Ni- and Fe-catalyzed Carboxylation of Unsaturated Hydrocarbons with CO2


The sustainable utilization of available feedstock materials for preparing valuable compounds holds great promise to revolutionize approaches in organic synthesis. In this regard, the implementation of abundant and inexpensive carbon dioxide (CO2) as a C1 building block has recently attracted considerable attention. Among the different alternatives in CO2 fixation, the preparation of carboxylic acids, relevant motifs in pharmaceuticals and agrochemicals, is particularly appealing, thus providing a rapid and unconventional entry to building blocks that are typically prepared via waste-producing protocols. While significant advances have been realized, the utilization of simple unsaturated hydrocarbons as coupling partners in carboxylation events is undoubtedly of utmost academic and industrial relevance, as two available feedstock materials can be combined in a catalytic fashion. This review article aims to describe the main achievements on the direct carboxylation of unsaturated hydrocarbons with CO2 by using cheap and available Ni or Fe catalytic species.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40


  1. 1.

    Aresta M (1999) Recovery and utilisation of carbon dioxide. RUCADI, EU Report

  2. 2.

    von der Assen N, Voll P, Peters M, Bardow A (2014) Life cycle assessment of CO2 capture and utilization: a tutorial review. Chem Soc Rev 43:7982–7994

    Article  Google Scholar 

  3. 3.

    Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. technological use of CO2. Chem Rev 114:1709–1742

    CAS  Article  Google Scholar 

  4. 4.

    Assen N, Muller LJ, Steingrube A, Voll P, Bardow A (2016) Selecting CO2 sources for CO2 utilization by environmental-merit-order Curves. Environ Sci Technol 50:1093–1101

    Article  CAS  Google Scholar 

  5. 5.

    Meylan FD, Moreau V, Erkman S (2015) CO2 utilization in the perspective of industrial ecology, an overview. J CO2 Util 12:101–108

  6. 6.

    Mikkelsen M, Jørgensen M, Krebs FC (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci 3:43–81

    CAS  Article  Google Scholar 

  7. 7.

    Wang S, Du G, Xi C (2016) Copper-catalyzed carboxylation reactions using carbon dioxide. Org Biomol Chem 14:3666–3676

    CAS  Article  Google Scholar 

  8. 8.

    Sekine K, Yamada T (2016) Silver-catalyzed carboxylation. Chem Soc Rev. doi:10.1039/c5cs00895f

    Google Scholar 

  9. 9.

    Yu D, Teong SP, Zhang Y (2015) Transition metal complex catalyzed carboxylation reactions with CO2. Coord Chem Rev 293–294:279–291

    Article  CAS  Google Scholar 

  10. 10.

    Guo C-X, Yu B, Ma R, He L-N (2015) Metal-promoted carboxylation of alkynes/allenes with carbon dioxide. Curr Green Chem 2:14–25

    CAS  Article  Google Scholar 

  11. 11.

    Industrial-scale preparation of low molecular weight acids is mainly carried out by carbonylation and/or oxidation of the corresponding alcohols and light olefins. See for instance: Samel U-R, Kohler W, Gamer A O, Keuser U, Yang S-T, Jin Y, Lin M, Wang Z (2014) Propionic acid and derivatives. Ullmann’s Encyclopedia of Industrial Chemistry 1–20

  12. 12.

    Correa A, Martin R (2009) Metal-catalyzed carboxylation of organometallic reagents with carbon dioxide. Angew Chem Int Ed 48:6201–6204

    CAS  Article  Google Scholar 

  13. 13.

    Brill M, Lazreg F, Cazin CSJ, Nolan SP (2016) Transition metal-catalyzed carboxylation of organic substrates with carbon dioxide. Top Organomet Chem 53:225–278

    Google Scholar 

  14. 14.

    Correa A, Leon T, Martin R (2014) Ni-catalyzed carboxylation of C(sp2)- and C(sp3)-O bonds with CO2. J Am Chem Soc 136:1062–1069

    CAS  Article  Google Scholar 

  15. 15.

    Moragas T, Gaydou M, Martin R (2016) Ni-catalyzed carboxylation of benzylic C–N bonds with CO2. Angew Chem Int Ed 55:5053–5057

    CAS  Article  Google Scholar 

  16. 16.

    Wang X, Liu Y, Martin R (2015) Ni-catalyzed divergent cyclization/carboxylation of unactivated primary and secondary alkyl halides with CO2. J Am Chem Soc 137:6476–6479

    CAS  Article  Google Scholar 

  17. 17.

    Aresta M, Dibenedetto A, Quaranta E (2016) Interaction of CO2 with C–C multiple bonds. Reaction mechanisms in carbon dioxide conversion: doi:10.1007/978-3-662-46831-9_5

  18. 18.

