Ruthenium-Catalyzed Transfer Hydrogenation for C–C Bond Formation: Hydrohydroxyalkylation and Hydroaminoalkylation via Reactant Redox Pairs

  • Felix Perez
  • Susumu Oda
  • Laina M. Geary
  • Michael J. Krische
Part of the following topical collections:
  1. Hydrogen Transfer Reactions


Merging the chemistry of transfer hydrogenation and carbonyl or imine addition, a broad new family of redox-neutral or reductive hydrohydroxyalkylations and hydroaminomethylations have been developed. In these processes, hydrogen redistribution between alcohols and π-unsaturated reactants is accompanied by C–C bond formation, enabling direct conversion of lower alcohols to higher alcohols. Similarly, hydrogen redistribution between amines to π-unsaturated reactants results in direct conversion of lower amines to higher amines. Alternatively, equivalent products of hydrohydroxyalkylation and hydroaminomethylation may be generated through the reaction of carbonyl compounds or imines with π-unsaturated reactants under the conditions of 2-propanol-mediated reductive coupling. Finally, using vicinally dioxygenated reactants, that is, diol, ketols, or diones, successive transfer hydrogenative coupling occurs to generate 2 C-C bonds, resulting in products of formal [4+2] cycloaddition.


Ruthenium Transfer Hydrogenation Enantioselective Borrowing Hydrogen C-C Bond Formation 



Acknowledgment is made to the Robert A. Welch Foundation (F-0038) and the NIH-NIGMS (RO1 GM-069445) for partial financial support.


  1. 1.
    James F. Boyce is credited with the hydrogenation of vegetable oils prior to Sabatier’s seminal work. To our knowledge, the earliest written record of Boyce’s work is a patent filed in 1911: Boyce, J “Process of producing an edible compound.” US1061254 A, May 6, 1913Google Scholar
  2. 2.
    Sabatier P, Senderens J-B (1897) Action du Nickel sur l’Éthyléne. Synthéses de l’Éthane. C R Acad Sci Paris 124:1358–1360Google Scholar
  3. 3.
    Kagan HB (2012) Victor Grignard and Paul Sabatier: two showcase laureates of the Nobel Prize for Chemistry. Angew Chem Int Ed 51:7376–7382CrossRefGoogle Scholar
  4. 4.
    Voorhees V, Adams R (1922) The use of the oxides of platinum for the catalytic reduction of organic compounds. J Am Chem Soc 44:1397–1405CrossRefGoogle Scholar
  5. 5.
    Calvin M, Polyani M (1938) Homogeneous catalytic hydrogenation. Trans Faraday Soc 34:1181–1191CrossRefGoogle Scholar
  6. 6.
    Halpern J, Harrod JF, James BR (1961) Homogeneous catalytic hydrogenation of olefinic compounds. J Am Chem Soc 83:753–754CrossRefGoogle Scholar
  7. 7.
    Vaska L, DiLuzio JW (1962) Activation of hydrogen by a transition metal complex at normal conditions leading to a stable molecular dihydride. J Am Chem Soc 84:679–680CrossRefGoogle Scholar
  8. 8.
    Jardine FH, Osborn JA, Wilkinson G, Young JF (1965) Homogeneous catalytic hydrogenation and hydroformylation of acetylenic compounds. Chem Ind 560–561Google Scholar
  9. 9.
    Young JF, Osborn JA, Jardine FH, Wilkinson G (1965) Hydride intermediates in homogeneous hydrogenation reactions of olefins and acetylenes using rhodium catalysts. Chem Commun 131–132Google Scholar
  10. 10.
    Knowles WS, Sabacky MJ (1968) Catalytic asymmetric hydrogenation employing a soluble, optically active, rhodium complex. Chem Commun 1445–1446Google Scholar
  11. 11.
    Horner L, Winkler H, Rapp A, Mentrup A, Hoffmann H, Beck P (1961) Phosphororganische verbindungen optisch aktive tertiare phosphine aus optisch aktiven quartaren phosphoniumsalzen. Tetrahedron Lett 2:161–166CrossRefGoogle Scholar
  12. 12.
