Calix-Based Nanoparticles: A Review

  • Anita R. Kongor
  • Viren A. Mehta
  • Krunal M. Modi
  • Manthan K. Panchal
  • Shuvankar A. Dey
  • Urvi S. Panchal
  • Vinod K. Jain


Calixarenes are considered as third generation supramolecules with hollow cavity-like architecture whereas nanoparticles are small entities with dimensions in the nanoscale. Many exciting achievements are seen when the calix system merges with nanoparticles which produces many fascinating facets in all fields of contemporary chemistry. The properties of nanoparticles which are tuned by calixarenes find applications in sensing, catalysis, molecular recognition, etc. Here, we have reviewed the chemistry of calix-based nanoparticles, and emphasis is laid on the modified, reducing, templated and stabilizing roles of calixarenes. This review covers the research being carried out in the domain of calix protected metal nanoparticles during last 18 years under the canopy of important 109 references. This article contains 58 figures which include 81 easy to understand structures. Calix-protected nanoparticles have enthralled researchers in the field of nanoscience with a tremendous growth in its applications, which heralds much promise to become in future a separate area of research.

Graphical Abstract


Supramolecules Calixarenes Chemistry Nanoparticles 



The authors gratefully acknowledge the financial assistance provided by Department of Science and Technology (DST)—Innovation in Science Pursuit for Inspired Research (INSPIRE), (New Delhi) and UGC Infonet and Information and Library Network (INFLIBNET) (Ahmedabad) for e-journals.


  1. 1.
    Zinke A, Ziegler E (1944) The hardening process of phenol-formaldehyde resins. Chem Ber 77B:264–272Google Scholar
  2. 2.
    Jain V, Handa A, Pandya R, Shrivastav P, Agrawal Y (2002) Polymer supported calix[4]arene-semicarbazone derivative for separation and preconcentration of La (III), Ce (III), Th (IV) and U (VI). React Funct Polym 51(2):101–110CrossRefGoogle Scholar
  3. 3.
    Arnaud-Neu F, Barrett G, Corry D, Cremin S, Ferguson G, Gallagher JF, Harris SJ, McKervey MA, Schwing-Weill MJ (1997) Cation complexation by chemically modified calixarenes. Part 10. Thioamide derivatives of p-tert-butylcalix [4]-,[5]-and [6]-arenes with selectivity for copper, silver, cadmium and lead. X-Ray molecular structures of calix[4]arene thioamide–lead (II) and calix[4]arene amide–copper (II) complexes. J Chem Soc Perkin Trans 2(3):575–580CrossRefGoogle Scholar
  4. 4.
    Agrawal Y, Pancholi J, Vyas J (2009) Design and synthesis of calixarene. J Sci Ind Res 68(9):745–768Google Scholar
  5. 5.
    Lismont M, Dreesen L (2012) Comparative study of Ag and Au nanoparticles biosensors based on surface plasmon resonance phenomenon. Mater Sci Eng C 32(6):1437–1442. doi: 10.1016/j.msec.2012.04.023 CrossRefGoogle Scholar
  6. 6.
    Carlson C, Hussain SM, Schrand AM, Braydich-Stolle K, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112(43):13608–13619CrossRefGoogle Scholar
  7. 7.
    Chen M, Cai Y, Yan Z, Goodman DW (2006) On the origin of the unique properties of supported Au nanoparticles. J Am Chem Soc 128(19):6341–6346CrossRefGoogle Scholar
  8. 8.
    Dang TMD, Le TTT, Fribourg-Blanc E, Dang MC (2011) Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Adv Nat Sci Nanosci Nanotechnol 2(1):015009. doi: 10.1088/2043-6262/2/1/015009 CrossRefGoogle Scholar
  9. 9.
    Elkins KE, Vedantam TS, Liu J, Zeng H, Sun S, Ding Y, Wang Z (2003) Ultrafine FePt nanoparticles prepared by the chemical reduction method. Nano Lett 3(12):1647–1649CrossRefGoogle Scholar
  10. 10.
    Jana NR, Gearheart L, Murphy CJ (2001) Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem Mater 13(7):2313–2322CrossRefGoogle Scholar
  11. 11.
    Wang H, Qiao X, Chen J, Ding S (2005) Preparation of silver nanoparticles by chemical reduction method. Colloids Surf A 256(2–3):111–115. doi: 10.1016/j.colsurfa.2004.12.058 CrossRefGoogle Scholar
  12. 12.