    Aresta M, Nobile CF, Albano VG, Forni E, Manassero M (1975) New nickel–carbon dioxide complex: synthesis, properties, and crystallographic characterization of (carbon dioxide)-bis(tricyclohexylphosphine)nickel. J Chem Soc Chem Commun. doi:10.1039/c39750000636

    Google Scholar 

  19. 19.

    Rintjema J, Peña Carrodeguas L, Laserna V, Sopeña S, Kleij AW (2015) Metal complexes catalyzed cyclization with CO2. Top Organomet Chem 53:39–71

    Google Scholar 

  20. 20.

    Coates GW, Moore DR (2004) Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: discovery, reactivity, optimization, and mechanism. Angew Chem Int Ed 43:6618–6639

    CAS  Article  Google Scholar 

  21. 21.

    Sa-A G, Sivaram S (1996) Organic carbonates. Chem Rev 96:951–976

    Article  Google Scholar 

  22. 22.

    Federsel C, Jackstell R, Beller M (2010) State-of-the-art catalysts for hydrogenation of carbon dioxide. Angew Chem Int Ed 49:6254–6257

    CAS  Article  Google Scholar 

  23. 23.

    Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727

    CAS  Article  Google Scholar 

  24. 24.

    Goeppert A, Czaun M, Jones JP, Surya Prakash GK, Olah GA (2014) Recycling of carbon dioxide to methanol and derived products—closing the loop. Chem Soc Rev 43:7995–8048

    CAS  Article  Google Scholar 

  25. 25.

    Matthessen R, Fransaer J, Binnemans K, De Vos DE (2014) Electrocarboxylation: towards sustainable and efficient synthesis of valuable carboxylic acids. Beilstein J Org Chem 10:2484–2500

    Article  CAS  Google Scholar 

  26. 26.

    Nogi K, Fujihara T, Terao J, Tsuji Y (2016) Carboxyzincation employing carbon dioxide and zinc powder: cobalt-catalyzed multicomponent coupling reactions with alkynes. J Am Chem Soc 138:5547–5550

    CAS  Article  Google Scholar 

  27. 27.

    Beller M, Gu X-F (2013) Transition metal catalyzed carbonylation reactions. Springer, New York

    Google Scholar 

  28. 28.

    Fujihara T, Nogi K, Xu T, Terao J, Tsuji Y (2012) Nickel-catalyzed carboxylation of aryl and vinyl chlorides employing carbon dioxide. J Am Chem Soc 134:9106–9109

    CAS  Article  Google Scholar 

  29. 29.

    Liu Y, Cornella J, Martin R (2014) Ni-catalyzed carboxylation of unactivated primary alkyl bromides and sulfonates with CO2. J Am Chem Soc 136:11212–11215

    CAS  Article  Google Scholar 

  30. 30.

    Inoue Y, Itoh Y, Hashimoto H (1977) Incorporation of carbon dioxide in alkyne oligomerization catalyzed by nickel(0) complexes. Formation of substituted 2-pyrones. Chem Lett 6:855–856

    Article  Google Scholar 

  31. 31.

    Burkhart G, Hoberg H (1982) Oxanickelacyclopentene derivatives from Nickel(0), carbon dioxide, and alkynes. Angew Chem Int Ed 21:76

    Article  Google Scholar 

  32. 32.

    Sakaki S, Mine K, Taguchi D, Arai T (1993) Formation of the oxanickelacyclopentene complex from nickel(0), carbon dioxide, and alkyne. An ab initio MO/SD-CI study. Bull Chem Soc Jpn 66:3289–3299

    CAS  Article  Google Scholar 

  33. 33.

    Sakaki S, Mine K, Hamada T, Arai T (1995) Formation of the oxanickelacyclopentene complex from nickel(0), carbon dioxide, and alkyne. An ab initio MO/SD-CI Study. Part II. Reactivity and regioselectivity of hydroxyacetylene. Bull Chem Soc Jpn 68:1873–1882

    CAS  Article  Google Scholar 

  34. 34.

    Graham DC, Bruce MI, Metha GF, Bowie JH, Buntine MA (2008) Regioselective control of the nickel-mediated coupling of acetylene and carbon dioxide—a DFT study. J Organomet Chem 693:2703–2710

    CAS  Article  Google Scholar 

  35. 35.

    Li J, Jia G, Lin Z (2008) Theoritical studies on coupling reactions of carbon dioxide with alkynes mediated by Nickel(0) complexes. Organometallics 27:3892–3900

    CAS  Article  Google Scholar 

  36. 36.