    Korpiun O, Mislow K (1967) New route to the preparation and configurational correlation of optically active phosphine oxides. J Am Chem Soc 89:4784–4786CrossRefGoogle Scholar
  13. 13.
    Dang TP, Kagan HB (1971) The asymmetric synthesis of hydratropic acid and amino-acids by homogeneous hydrogenation. J Chem Soc D Chem Commun 481–481Google Scholar
  14. 14.
    Miyashita A, Yasuda A, Takaya H, Toriumi K, Ito T, Souchi T, Noyori R (1980) Synthesis of 2,2′-bis(diphenylphosphino)-1,1-binapthyl (BINAP), an atropisomeric chiral bis(triaryl)phosphine, and its use in the rhodium(I)-catalyzed asymmetric hydrogenation of α-(acylamino)acrylic acids. J Am Chem Soc 102:7932–7934CrossRefGoogle Scholar
  15. 15.
    Noyori R, Takaya H (1990) BINAP: an efficient chiral element for asymmetric catalysis. Acc Chem Res 23:345–350CrossRefGoogle Scholar
  16. 16.
    Shibahara F, Krische MJ (2008) Formation of C–C bonds via ruthenium-catalyzed transfer hydrogenation: carbonyl addition from the alcohol or aldehyde oxidation level. Chem Lett 37:1102–1107CrossRefGoogle Scholar
  17. 17.
    Bower JF, Krische MJ (2011) Formation of C–C bonds via iridium-catalyzed hydrogenation and transfer hydrogenation. Top Organomet Chem 34:107–138CrossRefGoogle Scholar
  18. 18.
    Hassan A, Krische MJ (2011) Unlocking hydrogenation for C–C bond formation: a brief overview of enantioselective methods. Org Process Res Dev 15:1236–1242CrossRefGoogle Scholar
  19. 19.
    Moran J, Krische MJ (2012) Formation of C–C bonds via ruthenium-catalyzed transfer hydrogenation. Pure Appl Chem 84:1729–1739CrossRefGoogle Scholar
  20. 20.
    Ketcham JM, Shin I, Montgomery TP, Krische MJ (2014) Catalytic enantioselective C–H functionalization of alcohols by redox-triggered carbonyl addition: borrowing hydrogen, returning carbon. Angew Chem Int Ed 53:9142–9150CrossRefGoogle Scholar
  21. 21.
    Sasson Y, Blum J (1971) Homogenous catalytic transfer-hydrogenation of α, β-unsaturated carbonyl compounds by dichlorotris(triphenylphosphine)ruthenium(II). Tetrahedron Lett 12:2167–2170CrossRefGoogle Scholar
  22. 22.
    Dobson A, Robinson SD (1977) Complexes of the platinum metals. 7. homogeneous ruthenium and osmium catalysts for the dehydrogenation of primary and secondary alcohols. Inorg Chem 16:137–142CrossRefGoogle Scholar
  23. 23.
    Blum Y, Reshef D, Shvo Y (1981) H-Transfer catalysis with Ru3(CO)12. Tetrahedron Lett 22:1541–1544CrossRefGoogle Scholar
  24. 24.
    Shvo Y, Blum Y, Reshef D, Menzin M (1982) Catalytic oxidative coupling of diols by Ru3(CO)12. J Organomet Chem 226:C21–C24CrossRefGoogle Scholar
  25. 25.
    Noyori R, Ohta M, Hsiao Y, Kitamura M, Ohta T, Takaya H (1986) Asymmetric synthesis of isoquinoline alkaloids by homogeneous catalysis. J Am Chem Soc 108:7117–7119CrossRefGoogle Scholar
  26. 26.
    Hashiguchi S, Fujii A, Takehara J, Ikariya T, Noyori R (1995) Asymmetric transfer hydrogenation of aromatic ketones catalyzed by chiral ruthenium(II) complexes. J Am Chem Soc 117:7562–7563CrossRefGoogle Scholar
  27. 27.
    Jang H-Y, Huddleston RR, Krische MJ (2002) Reductive generation of enolates from enones using elemental hydrogen: catalytic C–C bond formation under hydrogenative conditions. J Am Chem Soc 124:15156–15157CrossRefGoogle Scholar
  28. 28.