    Tan Y, Dai X, Li Y, Zhu D (2003) Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant–potassium bitartrate. J Mater Chem 13(5):1069–1075. doi: 10.1039/b211386d CrossRefGoogle Scholar
  13. 13.
    YongáLiew K (2001) Size control of polymer-stabilized ruthenium nanoparticles by polyol reduction. J Mater Chem 11(12):3387–3391CrossRefGoogle Scholar
  14. 14.
    H-t Zhu, C-y Zhang, Y-s Yin (2004) Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation. J Cryst Growth 270(3–4):722–728. doi: 10.1016/j.jcrysgro.2004.07.008 Google Scholar
  15. 15.
    Huang KC, Ehrman SH (2007) Synthesis of iron nanoparticles via chemical reduction with palladium ion seeds. Langmuir 23(3):1419–1426. doi: 10.1021/la0618364 CrossRefGoogle Scholar
  16. 16.
    Xu Z, Shen C, Hou Y, Gao H, Sun S (2009) Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem Mater 21(9):1778–1780. doi: 10.1021/cm802978z CrossRefGoogle Scholar
  17. 17.
    Ha J-M, Solovyov A, Katz A (2008) Postsynthetic modification of gold nanoparticles with calix[4]arene enantiomers: origin of chiral surface plasmon resonance. Langmuir 25(1):153–158CrossRefGoogle Scholar
  18. 18.
    Yao Y, Sun Y, Han Y, Yan C (2010) Preparation of resorcinarene-functionalized gold nanoparticles and their catalytic activities for reduction of aromatic nitro compounds. Chin J Chem 28(5):705–712CrossRefGoogle Scholar
  19. 19.
    Kinge S, Crego-Calama M, Reinhoudt D (2008) Silver nanoparticles from hydrogen-bonded supramolecular scaffolds. New J Chem 32(12):2071. doi: 10.1039/b808561g CrossRefGoogle Scholar
  20. 20.
    de Silva N, Ha J-M, Solovyov A, Nigra MM, Ogino I, Yeh SW, Durkin KA, Katz A (2010) A bioinspired approach for controlling accessibility in calix[4]arene-bound metal cluster catalysts. Nature Chem 2(12):1062–1068CrossRefGoogle Scholar
  21. 21.
    Bhatt KD, Vyas DJ, Makwana BA, Darjee SM, Jain VK (2014) Highly stable water dispersible calix[4]pyrrole octa-hydrazide protected gold nanoparticles as colorimetric and fluorometric chemosensors for selective signaling of Co(II) ions. Spectrochim Acta Part A 121:94–100. doi: 10.1016/j.saa.2013.10.076 CrossRefGoogle Scholar
  22. 22.
    Baghayeri M, Namadchian M, Karimi-Maleh H, Beitollahi H (2013) Determination of nifedipine using nanostructured electrochemical sensor based on simple synthesis of Ag nanoparticles at the surface of glassy carbon electrode: application to the analysis of some real samples. J Electroanal Chem 697:53–59. doi: 10.1016/j.jelechem.2013.03.011 CrossRefGoogle Scholar
  23. 23.
    Guerrini L, Garcia-Ramos JV, Domingo C, Sanchez-Cortes S (2006) Functionalization of Ag nanoparticles with dithiocarbamate calix[4]arene as an effective supramolecular host for the surface-enhanced Raman scattering detection of polycyclic aromatic hydrocarbons. Langmuir 22(26):10924–10926CrossRefGoogle Scholar
  24. 24.
    D-j Guo, H-l Li (2004) Electrochemical synthesis of Pd nanoparticles on functional MWNT surfaces. Electrochem Commun 6(10):999–1003CrossRefGoogle Scholar
  25. 25.
    Panchal U, Modi K, Panchal M, Mehta V, Jain VK (2016) Catalytic activity of recyclable resorcinarene-protected antibacterial Pd nanoparticles in CC coupling reactions. Chin J Catal 37(2):250–257CrossRefGoogle Scholar
  26. 26.
    Huc V, Pelzer K (2008) A new specifically designed calix[8]arene for the synthesis of functionalized, nanometric and subnanometric Pd, Pt and Ru nanoparticles. J Coll Interf Sci 318(1):1–4CrossRefGoogle Scholar
  27. 27.