    Saito S, Nakagawa S, Koizumi T, Hirayama K, Yamamoto Y (1999) Nickel-mediated regio- and chemoselective carboxylation of alkynes in the presence of carbon dioxide. J Org Chem 64:3975–3978

    CAS  Article  Google Scholar 

  37. 37.

    Aoki M, Kaneko M, Izumi S, Ukai K, Iwasawa N (2004) Bidentate amidine ligands for nickel(0)-mediated coupling of carbon dioxide with unsaturated hydrocarbons. Chem Commun 36(22):2568–2569

    Article  CAS  Google Scholar 

  38. 38.

    Takimoto M, Shimizu K, Mori M (2001) Nickel-promoted alkylative or arylative carboxylation of alkynes. Org Lett 3:3345–3347

    CAS  Article  Google Scholar 

  39. 39.

    Shimizu K, Takimoto M, Mori M (2003) Novel synthesis of heterocycles having a functionalized carbon center via Nickel-mediated carboxylation: total synthesis of Erythrocarine. Org Lett 5:2323–2325

    CAS  Article  Google Scholar 

  40. 40.

    Shimizu K, Takimoto M, Sato Y, Mori M (2006) Total synthesis of (±)-erythrocarine using dienyne metathesis. J Organomet Chem 691:5466–5475

    CAS  Article  Google Scholar 

  41. 41.

    Saito N, Sun Z, Sato Y (2015) Nickel-promoted highly regioselective carboxylation of aryl ynol ether and its application to the synthesis of chiral beta-aryloxypropionic acid derivatives. Chem Asian J 10:1170–1176

    CAS  Article  Google Scholar 

  42. 42.

    Inoue Y, Itoh Y, Hashimoto H (1978) Oligomerization of 3-hexyne by nickel(0) complexes under CO2. Incorporation of CO2 and novel cyclotrimerization. Chem Lett 7:633–634

    Article  Google Scholar 

  43. 43.

    Inoue Y, Itoh Y, Kazama H, Hashimoto H (1980) Reaction of dialkyl-substituted alkynes with carbon dioxide catalyzed by nickel(0) complexes. Incorporation of carbon dioxide in alkyne dimers and novel cyclotrimerization of the alkynes. Bull Chem Soc Jpn 53:3329–3333

    CAS  Article  Google Scholar 

  44. 44.

    Walther D, Schönberg H, Dinjus E (1987) Aktivierung von kohlendioxid an übergangsmetallzentren: selektive cooligomerisation mit hexin durch das katalysatorsystem acetonitril/trialkylphosphan/nickel(0) und struktur eines nickel(0)-komplexes mit side-on gebundenem acetonitril. J Org Chem 334:377–388

    CAS  Article  Google Scholar 

  45. 45.

    Tsuda T, Kunisada K, Nagahama N, Morikawa S, Saegusa T (1989) Nickel(0)-catalyzed cycloaddition of ethoxyethyne with carbon dioxide to 4,5-diethoxy-α-pyrone. Synth Commun 19:1575–1581

    CAS  Article  Google Scholar 

  46. 46.

    Tsuda T, Hasegawa N, Saegusa T (1990) Nickel(0)-catalysed novel co-oligomerization of ethoxy(trimethylsilyl)ethyne with carbon dioxide to 4,6-diethoxy-3-[1-ethoxy-2,2-bis(trimethylsilyl)vinyl]-5-(trimethylsilyl)-2-pyrone. J Chem Soc, Chem Commun 945–947

  47. 47.

    Hoberg H, Schaefer D, Burkhart G, Krüger C, Romao MJ (1984) Nickel(0)-induzierte C-C verknüpfung zwischen kohlendioxid und alkinen sowie alkenen. J Organomet Chem 266:203–224

    CAS  Article  Google Scholar 

  48. 48.

    Mori M (2007) Regio- and stereoselective synthesis of tri- and tetrasubstituted alkenes by introduction of CO2 and alkylzinc reagents into alkynes. Eur J Org Chem 2007:4981–4993

    Article  Google Scholar 

  49. 49.

    Shimizu K, Takimoto M, Sato Y, Mori M (2005) Nickel-catalyzed regioselective synthesis of tetrasubstituted alkene using alkylative carboxylation of disubstituted alkyne. Org Lett 7:195–197

    CAS  Article  Google Scholar 

  50. 50.

    Sato Y, Mori M, Shimizu K, Takimoto M (2006) Effective synthesis of tamoxifen using nickel-catalyzed arylative carboxylation. Synlett 2006:3182–3184

    Article  CAS  Google Scholar 

  51. 51.