    Iida H, Krische MJ (2007) Catalytic reductive coupling of alkenes and alkynes to carbonyl compounds and imines mediated by hydrogen. Top Curr Chem 279:77–104CrossRefGoogle Scholar
  29. 29.
    Skucas E, Ngai M-Y, Komanduri V, Krische MJ (2007) Enantiomerically enriched allylic alcohols and allylic amines via C–C bond forming hydrogenation: asymmetric carbonyl and imine vinylation. Acc Chem Res 40:1394–1401CrossRefGoogle Scholar
  30. 30.
    Bower JF, Skucas E, Patman RL, Krische MJ (2007) Catalytic C–C coupling via transfer hydrogenation: reverse prenylation, crotylation and allylation from the alcohol or aldehyde oxidation level. J Am Chem Soc 129:15134–15135CrossRefGoogle Scholar
  31. 31.
    Shibahara F, Bower JF, Krische MJ (2008) Ruthenium-catalyzed C–C bond forming transfer hydrogenation: carbonyl allylation from the alcohol or aldehyde oxidation level employing acyclic 1,3-dienes as surrogates to preformed allyl metal reagents. J Am Chem Soc 130:6338–6339CrossRefGoogle Scholar
  32. 32.
    Shibahara F, Bower JF, Krische MJ (2008) Diene hydroacylation from the alcohol or aldehyde oxidation level via ruthenium-catalyzed C–C bond-forming transfer hydrogenation: synthesis of β, γ-unsaturated ketones. J Am Chem Soc 130:14120–14122CrossRefGoogle Scholar
  33. 33.
    Zbieg JR, Moran J, Krische MJ (2011) Diastereo- and enantioselective ruthenium-catalyzed hydrohydroxyalkylation of 2-Silyl-butadienes: carbonyl syn-crotylation from the alcohol oxidation level. J Am Chem Soc 133:10582–10586CrossRefGoogle Scholar
  34. 34.
    Sato F, Kusakabe M, Kobayashi Y (1984) Highly diastereofacial selective addition of nucleophiles to 2-alkyl-3-trimethylsilylalk-3-enyl carbonyl compounds. Stereoselective preparation of β-methylhomoallyl alcohols and β-hydroxy-α-methyl ketones. J Chem Soc Chem Commun 1130–1132Google Scholar
  35. 35.
    Helm MD, Mayer P, Knochel P (2008) Preparation of silyl substituted crotylzinc reagents and their highly diastereoselective addition to carbonyl compounds. Chem Commun 1916–1917Google Scholar
  36. 36.
    Grayson MN, Krische MJ, Houk KN (2015) Ruthenium-catalyzed asymmetric hydrohydroxyalkylation of butadiene: the role of the formyl hydrogen bond in stereochemical control. J Am Chem Soc 137:8838–8850CrossRefGoogle Scholar
  37. 37.
    Zbieg JR, Yamaguchi E, McInturff EL, Krische MJ (2012) Enantioselective C–H crotylation of primary alcohols via hydrohydroxyalkylation of butadiene. Science 336:324–327CrossRefGoogle Scholar
  38. 38.
    McInturff EL, Yamaguchi E, Krische MJ (2012) Chiral anion dependent inversion of diastereo- and enantioselectivity in carbonyl crotylation via ruthenium-catalyzed butadiene hydrohydroxyalkylation. J Am Chem Soc 134:20628–20631CrossRefGoogle Scholar
  39. 39.
    Smejkal T, Han H, Breit B, Krische MJ (2009) All carbon quaternary centers via ruthenium-catalyzed hydroxymethylation of 2-substituted butadienes mediated by formaldehyde: beyond hydroformylation. J Am Chem Soc 131:10366–10367CrossRefGoogle Scholar
  40. 40.
    Köpfer A, Sam B, Breit B, Krische MJ (2013) Regiodivergent reductive coupling of 2-substituted dienes to formaldehyde employing ruthenium or nickel catalysts: hydrohydroxymethylation via transfer hydrogenation. Chem Sci 4:1876–1880CrossRefGoogle Scholar
  41. 41.
    Sam B, Breit B, Krische MJ (2015) Paraformaldehyde and methanol as C1-feedstocks in metal-catalyzed C–C couplings of π-unsaturated reactants: beyond hydroformylation. Angew Chem Int Ed 54:3267–3274CrossRefGoogle Scholar
  42. 42.