    Mehta V, Panchal M, Modi K, Kongor A, Panchal U, Jain VK (2015) The chemistry of nascent oxacalix[n]hetarene (n ≥ 4): a review. Curr Org Chem 19(12):1077–1096CrossRefGoogle Scholar
  28. 28.
    Jain V, Kanaiya P (2011) Chemistry of calix[4] resorcinarenes. Russ Chem Rev 80(1):75–102CrossRefGoogle Scholar
  29. 29.
    Jain VK, Mandalia HC (2007) The chemistry of calixpyrroles. Heterocycles 71(6):1261–1314CrossRefGoogle Scholar
  30. 30.
    Makwana BA, Vyas DJ, Bhatt KD, Darji S, Jain VK (2015) Novel fluorescent silver nanoparticles: sensitive and selective turn off sensor for cadmium ions. Appl Nanosci 6(4):1–12Google Scholar
  31. 31.
    Mishra DR, Darjee SM, Bhatt KD, Modi KM, Jain VK (2015) Calix protected gold nanobeacon as turn-off fluorescent sensor for phenylalanine. J Incl Phenom Macrocycl Chem 82(3):1–12Google Scholar
  32. 32.
    Vyas DJ, Makwana BA, Gupte HS, Bhatt KD, Jain VK (2012) An efficient one pot synthesis of water-dispersible calix[4]arene polyhydrazide protected gold nanoparticles—a “turn off” fluorescent sensor for Hg [II] ions. J Nanosci Nanotechnol 12(5):3781–3787CrossRefGoogle Scholar
  33. 33.
    Acharya A, Samanta K, Rao CP (2012) Conjugates of calixarenes emerging as molecular entities of nanoscience. Coord Chem Rev 256(17):2096–2125CrossRefGoogle Scholar
  34. 34.
    Li H, Yang Y-W (2013) Gold nanoparticles functionalized with supramolecular macrocycles. Chin Chem Lett 24(7):545–552CrossRefGoogle Scholar
  35. 35.
    Montes-García V, Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM (2014) Metal nanoparticles and supramolecular macrocycles: a tale of synergy. Chem Eur J 20(35):10874–10883CrossRefGoogle Scholar
  36. 36.
    Ha J-M, Katz A, Drapailo AB, Kalchenko VI (2008) Mercaptocalixarene-capped gold nanoparticles via postsynthetic modification and direct synthesis: effect of calixarene cavity-metal interactions. J Phys Chem C 113(4):1137–1142CrossRefGoogle Scholar
  37. 37.
    Liu J, Ong W, Kaifer AE, Peinador C (2002) A “macrocyclic effect” on the formation of capped silver nanoparticles in DMF. Langmuir 18(16):5981–5983CrossRefGoogle Scholar
  38. 38.
    Chen Z, Liu J, Evans AJ, Alberch L, Wei A (2013) Calixarene-mediated synthesis of cobalt nanoparticles: an accretion model for separate control over nucleation and growth. Chem Mater 26(2):941–950CrossRefGoogle Scholar
  39. 39.
    Shen M, W-f Chen, Sun Y, C-g Yan (2007) Synthesis and characterization of water-soluble gold colloids stabilized with aminoresorcinarene. J Phys Chem Solids 68(12):2252–2261. doi: 10.1016/j.jpcs.2007.06.007 CrossRefGoogle Scholar
  40. 40.
    Balasubramanian R, Kim B, Tripp SL, Wang X, Lieberman M, Wei A (2002) Dispersion and stability studies of resorcinarene-encapsulated gold nanoparticles. Langmuir 18(9):3676–3681CrossRefGoogle Scholar
  41. 41.
    Wei A, Kim B, Pusztay SV, Tripp SL, Balasubramanian R (2001) Resorcinarene-encapsulated nanoparticles: building blocks for self-assembled nanostructures. J Incl Phenom Macrocycl Chem 41(1–4):83–86CrossRefGoogle Scholar
  42. 42.
    Patel G, Menon S (2009) Recognition of lysine, arginine and histidine by novel p-sulfonatocalix[4]arene thiol functionalized gold nanoparticles in aqueous solution. Chem Commun (Camb) 24:3563–3565. doi: 10.1039/b905141d CrossRefGoogle Scholar
  43. 43.