    Buchwald SL, Nielsen RB (1989) Selective, zirconium-mediated cross-coupling of alkynes: synthesis of isomerically pure 1,3-dienes and 1,4-diiodo 1,3-dienes. J Am Chem Soc 111:2870–2874

    CAS  Article  Google Scholar 

  52. 52.

    Fujihara T, Horimoto Y, Mizoe T, Sayyed FB, Tani Y, Terao J, Sakaki S, Tsuji Y (2014) Nickel-catalyzed double carboxylation of alkynes employing carbon dioxide. Org Lett 16:4960–4963

    CAS  Article  Google Scholar 

  53. 53.

    Li S, Yuan W, Ma S (2011) Highly regio- and stereoselective three-component nickel-catalyzed syn-hydrocarboxylation of alkynes with diethyl zinc and carbon dioxide. Angew Chem Int Ed 50:2578–2582

    CAS  Article  Google Scholar 

  54. 54.

    Fujihara T, Xu T, Semba K, Terao J, Tsuji Y (2011) Copper-catalyzed hydrocarboxylation of alkynes using carbon dioxide and hydrosilanes. Angew Chem Int Ed 50:523–527

    CAS  Article  Google Scholar 

  55. 55.

    Li S, Ma S (2011) Highly selective nickel-catalyzed methyl-carboxylation of homopropargylic alcohols for α-alkylidene-γ-butyrolactones. Org Lett 13:6046–6049

    CAS  Article  Google Scholar 

  56. 56.

    Li S, Ma S (2012) CO2-activation for gamma-butyrolactones and its application in the total synthesis of (±)-heteroplexisolide E. Chem Asian J 7:2411–2418

    CAS  Article  Google Scholar 

  57. 57.

    Wang X, Nakajima M, Martin R (2015) Ni-catalyzed regioselective hydrocarboxylation of alkynes with CO2 by using simple alcohols as proton sources. J Am Chem Soc 137:8924–8927

    CAS  Article  Google Scholar 

  58. 58.

    Trost BM, Ball ZT (2005) Addition of metalloid hydrides to alkynes: hydrometallation with Boron, Silicon, and Tin. Synthesis 6:853–887

    Article  CAS  Google Scholar 

  59. 59.

    Fu M-C, Shang R, Cheng W-M, Fu Y (2016) Nickel-catalyzed regio- and stereoselective hydrocarboxylation of alkynes with formic acid through catalytic CO recycling. ACS Catal 6:2501–2505

    CAS  Article  Google Scholar 

  60. 60.

    Hoberg H, Schaefer D (1982) Nickel(0)-induzierte C-C verknupfung zwischen alkenen und kohlendioxid. J Organomet Chem 236:C28–C30

    CAS  Article  Google Scholar 

  61. 61.

    Hoberg H, Schaefer D (1983) Nickel(0)-induzierte C-C verknupfung zwischen kohlendioxid und etylen sowie mono- oder di-substituierten alkenen. J Organomet Chem 1983:C51–C53

    Article  Google Scholar 

  62. 62.

    Hoberg H, Peres Y, Milchereit A (1986) C-C Verknupfung von alkenen mit CO2 an Nickel(0); Herstellung von zimtsaure aus styrol. J Organomet Chem 307:C38–C40

    CAS  Article  Google Scholar 

  63. 63.

    Hoberg H, Ballesteros A, Sigan A, Jegat C, Barhausen D, Milchereit A (1991) Ligandgesteuerte ringkontraktion von Nickela-funfin vierringkomplexe-neuartige startsysteme fur die praparative Chemie. J Organomet Chem 407:C23–C29

    CAS  Article  Google Scholar 

  64. 64.

    Greenburg ZR, Jin D, Williard PG, Bernskoetter WH (2014) Nickel promoted functionalization of CO2 to anhydrides and ketoacids. Dalton Trans 43:15990–15996

    CAS  Article  Google Scholar 

  65. 65.

    Murakami M, Ishida N, Miura T (2006) Solvent and ligand partition reaction pathways in nickel-mediated carboxylation of methylenecyclopropanes. Chem Comm 14(6):643–645

    Article  CAS  Google Scholar 

  66. 66.

    Guo C-H, Tian L-C, Jia J, Wu H-S (2014) Theoretical study on the nickel(0)-mediated coupling of carbon dioxide and benzylidenecyclopropane: mechanism and selectivity. Comput Theor Chem 1044:44–54

    CAS  Article  Google Scholar 

  67. 67.

    Aresta M, Quaranta E, Tommasi I (1988) Reduction of coordinated carbon dioxide to carbon monoxide via protonation by thiols and other Bronsted acids by Ni-systems: a contribution to the understanding of the mode of action of the enzyme carbon monoxide dehydrogenase. J Chem Soc, Chem Commun. doi:10.1039/c39880000450

    Google Scholar 

  68. 68.