    Han H, Krische MJ (2010) Direct ruthenium-catalyzed C–C coupling of ethanol: diene hydro-hydroxyethylation to form all carbon quaternary centers. Org Lett 12:2844–2846CrossRefGoogle Scholar
  43. 43.
    Ngai M-Y, Skucas E, Krische MJ (2008) Ruthenium-catalyzed C–C bond formation via transfer hydrogenation: branch-selective reductive coupling of allenes to paraformaldehyde and higher aldehydes. Org Lett 10:2705–2708CrossRefGoogle Scholar
  44. 44.
    Skucas E, Zbieg JR, Krische MJ (2009) anti-aminoallylation of aldehydes via ruthenium-catalyzed transfer hydrogenative coupling of sulfonamido-allenes: 1,2-aminoalcohols. J Am Chem Soc 131:5054–5055CrossRefGoogle Scholar
  45. 45.
    Zbieg JR, McInturff EL, Krische MJ (2010) Allenamide hydro-hydroxyalkylation: 1,2-aminoalcohols via ruthenium-catalyzed carbonyl anti-aminoallylation. Org Lett 12:2514–2516CrossRefGoogle Scholar
  46. 46.
    Zbieg JR, McInturff EL, Leung JC, Krische MJ (2011) Amplification of anti-diastereoselectivity via Curtin–Hammett effects in ruthenium-catalyzed hydrohydroxyalkylation of 1,1-disubstituted allenes: diastereoselective formation of all-carbon quaternary centers. J Am Chem Soc 133:1141–1144CrossRefGoogle Scholar
  47. 47.
    Sam B, Luong T, Krische MJ (2015) Ruthenium-catalyzed C–C coupling of fluorinated alcohols with allenes: dehydrogenation at the energetic limit of β-hydride elimination. Angew Chem Int Ed 54:5465–5469CrossRefGoogle Scholar
  48. 48.
    Park BY, Nguyen KD, Chaulagain MR, Komanduri V, Krische MJ (2014) Alkynes as allylmetal equivalents in redox-triggered C–C couplings to primary alcohols: (Z)-homoallylic alcohols via ruthenium-catalyzed propargyl C–H oxidative addition. J Am Chem Soc 136:11902–11905CrossRefGoogle Scholar
  49. 49.
    Liang T, Nguyen KD, Zhang W, Krische MJ (2015) Enantioselective ruthenium-catalyzed carbonyl allylation via alkyne-alcohol C–C bond forming transfer hydrogenation: allene hydrometallation vs. oxidative coupling. J Am Chem Soc 137:3161–3164CrossRefGoogle Scholar
  50. 50.
    Ramachandran PV (2002) Pinane-based versatile allyl boranes. Aldrichimica Acta 35:23–35Google Scholar
  51. 51.
    Kennedy JWJ, Hall DG (2003) Recent advances in the activation of boron and silicon reagents for stereocontrolled allylation reactions. Angew Chem Int Ed 42:4732–4739CrossRefGoogle Scholar
  52. 52.
    Denmark SE, Fu J (2003) Catalytic enantioselective addition of allylic organometallic reagents to aldehydes and ketones. Chem Rev 103:2763–2794CrossRefGoogle Scholar
  53. 53.
    Yu C-M, Youn J, Jung H-K (2006) Regulation of stereoselectivity and reactivity in the inter- and intramolecular allylic transfer reactions. Bull Korean Chem Soc 27:463–472CrossRefGoogle Scholar
  54. 54.
    Marek I, Sklute G (2007) Creation of quaternary stereocenters in carbonyl allylation reactions. Chem Commun 1683–1691Google Scholar
  55. 55.
    Hall DG (2007) Lewis and Brønsted acid-catalyzed allylboration of carbonyl compounds: from discovery to mechanism and applications. Synlett 1644–1655Google Scholar
  56. 56.
    Lachance H, Hall DG (2008) Allylboration of carbonyl compounds. Org React 73:1–573Google Scholar
  57. 57.
    Yus M, González-Gómez JC, Foubelo F (2011) Catalytic enantioselective allylation of carbonyl compounds and imines. Chem Rev 111:7774–7854CrossRefGoogle Scholar
  58. 58.
