylene and methyl iodide. Organometallics 32:3327–3338
Jin D, Schmeier TJ, Williard PG, Hazari N, Bernskoetter WH (2013) Lewis acid induced β-elimination from a nickelalactone: efforts toward acrylate production from CO2 and ethylene. Organometallics 32:2152–2159
Guo W, Michel C, Schwiedernoch R, Wischert R, Xu X, Sautet P (2014) Formation of acrylates from ethylene and CO2 on Ni complexes: a mechanistic viewpoint from a hybrid DFT approach. Organometallics 33:6369–6380
Jin D, Williard PG, Hazari N, Bernskoetter WH (2014) Effect of sodium cation on metallacycle beta-hydride elimination in CO2-ethylene coupling to acrylates. Chem Eur J 20:3205–3211
Lejkowski ML, Lindner R, Kageyama T, Bodizs GE, Plessow PN, Muller IB, Schafer A, Rominger F, Hofmann P, Futter C, Schunk SA, Limbach M (2012) The first catalytic synthesis of an acrylate from CO2 and an alkene-a rational approach. Chem Eur J 18:14017–14025
Manzini S, Huguet N, Trapp O, Paciello RA, Schaub T (2016) Synthesis of acrylates from olefins and CO2 using sodium alkoxides as bases. Catal Today. doi:10.1016/j.cattod.2016.03.025
Huguet N, Jevtovikj I, Gordillo A, Lejkowski ML, Lindner R, Bru M, Khalimon AY, Rominger F, Schunk SA, Hofmann P, Limbach M (2014) Nickel-catalyzed direct carboxylation of olefins with CO2: one-pot synthesis of alpha, beta-unsaturated carboxylic acid salts. Chem Eur J 20:16858–16862
Jevtovikj I, Manzini S, Hanauer M, Rominger F, Schaub T (2015) Investigations on the catalytic carboxylation of olefins with CO2 towards alpha, beta-unsaturated carboxylic acid salts: characterization of intermediates and ligands as well as substrate effects. Dalton Trans 44:11083–11094
Hendriksen C, Pidko EA, Yang G, Schaffner B, Vogt D (2014) Catalytic formation of acrylate from carbon dioxide and ethene. Chem Eur J 20:12037–12040
Manzini S, Huguet N, Trapp O, Schaub T (2015) Palladium- and Nickel-catalyzed synthesis of sodium acrylate from ethylene, CO2, and phenolate bases: optimization of the catalytic system for a potential process. Eur J Org Chem 2015:7122–7130
Goossen LJ, Goossen K (2008) Nachhaltigkeit durch atomökonomische Synthesen. Aktuelle Wochenschau der GDCh:18
Hoberg H, Oster BW (1984) Nickel(0)-induzierte C–C-verknüpfung zwischen 1,2-dienen und kohlendioxid. J Organomet Chem 266:321–326
Takimoto M, Kawamura M, Mori M (2003) Nickel(0)-mediated sequential addition of carbon dioxide and aryl aldehydes into terminal allenes. Org Lett 5:2599–2601
Takimoto M, Kawamura M, Mori M (2004) Nickel-mediated regio- and stereoselective carboxylation of trimethylsilylallene under an atmosphere of carbon dioxide. Synthesis 2004:791–795
Takimoto M, Kawamura M, Mori M, Sato Y (2011) Nickel-promoted carboxylation/cyclization cascade of allenyl aldehyde under an atmosphere of CO2. Synlett 2011:1423–1426
Aoki M, Izumi S, Kaneko M, Ukai K, Takaya J, Iwasawa N (2007) Ni(0)-promoted hydroxycarboxylation of 1,2-dienes by reaction with CO2 and O2. Org Lett 9:1251–1253
Dérien S, Clinet J-C, Duñach E, Périchon J (1990) Coupling of allenes and carbon dioxide catalyzed by electrogenerated nickel complexes. Synlett 2:361–364
Takimoto M, Kawamura M, Mori M, Sato Y (2005) Nickel-catalyzed regio- and stereoselective double carboxylation of trimethylsilylallene under an atmosphere of carbon dioxide and its application to the synthesis of Chaetomellic acid A anhydride. Synlett 2005:2019–2022
Walther D, Dinjus E (1982) Aktivierung von Kohlendioxid an Übergangsmetallzentren; Die Metallaringschlußreaktion zwischen Kohlendioxid und 1,3-Dienen am elektronenreichen Nickel (0)-Komplexrumpf. Zeitschrift für Chemie 22:228–229
Walther D, Dinjus E, Seiler J, Thanh NN, Schade W, Leban I (1983) Aktivierung von CO2 an übergangsmetallzentren: struktur and reaktivität eines C–C-kopplungsproduktes von CO2 und 2.3-dimethylbutadien am elektronenreichen Nickel(0). Z Naturforsch B 38:835–840