    Aresta M, Gobetto R, Quaranta E, Tommasi I (1992) A bonding-reactivity relationship of Ni(PCy3)2(CO2): a comparative solid-state-solution nuclear magnetic resonance study (31P, 13C) as a diagnostic tool to determine the mode of bonding of CO2 to a metal center. Inorg Chem 31:4286–4290

    CAS  Article  Google Scholar 

  69. 69.

    Papai I, Schubert G, Mayer I, Besenyei G, Aresta M (2004) Mechanistic details of Nickel(0)-assisted oxidative coupling of CO2 with C2H4. Organometallics 23:5252–5259

    CAS  Article  Google Scholar 

  70. 70.

    Yang G, Schäffner B, Blug M, Hensen EJM, Pidko EA (2014) A mechanistic study of Ni-catalyzed carbon dioxide coupling with ethylene towards the manufacture of acrylic acid. Chem Cat Chem 6:800–807

    CAS  Google Scholar 

  71. 71.

    Plessow PN, Schäfer A, Limbach M, Hofmann P (2014) Acrylate formation from CO2 and ethylene mediated by Nickel complexes: a theoretical study. Organometallics 33:3657–3668

    CAS  Article  Google Scholar 

  72. 72.

    Hoberg H, Peres Y, Kruger C, Tsay Y-H (1987) A 1-oxa-2-nickela-5-cyclopentanone from ethene and carbon dioxide: preparation, structure, and reactivity. Angew Chem Int Ed 26:771–773

    Article  Google Scholar 

  73. 73.

    Hoberg H, Jenni K, Angermund K, Kruger C (1987) C-C-Linkages of ethene with CO2 on an Iron(0) complex - Synthesis and crystal structure analysis of [(PEt3)2Fe(C2H4)2]. Angew Chem Int Ed 26:153–155

    Article  Google Scholar 

  74. 74.

    Kirillov E, Carpentier JF, Bunel E (2015) Carboxylic acid derivatives via catalytic carboxylation of unsaturated hydrocarbons: whether the nature of a reductant may determine the mechanism of CO2 incorporation? Dalton Trans 44:16212–16223

    CAS  Article  Google Scholar 

  75. 75.

    Lapidus AL, Pirozhkov SD, Koryakin AA (1978) Catalytic synthesis of propionic acid by carboxylation of ethylene with carbon dioxide. Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya 12:2814–2816

    Google Scholar 

  76. 76.

    Williams CM, Johnson JB, Rovis T (2008) Nickel-catalyzed reductive carboxylation of styrenes using CO2. J Am Chem Soc 130:14936–14937

    CAS  Article  Google Scholar 

  77. 77.

    Yuan R, Lin Z (2014) Computational insight into the mechanism of Nickel-catalyzed reductive carboxylation of styrenes using CO2. Organometallics 33:7147–7156

    CAS  Article  Google Scholar 

  78. 78.

    Shirakawa E, Ikeda D, Masui S, Yoshida M, Hayashi T (2012) Iron-copper cooperative catalysis in the reactions of alkyl Grignard reagents: exchange reaction with alkenes and carbometalation of alkynes. J Am Chem Soc 134:272–279

    CAS  Article  Google Scholar 

  79. 79.

    Greenhalgh MD, Thomas SP (2012) Iron-catalyzed, highly regioselective synthesis of alpha-aryl carboxylic acids from styrene derivatives and CO2. J Am Chem Soc 134:11900–11903

    CAS  Article  Google Scholar 

  80. 80.

    Rio I, Claver C, van Leeuwen PWNM (2001) On the mechanism of the hydroxycarbonylation of styrene with palladium systems. Eur J Inorg Chem 2001:2719–2738

    Google Scholar 

  81. 81.

    Smith BRJ, Loganathan M, Shantha MS (2010) A review of the water gas shift reaction kinetics. Int J Chem React Eng 8:1542

    Google Scholar 

  82. 82.

    Ostapowicz TG, Schmitz M, Krystof M, Klankermayer J, Leitner W (2013) Carbon dioxide as a C(1) building block for the formation of carboxylic acids by formal catalytic hydrocarboxylation. Angew Chem Int Ed 52:12119–12123

    CAS  Article  Google Scholar 

  83. 83.

    González-Sebastián L, Flores-Alamo M, García JJ (2012) Nickel-catalyzed reductive hydroesterification of styrenes using CO2 and MeOH. Organometallics 31:8200–8207

    Article  CAS  Google Scholar 

  84. 84.

    Wu L, Liu Q, Fleischer I, Jackstell R, Beller M (2014) Ruthenium-catalysed alkoxycarbonylation of alkenes with carbon dioxide. Nat Commun 5:3091

    Google Scholar 

  85. 85.