    Liang T, Zhang W, Chen T-Y, Nguyen KD, Krische MJ (2015) Ruthenium-catalyzed diastereo- and enantioselective coupling of propargyl ethers with alcohols: siloxy-crotylation via hydride shift enabled conversion of alkynes to π-allyls. J Am Chem Soc 137:13066–13071CrossRefGoogle Scholar
  59. 59.
    Patman RL, Chaulagain MR, Williams VM, Krische MJ (2009) Direct vinylation of alcohols or aldehydes employing alkynes as vinyl donors: a ruthenium-catalyzed C–C bond forming transfer hydrogenation. J Am Chem Soc 131:2066–2067CrossRefGoogle Scholar
  60. 60.
    Williams VM, Leung JC, Patman RL, Krische MJ (2009) Hydroacylation of 2-butyne from the alcohol or aldehyde oxidation level via ruthenium-catalyzed C–C bond forming transfer hydrogenation. Tetrahedron 65:5024–5029CrossRefGoogle Scholar
  61. 61.
    Patman RL, Williams VM, Bower JF, Krische MJ (2008) Carbonyl propargylation from the alcohol or aldehyde oxidation level employing 1,3-enynes as surrogates to preformed allenylmetal reagents: a ruthenium-catalyzed C–C bond forming transfer hydrogenation. Angew Chem Int Ed 47:5220–5223CrossRefGoogle Scholar
  62. 62.
    Geary LM, Leung JC, Krische MJ (2012) Ruthenium-catalyzed reductive coupling of 1,3-enynes and aldehydes via transfer hydrogenation: anti-diastereoselective carbonyl propargylation. Chem Eur J 18:16823–16827CrossRefGoogle Scholar
  63. 63.
    Nguyen KD, Herkommer D, Krische MJ (2016) Ruthenium-BINAP-catalyzed alcohol C-H tert-prenylation via 1,3-enyne transfer hydrogenation: beyond stoichiometric carbanions in enantioselective carbonyl propargylation. J Am Chem Soc 138:5238–5241CrossRefGoogle Scholar
  64. 64.
    Ding C-H, Lou X-L (2011) Catalytic asymmetric propargylation. Chem Rev 111:1914–1937CrossRefGoogle Scholar
  65. 65.
    Wisniewska HM, Jarvo ER (2013) Enantioselective propargylation and allenylation reactions of ketones and imines. J Org Chem 78:11629–11636CrossRefGoogle Scholar
  66. 66.
    Leung JC, Geary LM, Chen T-Y, Zbieg JR, Krische MJ (2012) Direct, redox neutral prenylation and geranylation of secondary carbinol C–H bonds: C4 regioselectivity in ruthenium-catalyzed C–C couplings of dienes to α-hydroxy esters. J Am Chem Soc 134:15700–15703CrossRefGoogle Scholar
  67. 67.
    Chen T-Y, Krische MJ (2013) Regioselective ruthenium-catalyzed hydrohydroxyalkylation of dienes with 3-hydroxy-2-oxindoles: prenylation, geranylation and beyond. Org Lett 15:2994–2997CrossRefGoogle Scholar
  68. 68.
    Park BY, Montgomery TP, Garza VJ, Krische MJ (2013) Ruthenium-catalyzed hydrohydroxyalkylation of isoprene with heteroaromatic secondary alcohols: isolation and reversible formation of the putative metallacycle intermediate. J Am Chem Soc 135:16320–16323CrossRefGoogle Scholar
  69. 69.
    Kimura M, Tamaru Y (2007) Nickel-catalyzed reductive coupling of dienes and carbonyl compounds. Top Curr Chem 279:173–207CrossRefGoogle Scholar
  70. 70.
    McInturff EL, Nguyen KD, Krische MJ (2014) Redox-triggered C–C coupling of diols and alkynes: synthesis of β, γ-unsaturated α-hydroxyketones and furans by ruthenium-catalyzed hydrohydroxyalkylation. Angew Chem Int Ed 53:3232–3235CrossRefGoogle Scholar
  71. 71.