    Sokkalingam P, Hong SJ, Aydogan A, Sessler JL, Lee CH (2013) Decoration of gold nanoparticles by a double-armed calix[4]pyrrole: a receptor-decorated nanoensemble for anion sensing and extraction. Chemistry 19(19):5860–5867. doi: 10.1002/chem.201300472 CrossRefGoogle Scholar
  44. 44.
    Pescatori L, Boccia A, Ciesa F, Rossi F, Grillo V, Arduini A, Pochini A, Zanoni R, Secchi A (2010) The effect of ligand denticity in size-selective synthesis of calix[n]arene-stabilized gold nanoparticles: a multitechnique approach. Chemistry 16(36):11089–11099. doi: 10.1002/chem.201001039 CrossRefGoogle Scholar
  45. 45.
    Yan H, Luo J, Xie HM, Xie DX, Su Q, Yin J, Wanjala BN, Diao H, An DL, Zhong CJ (2011) Cationic recognition by tert-butylcalix[4]arene-functionalized nanoprobes. Phys Chem Chem Phys 13(13):5824–5830. doi: 10.1039/c0cp02658a CrossRefGoogle Scholar
  46. 46.
    Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19(3):409–453CrossRefGoogle Scholar
  47. 47.
    Maity D, Gupta R, Gunupuru R, Srivastava DN, Paul P (2014) Calix[4]arene functionalized gold nanoparticles: application in colorimetric and electrochemical sensing of cobalt ion in organic and aqueous medium. Sens Actuators B 191:757–764. doi: 10.1016/j.snb.2013.10.066 CrossRefGoogle Scholar
  48. 48.
    Maity D, Kumar A, Gunupuru R, Paul P (2014) Colorimetric detection of mercury(II) in aqueous media with high selectivity using calixarene functionalized gold nanoparticles. Coll Surf A 455:122–128. doi: 10.1016/j.colsurfa.2014.04.047 CrossRefGoogle Scholar
  49. 49.
    Stavens KB, Pusztay SV, Zou S, Andres RP, Wei A (1999) Encapsulation of neutral gold nanoclusters by resorcinarenes. Langmuir 15(24):8337–8339CrossRefGoogle Scholar
  50. 50.
    Balasubramanian R, Xu J, Kim B, Sadtler B, Wei A (2001) Extraction and dispersion of large gold nanoparticles in nonpolar solvents. J Dispers Sci Technol 22(5):485–489CrossRefGoogle Scholar
  51. 51.
    Kim B, Carignano MA, Tripp SL, Wei A (2004) Cluster size analysis of two-dimensional order in colloidal gold nanoparticle arrays. Langmuir 20(21):9360–9365CrossRefGoogle Scholar
  52. 52.
    Kim B, Balasubramanian R, Pérez-Segarra W, Wei A, Decker B, Mattay J (2005) Self-assembly of resorcinarene-stabilized gold nanoparticles: influence of the macrocyclic headgroup. Supramol Chem 17(1–2):173–180. doi: 10.1080/10610270412331328961 CrossRefGoogle Scholar
  53. 53.
    Arduini A, Demuru D, Pochini A, Secchi A (2005) Recognition of quaternary ammonium cations by calix[4]arene derivatives supported on gold nanoparticles. Chem Commun 5:645–647CrossRefGoogle Scholar
  54. 54.
    Tshikhudo TR, Demuru D, Wang Z, Brust M, Secchi A, Arduini A, Pochini A (2005) Molecular recognition by calix[4]arene-modified gold nanoparticles in aqueous solution. Angew Chem 117(19):2973–2976. doi: 10.1002/ange.200462909 CrossRefGoogle Scholar
  55. 55.
    Filenko D, Gotszalk T, Kazantseva Z, Rabinovych O, Koshets I, Shirshov Y, Kalchenko V, Rangelow IW (2005) Chemical gas sensors based on calixarene-coated discontinuous gold films. Sens Actuators B 111–112:264–270. doi: 10.1016/j.snb.2005.06.053 CrossRefGoogle Scholar
  56. 56.
    Zhao Y, Pérez-Segarra W, Shi Q, Wei A (2005) Dithiocarbamate assembly on gold. J Am Chem Soc 127(20):7328–7329CrossRefGoogle Scholar
  57. 57.
    Shen M, Sun Y, Han Y, Yao R, Yan C (2008) Strong deaggregating effect of a novel polyamino resorcinarene surfactant on gold nanoaggregates under microwave irradiation. Langmuir 24(22):13161–13167. doi: 10.1021/la8019588 CrossRefGoogle Scholar
  58. 58.