    Yu B, Diao Z-F, Guo C-X, He L-N (2013) Carboxylation of olefins/alkynes with CO2 to industrially relevant acrylic acid derivatives. J CO2 Util 1:60–68

  86. 86.

    Limbach M (2015) Acrylates from alkenes and CO2, the stuff that dreams are made of. Adv Organomet Chem 63:175–202

    CAS  Google Scholar 

  87. 87.

    Graham DC, Mitchell C, Bruce MI, Metha GF, Bowie JH, Buntine MA (2007) Production of acrylic acid through Nickel-mediated coupling of ethylene and carbon dioxide—a DFT Study. Organometallics 26:6784–6792

    CAS  Article  Google Scholar 

  88. 88.

    Fischer R, Langer J, Malassa A, Walther D, Gorls H, Vaughan G (2006) A key step in the formation of acrylic acid from CO2 and ethylene: the transformation of a nickelalactone into a nickel-acrylate complex. Chem Comm 2510–2512

  89. 89.

    Bruckmeier C, Lehenmeier MW, Reichardt R, Vagin S, Rieger B (2010) Formation of methyl acrylate from CO2 and ethylene via methylation of nickelalactones. Organometallics 29:2199–2202

    CAS  Article  Google Scholar 

  90. 90.

    Lee SY, Cokoja M, Drees M, Li Y, Mink J, Herrmann WA, Kuhn FE (2011) Transformation of nickelalactones to methyl acrylate: on the way to a catalytic conversion of carbon dioxide. Chem Sus Chem 4:1275–1279

    CAS  Article  Google Scholar 

  91. 91.

    Lee SYT, Ghani AA, D’Elia V, Cokoja M, Herrmann WA, Basset J-M, Kühn FE (2013) Liberation of methyl acrylate from metallalactone complexes via M–O ring opening (M=Ni, Pd) with methylation agents. New J Chem 37:3512

    CAS  Article  Google Scholar 

  92. 92.

    Plessow PN, Weigel L, Lindner R, Schäfer A, Rominger F, Limbach M, Hofmann P (2013) Mechanistic details of the Nickel-mediated formation of acrylates from CO2, ethylene and methyl iodide. Organometallics 32:3327–3338

    CAS  Article  Google Scholar 

  93. 93.

    Jin D, Schmeier TJ, Williard PG, Hazari N, Bernskoetter WH (2013) Lewis acid induced β-elimination from a nickelalactone: efforts toward acrylate production from CO2 and ethylene. Organometallics 32:2152–2159

    CAS  Article  Google Scholar 

  94. 94.

    Guo W, Michel C, Schwiedernoch R, Wischert R, Xu X, Sautet P (2014) Formation of acrylates from ethylene and CO2 on Ni complexes: a mechanistic viewpoint from a hybrid DFT approach. Organometallics 33:6369–6380

    CAS  Article  Google Scholar 

  95. 95.

    Jin D, Williard PG, Hazari N, Bernskoetter WH (2014) Effect of sodium cation on metallacycle beta-hydride elimination in CO2-ethylene coupling to acrylates. Chem Eur J 20:3205–3211

    CAS  Article  Google Scholar 

  96. 96.

    Lejkowski ML, Lindner R, Kageyama T, Bodizs GE, Plessow PN, Muller IB, Schafer A, Rominger F, Hofmann P, Futter C, Schunk SA, Limbach M (2012) The first catalytic synthesis of an acrylate from CO2 and an alkene-a rational approach. Chem Eur J 18:14017–14025

    CAS  Article  Google Scholar 

  97. 97.

    Manzini S, Huguet N, Trapp O, Paciello RA, Schaub T (2016) Synthesis of acrylates from olefins and CO2 using sodium alkoxides as bases. Catal Today. doi:10.1016/j.cattod.2016.03.025

    Google Scholar 

  98. 98.

    Huguet N, Jevtovikj I, Gordillo A, Lejkowski ML, Lindner R, Bru M, Khalimon AY, Rominger F, Schunk SA, Hofmann P, Limbach M (2014) Nickel-catalyzed direct carboxylation of olefins with CO2: one-pot synthesis of alpha, beta-unsaturated carboxylic acid salts. Chem Eur J 20:16858–16862

    CAS  Article  Google Scholar 

  99. 99.

    Jevtovikj I, Manzini S, Hanauer M, Rominger F, Schaub T (2015) Investigations on the catalytic carboxylation of olefins with CO2 towards alpha, beta-unsaturated carboxylic acid salts: characterization of intermediates and ligands as well as substrate effects. Dalton Trans 44:11083–11094

    CAS  Article  Google Scholar 

  100. 100.