    Ru3(CO)12 reacts with dppe in benzene solvent to provide Ru(CO)3(dppe): Sanchez-Delgado RA, Bradley JS, Wilkinson G (1976) Further studies on the homogeneous hydroformylation of alkenes by use of ruthenium complex catalysts. J Chem Soc Dalton Trans 399–404Google Scholar
  72. 72.
    Chatani N, Tobisu M, Asaumi T, Fukumoto Y, Murai S (1999) Ruthenium carbonyl-catalyzed [2+2+1]-cycloaddition of ketones, olefins, and carbon monoxide, leading to functionalized γ-butyrolactones. J Am Chem Soc 121:7160–7161CrossRefGoogle Scholar
  73. 73.
    Tobisu M, Chatani N, Asaumi T, Amako K, Ie Y, Fukumoto Y, Murai S (2000) Ru3(CO)12-catalyzed intermolecular cyclocoupling of ketones, alkenes or alkynes, and carbon monoxide. [2+2+1] cycloaddition strategy for the synthesis of functionalized γ-butyrolactones. J Am Chem Soc 122:12663–12674CrossRefGoogle Scholar
  74. 74.
    Meijer RH, Ligthart GBWL, Meuldijk J, Vekemans JAJM, Hulshof LA, Mills AM, Kooijman H, Spek AL (2004) Triruthenium dodecacarbonyl/triphenylphosphine-catalyzed dehydrogenation of primary and secondary alcohols. Tetrahedron 60:1065–1072CrossRefGoogle Scholar
  75. 75.
    Crowe WE, Rachita MJ (1995) Titanium-catalyzed reductive cyclization of δ, ε-unsaturated ketones and aldehydes. J Am Chem Soc 117:6787–6788CrossRefGoogle Scholar
  76. 76.
    Kablaoui NM, Buchwald SL (1996) Development of a method for the reductive cyclization of enones by a titanium catalyst. J Am Chem Soc 118:3182–3191CrossRefGoogle Scholar
  77. 77.
    Kablaoui NM, Buchwald SL (1995) Reductive cyclization of enones by a titanium catalyst. J Am Chem Soc 117:6785–6786CrossRefGoogle Scholar
  78. 78.
    Yamaguchi E, Mowat J, Luong T, Krische MJ (2013) Regio- and diastereoselective C–C coupling of α-olefins and styrenes to 3-hydroxy-2-oxindoles by Ru-catalyzed hydrohydroxyalkylation. Angew Chem Int Ed 52:8428–8431CrossRefGoogle Scholar
  79. 79.
    Lautens M, Klute W, Tam W (1996) Transition metal-mediated cycloaddition reactions. Chem Rev 96:49–92CrossRefGoogle Scholar
  80. 80.
    Nandakumar A, Midya SP, Landge VG, Balaraman E (2015) Transition-metal-catalyzed hydrogen-transfer annulations: access to heterocyclic scaffolds. Angew Chem Int Ed 54:11022–11034CrossRefGoogle Scholar
  81. 81.
    McInturff EL, Mowat J, Waldeck AR, Krische MJ (2013) Ruthenium-catalyzed hydrohydroxyalkylation of acrylates with diols and α-hydroxycarbonyl compounds to form spiro- and α-methylene-γ-butyrolactones. J Am Chem Soc 135:17230–17235CrossRefGoogle Scholar
  82. 82.
    Geary LM, Glasspoole BW, Kim MM, Krische MJ (2013) Successive C–C coupling of dienes to vicinally dioxygenated hydrocarbons: ruthenium-catalyzed [4+2] cycloaddition across the diol, Hydroxycarbonyl or dione oxidation levels. J Am Chem Soc 135:3796–3799CrossRefGoogle Scholar
  83. 83.
    Kasun ZA, Geary LM, Krische MJ (2014) Ring expansion of cyclic 1,2-diols to form medium sized rings via ruthenium-catalyzed transfer hydrogenative [4+2] cycloaddition. Chem Commun 50:7545–7547CrossRefGoogle Scholar
  84. 84.
    Geary LM, Chen TY, Montgomery TP, Krische MJ (2014) Benzannulation via ruthenium-catalyzed diol-diene [4+2] cycloaddition: one- and two-directional syntheses of fluoranthenes and acenes. J Am Chem Soc 136:5920–5922CrossRefGoogle Scholar
  85. 85.