    Ha JM, Solovyov A, Katz A (2009) Synthesis and characterization of accessible metal surfaces in calixarene-bound gold nanoparticles. Langmuir 25(18):10548–10553. doi: 10.1021/la9013174 CrossRefGoogle Scholar
  59. 59.
    Han C, Zeng L, Li H, Xie G (2009) Colorimetric detection of pollutant aromatic amines isomers with p-sulfonatocalix[6]arene-modified gold nanoparticles. Sens Actuators B 137(2):704–709. doi: 10.1016/j.snb.2008.12.038 CrossRefGoogle Scholar
  60. 60.
    Tu C, Li G, Shi Y, Yu X, Jiang Y, Zhu Q, Liang J, Gao Y, Yan D, Sun J, Zhu X (2009) Facile controlled preparation of gold nanoparticles with amphiphilic thiacalix[4]arene as reductant and stabilizer. Chem Commun (Camb) 22:3211–3213. doi: 10.1039/b902033k CrossRefGoogle Scholar
  61. 61.
    Ciesa F, Plech A, Mattioli C, Pescatori L, Arduini A, Pochini A, Rossi F, Secchi A (2010) Guest controlled assembly of gold nanoparticles coated with calix[4]arene hosts. J Phys Chem C 114(32):13601–13607CrossRefGoogle Scholar
  62. 62.
    Ha J-M, Solovyov A, Katz A (2010) Accessibility in Calix[8]arene-bound gold nanoparticles: crucial role of induced-fit binding†. J Phys Chem C 114(38):16060–16070CrossRefGoogle Scholar
  63. 63.
    Boccia A, Zanoni R, Arduini A, Pescatori L, Secchi A (2012) Structural electronic study via XPS and TEM of subnanometric gold particles protected by calixarenes for silicon surface anchoring. Surf Interf Anal 44(8):1086–1090. doi: 10.1002/sia.4842 CrossRefGoogle Scholar
  64. 64.
    Pandya A, Joshi KV, Modi NR, Menon SK (2012) Rapid colorimetric detection of sulfide using calix[4]arene modified gold nanoparticles as a probe. Sens Actuators B 168:54–61. doi: 10.1016/j.snb.2012.01.023 CrossRefGoogle Scholar
  65. 65.
    Boccia A, D’Orazi F, Carabelli E, Bussolati R, Arduini A, Secchi A, Marrani AG, Zanoni R (2013) Assembly of gold nanoparticles on functionalized Si(100) surfaces through pseudorotaxane formation. Chemistry 19(24):7999–8006. doi: 10.1002/chem.201204318 CrossRefGoogle Scholar
  66. 66.
    Chen X, Hakkinen H (2013) Protected but accessible: oxygen activation by a calixarene-stabilized undecagold cluster. J Am Chem Soc 135(35):12944–12947. doi: 10.1021/ja4059074 CrossRefGoogle Scholar
  67. 67.
    Pulkkinen PMS, Wiktorowicz S, Aseyev V, Tenhu H (2013) Complexation of calix[4]arene protected gold nanoparticles with pyridinium and bipyridinium compounds. RSC Adv 3(3):733–742. doi: 10.1039/c2ra21761a CrossRefGoogle Scholar
  68. 68.
    Pulkkinen PMS, Hassinen J, Ras RHA, Tenhu H (2014) Gold nanoparticles: calixarene complexation in a mixed calixarene–alkanethiol monolayer. RSC Adv 4(26):13453. doi: 10.1039/c4ra00494a CrossRefGoogle Scholar
  69. 69.
    Fujii S, Sakurai K, Okobira T, Ohta N, Takahara A (2013) Synthesis and characterization of a calix[4]arene amphiphilie bearing cysteine and uniform Au nanoparticle formation templated by its four cysteine moieties. Langmuir 29(45):13666–13675. doi: 10.1021/la403377a CrossRefGoogle Scholar
  70. 70.
    Maity D, Bhatt M, Paul P (2014) Calix[4]arene functionalized gold nanoparticles for colorimetric and bare-eye detection of iodide in aqueous media and periodate aided enhancement in sensitivity. Microchim Acta 182(1–2):377–384. doi: 10.1007/s00604-014-1340-4 Google Scholar
  71. 71.