    Hendriksen C, Pidko EA, Yang G, Schaffner B, Vogt D (2014) Catalytic formation of acrylate from carbon dioxide and ethene. Chem Eur J 20:12037–12040

    CAS  Article  Google Scholar 

  101. 101.

    Manzini S, Huguet N, Trapp O, Schaub T (2015) Palladium- and Nickel-catalyzed synthesis of sodium acrylate from ethylene, CO2, and phenolate bases: optimization of the catalytic system for a potential process. Eur J Org Chem 2015:7122–7130

    CAS  Article  Google Scholar 

  102. 102.

    Goossen LJ, Goossen K (2008) Nachhaltigkeit durch atomökonomische Synthesen. Aktuelle Wochenschau der GDCh:18

  103. 103.

    Hoberg H, Oster BW (1984) Nickel(0)-induzierte C–C-verknüpfung zwischen 1,2-dienen und kohlendioxid. J Organomet Chem 266:321–326

    CAS  Article  Google Scholar 

  104. 104.

    Takimoto M, Kawamura M, Mori M (2003) Nickel(0)-mediated sequential addition of carbon dioxide and aryl aldehydes into terminal allenes. Org Lett 5:2599–2601

    CAS  Article  Google Scholar 

  105. 105.

    Takimoto M, Kawamura M, Mori M (2004) Nickel-mediated regio- and stereoselective carboxylation of trimethylsilylallene under an atmosphere of carbon dioxide. Synthesis 2004:791–795

    Article  CAS  Google Scholar 

  106. 106.

    Takimoto M, Kawamura M, Mori M, Sato Y (2011) Nickel-promoted carboxylation/cyclization cascade of allenyl aldehyde under an atmosphere of CO2. Synlett 2011:1423–1426

    Article  CAS  Google Scholar 

  107. 107.

    Aoki M, Izumi S, Kaneko M, Ukai K, Takaya J, Iwasawa N (2007) Ni(0)-promoted hydroxycarboxylation of 1,2-dienes by reaction with CO2 and O2. Org Lett 9:1251–1253

    CAS  Article  Google Scholar 

  108. 108.

    Dérien S, Clinet J-C, Duñach E, Périchon J (1990) Coupling of allenes and carbon dioxide catalyzed by electrogenerated nickel complexes. Synlett 2:361–364

    Article  Google Scholar 

  109. 109.

    Takimoto M, Kawamura M, Mori M, Sato Y (2005) Nickel-catalyzed regio- and stereoselective double carboxylation of trimethylsilylallene under an atmosphere of carbon dioxide and its application to the synthesis of Chaetomellic acid A anhydride. Synlett 2005:2019–2022

    Google Scholar 

  110. 110.

    Walther D, Dinjus E (1982) Aktivierung von Kohlendioxid an Übergangsmetallzentren; Die Metallaringschlußreaktion zwischen Kohlendioxid und 1,3-Dienen am elektronenreichen Nickel (0)-Komplexrumpf. Zeitschrift für Chemie 22:228–229

    CAS  Article  Google Scholar 

  111. 111.

    Walther D, Dinjus E, Seiler J, Thanh NN, Schade W, Leban I (1983) Aktivierung von CO2 an übergangsmetallzentren: struktur and reaktivität eines C–C-kopplungsproduktes von CO2 und 2.3-dimethylbutadien am elektronenreichen Nickel(0). Z Naturforsch B 38:835–840

    Article  Google Scholar 

  112. 112.

    Hoberg H, Apotecher B (1984) α, ω-Disäuren aus butadien und kohlendioxid an nickel(0). J Organomet Chem 270:c15–c17

    CAS  Article  Google Scholar 

  113. 113.

    Hoberg H, Schaefer D, Oster BW (1984) Diencarbonsäuren aus 1,3-dienen und CO2 durch C–C-verknüpfung an nickel(0). J Organomet Chem 266:313–320

    CAS  Article  Google Scholar 

  114. 114.

    Hoberg H, Schaefer D (1983) Sorbinsäure aus piperylen und CO2 durch C–C-Verknüpfung an nickel(0). J Organomet Chem 255:C15–C17

    CAS  Article  Google Scholar 

  115. 115.

    Behr A, Kanne U (1986) Nickel complex induced C–C-linkage of carbon dioxide with trienes. J Organomet Chem 317:C41–C44

    CAS  Article  Google Scholar 

  116. 116.

    Hoberg H, Jenni K, Krüger C, Raabe E (1986) C–C-Kupplung von CO2 und Butadien an Eisen(o)-Komplexen—ein neuer Weg zu α, ω-Dicarbonsäuren. Angew Chem 98:819–820

    CAS  Article  Google Scholar 

  117. 117.