    Saxena A, Perez F, Krische MJ (2015) Ruthenium(0)-catalyzed endiyne-α-ketol [4+2] cycloaddition: convergent assembly of type II polyketide substructures. J Am Chem Soc 137:5883–5886CrossRefGoogle Scholar
  86. 86.
    Saxena A, Perez F, Krische MJ (2016) Ruthenium(0)-catalyzed [4+2] cycloaddition of acetylenic aldehydes with α-ketols: convergent construction of angucycline ring systems. Angew Chem Int Ed 55:1493–1497CrossRefGoogle Scholar
  87. 87.
    Krohn K, Rohr J (1997) Angucyclines: total syntheses, new structures, and biosynthetic studies of an emerging new class of antibiotics. Top Curr Chem 188:127–195CrossRefGoogle Scholar
  88. 88.
    Carreño MC, Urbano A (2005) Recent advances in the synthesis of angucyclines. Synlett 36(1):1–25Google Scholar
  89. 89.
    Kharel MK, Pahari P, Shepherd MD, Tibrewal N, Nybo SE, Shaaban KA, Rohr J (2012) Angucyclines: biosynthesis, mode-of-action, new natural products, and synthesis. Nat Prod Rep 29:264–325CrossRefGoogle Scholar
  90. 90.
    Clerici MG, Maspero F (1980) Catalytic C-alkylation of secondary amines with alkenes. Synthesis 305–306Google Scholar
  91. 91.
    Nugent WA, Ovenall DW, Holmes SJ (1983) Catalytic C–H activation in early transition-metal dialkylamides and alkoxides. Organometallics 2:161–162CrossRefGoogle Scholar
  92. 92.
    Campos KR (2007) Direct sp3 C–H bond activation adjacent to nitrogen in heterocycles. Chem Soc Rev 36:1069–1084CrossRefGoogle Scholar
  93. 93.
    Roesky PW (2009) Catalytic hydroaminoalkylation. Angew Chem Int Ed 48:4892–4894CrossRefGoogle Scholar
  94. 94.
    Chong E, Garcia P, Schafer LL (2014) Hydroaminoalkylation: early-transition-metal-catalyzed α-alkylation of amines. Synthesis 46:2884–2896CrossRefGoogle Scholar
  95. 95.
    Chen T-Y, Tsutsumi R, Montgomery TP, Volchkov I, Krische MJ (2015) Ruthenium-catalyzed C–C coupling of amino alcohols with dienes via transfer hydrogenation: redox-triggered imine addition and related hydroaminoalkylations. J Am Chem Soc 137:1798–1801CrossRefGoogle Scholar
  96. 96.
    Oda S, Sam B, Krische MJ (2015) Hydroaminomethylation beyond carbonylation: allene-imine reductive coupling by ruthenium-catalyzed transfer hydrogenation. Angew Chem Int Ed 54:8525–8528CrossRefGoogle Scholar
  97. 97.
    Oda S, Franke J, Krische MJ (2016) Diene hydroaminomethylation via ruthenium-catalyzed C–C bond forming transfer hydrogenation: beyond carbonylation. Chem Sci 7:136–141CrossRefGoogle Scholar
  98. 98.
    Zhu S, Lu X, Luo Y, Zhang W, Jiang H, Yan M, Zeng W (2013) Ruthenium(II)-catalyzed regioselective reductive coupling of α-imino esters with dienes. Org Lett 15:1440–1443CrossRefGoogle Scholar
  99. 99.
    Schmitt DC, Lee J, Dechert-Schmitt A-MR, Yamaguchi E, Krische MJ (2013) Ruthenium-catalyzed hydroaminoalkylation of isoprene via transfer hydrogenation: byproduct-free prenylation of hydantoins. Chem Commun 49:6096–6098CrossRefGoogle Scholar
  100. 100.
    Jun C-H (1998) Chelation-assisted alkylation of benzylamine derivatives by Ru0 catalyst. Chem Commun 1405–1406Google Scholar
  101. 101.
    Chatani N, Asaumi T, Yorimitsu S, Ikeda T, Kakiuchi F, Murai S (2001) Ru3(CO)12-catalyzed coupling reaction of sp3 C–H bonds adjacent to a nitrogen atom in alkylamines with alkenes. J Am Chem Soc 123:10935–10941CrossRefGoogle Scholar
  102. 102.