    Gunupuru R, Maity D, Bhadu GR, Chakraborty A, Srivastava DN, Paul P (2014) Colorimetric detection of Cu2+ and Pb2+ ions using calix[4]arene functionalized gold nanoparticles. J Chem Sci 126(3):627–635CrossRefGoogle Scholar
  72. 72.
    Avvakumova S, Fezzardi P, Pandolfi L, Colombo M, Sansone F, Casnati A, Prosperi D (2014) Gold nanoparticles decorated by clustered multivalent cone-glycocalixarenes actively improve the targeting efficiency toward cancer cells. Chem Commun 50(75):11029–11032CrossRefGoogle Scholar
  73. 73.
    Tan S, Zhao H, Tian D, Wang F, Liu J, Li H (2014) Piperidine–calix[4]arene modified gold nanoparticles: imidacloprid colorimetric sensing. Sens Actuators B 204:522–527. doi: 10.1016/j.snb.2014.08.012 CrossRefGoogle Scholar
  74. 74.
    Leyton P, Sanchez-Cortes S, Garcia-Ramos J, Domingo C, Campos-Vallette M, Saitz C, Clavijo R (2004) Selective molecular recognition of polycyclic aromatic hydrocarbons (PAHs) on calix[4]arene-functionalized Ag nanoparticles by surface-enhanced Raman scattering. J Phys Chem B 108(45):17484–17490CrossRefGoogle Scholar
  75. 75.
    Chen M, Diao GW, Li CH, Zhou XM (2007) Phase transition of silver nanoparticles from aqueous solution to chloroform with the help of inclusion complexes of p-sulfonated calix[4]arene and alkanethiol molecules and its application in the size sorting of nanoparticles. Nanotechnology 18(17):175706. doi: 10.1088/0957-4484/18/17/175706 CrossRefGoogle Scholar
  76. 76.
    Chen M, Ding W, Kong Y, Diao G (2008) Conversion of the surface property of oleic acid stabilized silver nanoparticles from hydrophobic to hydrophilic based on host-guest binding interaction. Langmuir 24(7):3471–3478CrossRefGoogle Scholar
  77. 77.
    Xiong D, Chen M, Li H (2008) Synthesis of para-sulfonatocalix[4]arene-modified silver nanoparticles as colorimetric histidine probes. Chem Commun (Camb) 7:880–882. doi: 10.1039/b716270g CrossRefGoogle Scholar
  78. 78.
    Xiong D, Li H (2008) Colorimetric detection of pesticides based on calixarene modified silver nanoparticles in water. Nanotechnology 19(46):465502. doi: 10.1088/0957-4484/19/46/465502 CrossRefGoogle Scholar
  79. 79.
    Ngeontae W, Janrungroatsakul W, Morakot N, Aeungmaitrepirom W, Tuntulani T (2008) New silver selective electrode fabricated from benzothiazole calix[4]arene: speciation analysis of silver nanoparticles. Sens Actuators B 134(2):377–385. doi: 10.1016/j.snb.2008.05.010 CrossRefGoogle Scholar
  80. 80.
    Hartlieb KJ, Saunders M, Raston CL (2009) Templating silver nanoparticle growth using phosphonated calixarenes. Chem Commun (Camb) 21:3074–3076. doi: 10.1039/b823067f CrossRefGoogle Scholar
  81. 81.
    Gao S, Yuan D, Lu J, Cao R (2010) In situ synthesis of Ag nanoparticles in aminocalix[4]arene multilayers. J Coll Interf Sci 341(2):320–325. doi: 10.1016/j.jcis.2009.09.025 CrossRefGoogle Scholar
  82. 82.
    Bian Y, Li C, Li H (2010) para-Sulfonatocalix[6]arene-modified silver nanoparticles electrodeposited on glassy carbon electrode: preparation and electrochemical sensing of methyl parathion. Talanta 81(3):1028–1033. doi: 10.1016/j.talanta.2010.01.054 CrossRefGoogle Scholar
  83. 83.
    Hartlieb KJ, Martin AD, Saunders M, Raston CL (2010) Photochemical generation of small silver nanoparticles involving multi-functional phosphonated calixarenes. New J Chem 34(9):1834. doi: 10.1039/c0nj00356e CrossRefGoogle Scholar
  84. 84.
    Tauran Y, Grosso M, Brioude A, Kassab R, Coleman AW (2011) Colourimetric and spectroscopic discrimination between nucleotides and nucleosides using para-sulfonato-calix[4]arene capped silver nanoparticles. Chem Commun (Camb) 47(36):10013–10015. doi: 10.1039/c1cc13175c CrossRefGoogle Scholar
  85. 85.