    Geyer C, Schindler S (1998) Kinetic analysis of the reaction of isoprene with carbon dioxide and a Nickel(0) complex. Organometallics 17:4400–4405

    CAS  Article  Google Scholar 

  118. 118.

    Takimoto M, Mori M (2001) Cross-coupling reaction of oxo–allylnickel complex generated from 1,3-diene under an atmosphere of carbon dioxide. J Am Chem Soc 123:2895–2896

    CAS  Article  Google Scholar 

  119. 119.

    Takimoto M, Mizuno T, Sato Y, Mori M (2005) Nickel-mediated carboxylative cyclization of enynes. Tetrahedron Lett 46:5173–5176

    CAS  Article  Google Scholar 

  120. 120.

    Takimoto M, Mizuno T, Mori M, Sato Y (2006) Nickel-mediated cyclization of enynes under an atmosphere of carbon dioxide. Tetrahedron 62:7589–7597

    CAS  Article  Google Scholar 

  121. 121.

    Mizuno T, Oonishi Y, Takimoto M, Sato Y (2011) Total synthesis of (–)-Corynantheidine by Nickel-catalyzed carboxylative cyclization of enynes. Eur J Org Chem 2011:2606–2609

    Article  CAS  Google Scholar 

  122. 122.

    Hoberg H, Gross S, Milchereit A (1987) Nickel(0)-catalyzed production of a functionalized cyclopentanecarboxylic acid from 1,3-Butadiene and CO2. Angew Chem Int Ed 26:571–572

    Article  Google Scholar 

  123. 123.

    Tsuda T, Morikawa S, Sumiya R, Saegusa T (1988) Nickel(0)-catalyzed cycloaddition of diynes and carbon dioxide to give bicyclic α-pyrones. J Org Chem 53:3140–3145

    CAS  Article  Google Scholar 

  124. 124.

    Tsuda T, Morikawa S, Hasegawa N, Saegusa T (1990) Nickel(0)-catalyzed cycloaddition of silyl diynes with carbon dioxide to silyl bicyclic α-pyrones. J Org Chem 55:2978–2981

    CAS  Article  Google Scholar 

  125. 125.

    Tekavec TN, Arif AM, Louie J (2004) Regioselectivity in nickel(0) catalyzed cycloadditions of carbon dioxide with diynes. Tetrahedron 60:7431–7437

    CAS  Article  Google Scholar 

  126. 126.

    Louie J, Gibby JE, Farnworth MV, Tekavec TN (2002) Efficient Nickel-catalyzed [2+2+2] cycloaddition of CO2 and diynes. J Am Chem Soc 124:15188–15189

    CAS  Article  Google Scholar 

  127. 127.

    Cao T, Ma S (2016) Highly stereo- and regioselective hydrocarboxylation of diynes with carbon dioxide. Org Lett 18:1510–1513

    CAS  Article  Google Scholar 

  128. 128.

    Takimoto M, Mori M (2002) Novel catalytic CO2 incorporation reaction: nickel-catalyzed regio- and stereoselective ring-closing carboxylation of bis-1,3-dienes. J Am Chem Soc 124:10008–10009

    CAS  Article  Google Scholar 

  129. 129.

    Takimoto M, Nakamura Y, Kimura K, Mori M (2004) Highly enantioselective catalytic carbon dioxide incorporation reaction: nickel-catalyzed asymmetric carboxylative cyclization of bis-1,3-dienes. J Am Chem Soc 126:5956–5957

    CAS  Article  Google Scholar 

Download references


We thank ICIQ, European Research Council (ERC-277883), MINECO (CTQ2015-65496-R & Severo Ochoa Excellence Accreditation 2014-2018, SEV-2013-0319) and Cellex Foundation for support. E. Serrano, M. van Gemmeren and F. Juliá-Hernández thank MINECO, Alexander von Humboldt Foundation and COFUND for predoctoral and postdoctoral fellowships, respectively.

Author information



Corresponding author

Correspondence to Ruben Martin.

Additional information

This article is part of the Topical Collection “Ni- and Fe-Based Cross-Coupling Reactions”; edited by “Arkaitz Correa”.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Juliá-Hernández, F., Gaydou, M., Serrano, E. et al. Ni- and Fe-catalyzed Carboxylation of Unsaturated Hydrocarbons with CO2 . Top Curr Chem (Z) 374, 45 (2016).

Download citation


  • Nickel
  • Iron
  • CO2
  • Carboxylation
  • Unsaturated hydrocarbons
  • Catalysis
  • Carboxylic acids
  • Cross-coupling