    Bergman SD, Storr TE, Prokopcová H, Aelvoet K, Diels G, Meerpoel L, Maes BUW (2012) The role of the alcohol and carboxylic acid in directed ruthenium-catalyzed C(sp3)-H α-alkylation of cyclic amines. Chem Eur J 18:10393–10398CrossRefGoogle Scholar
  103. 103.
    Schinkel M, Wang L, Bielefeld K, Ackermann L (2014) Ruthenium(II)-catalyzed C(sp3)-H α-alkylation of pyrrolidines. Org Lett 16:1876–1879CrossRefGoogle Scholar
  104. 104.
    Kulago AA, Van Steijvoort BF, Mitchell EA, Meerpoel L, Maes BUW (2014) Directed ruthenium-catalyzed C(sp3)-H α-alkylation of cyclic amines using dioxolane-protected alkenones. Adv Synth Catal 356:1610–1618CrossRefGoogle Scholar
  105. 105.
    Tsuchikama K, Kasagawa M, Endo K, Shibata T (2009) Cationic Ir(I)-catalyzed sp3 C–H bond alkenylation of amides with alkynes. Org Lett 11:1821–1823CrossRefGoogle Scholar
  106. 106.
    Pan S, Endo K, Shibata T (2011) Ir(I)-catalyzed enantioselective secondary sp3 C–H bond activation of 2-(Alkylamino)pyridines with alkenes. Org Lett 13:4692–4695CrossRefGoogle Scholar
  107. 107.
    Pan S, Matsuo Y, Endo K, Shibata T (2012) Cationic iridium-catalyzed enantioselective activation of secondary sp3 C–H bond adjacent to nitrogen atom. Tetrahedron 68:9009–9015CrossRefGoogle Scholar
  108. 108.
    Lahm G, Opatz T (2014) Unique regioselectivity in the C(sp3)-H α-alkylation of amines: the benzoxazole moiety as a removable directing group. Org Lett 16:4201–4203CrossRefGoogle Scholar
  109. 109.
    Eilbracht P, Bärfacker L, Buss C, Hollmann C, Kitsos-Rzychon BE, Kranemann CL, Rishe T, Roggenbuck R, Schmidt A (1999) Tandem reaction sequences under hydroformylation conditions: new synthetic applications of transition metal catalysis. Chem Rev 99:3329–3366CrossRefGoogle Scholar
  110. 110.
    Breit B, Seiche W (2001) Recent advances on chemo-, regio- and stereoselective hydroformylation. Synthesis 1–36Google Scholar
  111. 111.
    Eilbracht P, Schmidt AM (2006) Synthetic applications of tandem reaction sequences involving hydroformylation. Top Organomet Chem 18:65–95CrossRefGoogle Scholar
  112. 112.
    Crozet D, Urrutigoïty M, Kalck P (2011) Recent advances in amine synthesis by catalytic hydroaminomethylation of alkenes. Chem Cat Chem 3:1102–1118Google Scholar
  113. 113.
    Behr A, Vorholt AJ (2012) Hydroformylation and related reactions of renewable resources. Top Organomet Chem 39:103–128CrossRefGoogle Scholar
  114. 114.
    Raoufmoghaddam S (2014) Recent advances in catalytic C–N bond formation: a comparison of cascade hydroaminomethylation and reductive amination reactions with the corresponding hydroamidomethylation and reductive amidation reactions. Org Biomol Chem 12:7179–7193CrossRefGoogle Scholar
  115. 115.
    Wu X-F, Fang X, Wu L, Jackstell R, Neumann H, Beller M (2014) Transition-metal-catalyzed carbonylation reactions of olefins and alkynes: a personal account. Acc Chem Res 47:1041–1053CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Felix Perez
    • 1
  • Susumu Oda
    • 1
  • Laina M. Geary
    • 1
    • 2
  • Michael J. Krische
    • 1
  1. 1.Department of ChemistryUniversity of Texas at AustinAustinUSA
  2. 2.Department of ChemistryUniversity of NevadaRenoUSA

Personalised recommendations