    Stoikov II, Yushkova EA, Antipin IS, Konovalov AI (2011) Synthesis of silver and lithium sub-micro- and nanoparticles coated with derivatives of p-tert-butyl thiacalix[4]arenes. J Nanopart Res 13(12):6603–6611. doi: 10.1007/s11051-011-0568-8 CrossRefGoogle Scholar
  86. 86.
    Zhan J, Wen L, Miao F, Tian D, Zhu X, Li H (2012) Synthesis of a pyridyl-appended calix[4]arene and its application to the modification of silver nanoparticles as an Fe3+ colorimetric sensor. New J Chem 36(3):656–661. doi: 10.1039/c2nj20776a CrossRefGoogle Scholar
  87. 87.
    Pandya A, Sutariya PG, Lodha A, Menon SK (2013) A novel calix[4]arene thiol functionalized silver nanoprobe for selective recognition of ferric ion with nanomolar sensitivity via DLS selectivity in human biological fluid. Nanoscale 5(6):2364–2371. doi: 10.1039/c3nr33119a CrossRefGoogle Scholar
  88. 88.
    Tauran Y, Brioude A, Shahgaldian P, Cumbo A, Kim B, Perret F, Coleman AW, Montasser I (2012) Calix-arene silver nanoparticles interactions with surfactants are charge, size and critical micellar concentration dependent. Chem Commun (Camb) 48(76):9483–9485. doi: 10.1039/c2cc34670b CrossRefGoogle Scholar
  89. 89.
    Raoof JB, Ojani R, Hasheminejad E, Rashid-Nadimi S (2012) Electrochemical synthesis of Ag nanoparticles supported on glassy carbon electrode by means of p-isopropyl calix[6]arene matrix and its application for electrocatalytic reduction of H2O2. Appl Surf Sci 258(7):2788–2795. doi: 10.1016/j.apsusc.2011.10.133 CrossRefGoogle Scholar
  90. 90.
    Boudebbouze S, Coleman AW, Tauran Y, Mkaouar H, Perret F, Garnier A, Brioude A, Kim B, Maguin E, Rhimi M (2013) Discriminatory antibacterial effects of calix[n]arene capped silver nanoparticles with regard to gram positive and gram negative bacteria. Chem Commun (Camb) 49(64):7150–7152. doi: 10.1039/c3cc42838a CrossRefGoogle Scholar
  91. 91.
    Tauran Y, Brioude A, Kim B, Perret F, Coleman AW (2013) Anionic calixarene-capped silver nanoparticles show species-dependent binding to serum albumins. Molecules 18(5):5993–6007. doi: 10.3390/molecules18055993 CrossRefGoogle Scholar
  92. 92.
    Perret F, Tauran Y, Suwinska K, Kim B, Chassain-Nely C, Boulet M, Coleman AW (2013) Molecular recognition and transport of active pharmaceutical ingredients on anionic calix[4]arene-capped silver nanoparticles. J Chem 2013:1–9. doi: 10.1155/2013/191828 CrossRefGoogle Scholar
  93. 93.
    Valluru G, Georghiou PE, Sleem HF, Perret F, Montasser I, Grandvoinnet A, Brolles L, Coleman AW (2014) Molecular recognition of nucleobases and amino acids by sulphonato-calixnaphthalene-capped silver nanoparticles. Supramol Chem 26(7–8):561–568. doi: 10.1080/10610278.2013.872247 CrossRefGoogle Scholar
  94. 94.
    Zhou R, Teo S, Srinivasan MP (2014) In situ formation of silver nanoparticle layer by supramolecule-directed assembly. Thin Solid Films 550:210–219. doi: 10.1016/j.tsf.2013.10.161 CrossRefGoogle Scholar
  95. 95.
    Yasin FM, Iyer KS, Raston CL (2013) Palladium nano-carbon-calixarene based devices for hydrogen sensing. New J Chem 37(10):3289–3293CrossRefGoogle Scholar
  96. 96.
    Chen X, Vimalanathan K, Zang W, Slattery AD, Boulos RA, Gibson CT, Raston CL (2014) Self-assembled calixarene aligned patterning of noble metal nanoparticles on graphene. Nanoscale 6(9):4517–4520CrossRefGoogle Scholar
  97. 97.