Hoberg H, Apotecher B (1984) α, ω-Disäuren aus butadien und kohlendioxid an nickel(0). J Organomet Chem 270:c15–c17
Hoberg H, Schaefer D, Oster BW (1984) Diencarbonsäuren aus 1,3-dienen und CO2 durch C–C-verknüpfung an nickel(0). J Organomet Chem 266:313–320
Hoberg H, Schaefer D (1983) Sorbinsäure aus piperylen und CO2 durch C–C-Verknüpfung an nickel(0). J Organomet Chem 255:C15–C17
Behr A, Kanne U (1986) Nickel complex induced C–C-linkage of carbon dioxide with trienes. J Organomet Chem 317:C41–C44
Hoberg H, Jenni K, Krüger C, Raabe E (1986) C–C-Kupplung von CO2 und Butadien an Eisen(o)-Komplexen—ein neuer Weg zu α, ω-Dicarbonsäuren. Angew Chem 98:819–820
Geyer C, Schindler S (1998) Kinetic analysis of the reaction of isoprene with carbon dioxide and a Nickel(0) complex. Organometallics 17:4400–4405
Takimoto M, Mori M (2001) Cross-coupling reaction of oxo–allylnickel complex generated from 1,3-diene under an atmosphere of carbon dioxide. J Am Chem Soc 123:2895–2896
Takimoto M, Mizuno T, Sato Y, Mori M (2005) Nickel-mediated carboxylative cyclization of enynes. Tetrahedron Lett 46:5173–5176
Takimoto M, Mizuno T, Mori M, Sato Y (2006) Nickel-mediated cyclization of enynes under an atmosphere of carbon dioxide. Tetrahedron 62:7589–7597
Mizuno T, Oonishi Y, Takimoto M, Sato Y (2011) Total synthesis of (–)-Corynantheidine by Nickel-catalyzed carboxylative cyclization of enynes. Eur J Org Chem 2011:2606–2609
Hoberg H, Gross S, Milchereit A (1987) Nickel(0)-catalyzed production of a functionalized cyclopentanecarboxylic acid from 1,3-Butadiene and CO2. Angew Chem Int Ed 26:571–572
Tsuda T, Morikawa S, Sumiya R, Saegusa T (1988) Nickel(0)-catalyzed cycloaddition of diynes and carbon dioxide to give bicyclic α-pyrones. J Org Chem 53:3140–3145
Tsuda T, Morikawa S, Hasegawa N, Saegusa T (1990) Nickel(0)-catalyzed cycloaddition of silyl diynes with carbon dioxide to silyl bicyclic α-pyrones. J Org Chem 55:2978–2981
Tekavec TN, Arif AM, Louie J (2004) Regioselectivity in nickel(0) catalyzed cycloadditions of carbon dioxide with diynes. Tetrahedron 60:7431–7437
Louie J, Gibby JE, Farnworth MV, Tekavec TN (2002) Efficient Nickel-catalyzed [2+2+2] cycloaddition of CO2 and diynes. J Am Chem Soc 124:15188–15189
Cao T, Ma S (2016) Highly stereo- and regioselective hydrocarboxylation of diynes with carbon dioxide. Org Lett 18:1510–1513
Takimoto M, Mori M (2002) Novel catalytic CO2 incorporation reaction: nickel-catalyzed regio- and stereoselective ring-closing carboxylation of bis-1,3-dienes. J Am Chem Soc 124:10008–10009
Takimoto M, Nakamura Y, Kimura K, Mori M (2004) Highly enantioselective catalytic carbon dioxide incorporation reaction: nickel-catalyzed asymmetric carboxylative cyclization of bis-1,3-dienes. J Am Chem Soc 126:5956–5957
Acknowledgments
We thank ICIQ, European Research Council (ERC-277883), MINECO (CTQ2015-65496-R & Severo Ochoa Excellence Accreditation 2014-2018, SEV-2013-0319) and Cellex Foundation for support. E. Serrano, M. van Gemmeren and F. Juliá-Hernández thank MINECO, Alexander von Humboldt Foundation and COFUND for predoctoral and postdoctoral fellowships, respectively.
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is part of the Topical Collection “Ni- and Fe-Based Cross-Coupling Reactions”; edited by “Arkaitz Correa”.
Rights and permissions
About this article
Cite this article
Juliá-Hernández, F., Gaydou, M., Serrano, E. et al. Ni- and Fe-catalyzed Carboxylation of Unsaturated Hydrocarbons with CO2 . Top Curr Chem (Z) 374, 45 (2016). https://doi.org/10.1007/s41061-016-0045-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s41061-016-0045-z