    Zang W, Chen X, Boulos RA, Toster J, Raston CL (2014) Hydrogen induced p-phosphonic acid calix[8]arene controlled growth of Ru, Pt and Pd nanoparticles. Chem Commun 50(96):15167–15170CrossRefGoogle Scholar
  98. 98.
    Aksoy T, Erdemir S, Yildiz HB, Yilmaz M (2012) Novel water-soluble calix[4,6]arene appended magnetic nanoparticles for the removal of the carcinogenic aromatic amines. Water Air Soil Pollut 223(7):4129–4139CrossRefGoogle Scholar
  99. 99.
    Sayin S, Ozcan F, Yilmaz M (2013) Two novel calixarene functionalized iron oxide magnetite nanoparticles as a platform for magnetic separation in the liquid–liquid/solid–liquid extraction of oxyanions. Mater Sci Eng, C 33(4):2433–2439CrossRefGoogle Scholar
  100. 100.
    Sayin S, Yilmaz M (2014) Brønsted acidic magnetic nano-Fe3 O4-adorned calix [n] arene sulfonic acids: synthesis and application in the nucleophilic substitution of alcohols. Tetrahedron 70(37):6669–6676CrossRefGoogle Scholar
  101. 101.
    Akoz E, Akbulut OY, Yilmaz M (2014) Calix[n]arene carboxylic acid derivatives as regulators of enzymatic reactions: enhanced enantioselectivity in lipase-catalyzed hydrolysis of (R/S)-naproxen methyl ester. Appl Biochem Biotechnol 172(1):509–523CrossRefGoogle Scholar
  102. 102.
    Sayin S, Akoz E, Yilmaz M (2014) Enhanced catalysis and enantioselective resolution of racemic naproxen methyl ester by lipase encapsulated within iron oxide nanoparticles coated with calix[8]arene valeric acid complexes. Org Biomol Chem 12(34):6634–6642CrossRefGoogle Scholar
  103. 103.
    Sayin S, Dogan V (2015) Synthesis and properties of novel magnetic nanoparticles grafted with nitropyridine-substituted calix[4]arene derivative as Cr6+ extractant. Turk J Chem 39(1):130–138CrossRefGoogle Scholar
  104. 104.
    Akceylan E, Uyanik A, Eymur S, Sahin O, Yilmaz M (2015) Calixarene-proline functionalized iron oxide magnetite nanoparticles (Calix-Pro-MN): an efficient recyclable organocatalyst for asymmetric aldol reaction in water. Appl Catal A 499:205–212CrossRefGoogle Scholar
  105. 105.
    Wei A, Tripp SL, Liu J, Kasama T, Dunin-Borkowski RE (2009) Calixarene-stabilised cobalt nanoparticle rings: self-assembly and collective magnetic properties. Supramol Chem 21(3–4):189–195CrossRefGoogle Scholar
  106. 106.
    Liu J, Wei A (2009) Prenucleation and coalescence of cobalt nanoclusters mediated by multivalent calixarene complexes. Chem Commun 28:4254–4256CrossRefGoogle Scholar
  107. 107.
    Moni L, Rossetti S, Scoponi M, Marra A, Dondoni A (2010) Immobilization of calix[4]arene-based glycoclusters on TiO2 nanoparticles via click Cu (i)-catalyzed azide–alkyne coupling. Chem Commun 46(3):475–477CrossRefGoogle Scholar
  108. 108.
    Notestein JM, Iglesia E, Katz A (2007) Photoluminescence and charge-transfer complexes of calixarenes grafted on TiO2 nanoparticles. Chem Mater 19(20):4998–5005CrossRefGoogle Scholar
  109. 109.
    Shi H, Zhao G, Cao T, Liu M, Guan C, Huang X, Zhu Z, Yang N, Williams OA (2012) Selective and visible-light-driven profenofos sensing with calixarene receptors on TiO2 nanotube film electrodes. Electrochem Commun 19:111–114CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Anita R. Kongor
    • 1
  • Viren A. Mehta
    • 1
  • Krunal M. Modi
    • 1
  • Manthan K. Panchal
    • 1
  • Shuvankar A. Dey
    • 1
  • Urvi S. Panchal
    • 1
  • Vinod K. Jain
    • 1
  1. 1.Department of Chemistry, School of SciencesGujarat UniversityAhmedabadIndia

Personalised recommendations