N-Alkylation by Hydrogen Autotransfer Reactions

  • Xiantao Ma
  • Chenliang Su
  • Qing Xu
Part of the following topical collections:
  1. Hydrogen Transfer Reactions


Owing to the importance of amine/amide derivatives in all fields of chemistry, and also the green and environmentally benign features of using alcohols as alkylating reagents, the relatively high atom economic dehydrative N-alkylation reactions of amines/amides with alcohols through hydrogen autotransfer processes have received much attention and have developed rapidly in recent decades. Various efficient homogeneous and heterogeneous transition metal catalysts, nano materials, electrochemical methods, biomimetic methods, asymmetric N-alkylation reactions, aerobic oxidative methods, and even certain transition metal-free, catalyst-free, or autocatalyzed methods, have also been developed in recent years. With a brief introduction to the background and developments in this area of research, this chapter focuses mainly on recent progress and technical and conceptual advances contributing to the development of this research in the last decade. In addition to mainstream research on homogeneous and heterogeneous transition metal-catalyzed reactions, possible mechanistic routes for hydrogen transfer and alcohol activation, which are key processes in N-alkylation reactions but seldom discussed in the past, the recent reports on computational mechanistic studies of the N-alkylation reactions, and the newly emerged N-alkylation methods based on novel alcohol activation protocols such as air-promoted reactions and transition metal-free methods, are also reviewed in this chapter. Problems and bottlenecks that remained to be solved in the field, and promising new research that deserves greater future attention and effort, are also reviewed and discussed.


Alcohols Alcohol activation Alcohol oxidation Amines Amine oxidation Amides N-Alkylation Asymmetric N-alkylation Reductive N-alkylation Dehydration Hydrogen autotransfer Borrowing hydrogen Relay race Transfer hydrogenation Anaerobic dehydrogenation Aerobic oxidative dehydrogenation Homogeneous catalysis Heterogeneous catalysis Transition metal catalysts Transition metal-free Catalyst-free Autocatalysis 



We thank ZJNSF for Distinguished Young Scholars (LR14B020002), NNSFC (51502174), 580 Overseas Talents Program of Wenzhou, and Science and Technology Project of Shenzhen (JCYJ20150324141711616) for financial support.


  1. 1.
    Salvatore RN, Yoon CH, Jung KW (2001) Synthesis of secondary amines. Tetrahedron 57(37):7781–7785CrossRefGoogle Scholar
  2. 2.
    Hofmann AW (1850) Researches regarding the molecular constitution of the volatile organic bases. Phil Trans R Soc Lond 140:93–141CrossRefGoogle Scholar
  3. 3.
    McMurry J (2008) Organic chemistry, 7th edn. Thomson, Brooks/Cole, BostonGoogle Scholar
  4. 4.
    Nef JU (1901) Dissociationsvorgänge bei den einatomigen alkoholen, aethern und salzen. Liebigs Ann Chem 318(2–3):137–230CrossRefGoogle Scholar
  5. 5.
    Lazier WA, Adkins H (1924) The alkylation of primary amines with aluminum alkoxides to give secondary amines free from tertiary amines. J Am Chem Soc 46(3):741–746CrossRefGoogle Scholar
  6. 6.
    Sprinzak Y (1956) Reduction and benzylation by means of benzyl alcohol. II. N-benzylation. The preparation of secondary aromatic benzylamines. J Am Chem Soc 78(13):3207–3208CrossRefGoogle Scholar
  7. 7.
    Miyano S (1965) Syntheses of N-(2-Pyridylmethyl)aniline and its derivatives. Chem Pharm Bull 13(9):1135–1137CrossRefGoogle Scholar
  8. 8.
    Zvezdina EA, Pozharskii AF, Sokolov VI (1970) Imidazole derivatives containing potentially labile groupings attached to an N-atom. Chem Heterocycl Compd 6(3):389–391CrossRefGoogle Scholar
  9. 9.
    Miyano S, Nakao M (1972) N-Alkylation of aromatic amines by means of alcohol. IV. Syntheses of N-alkylanilines and related compounds. Chem Pharm Bull 20(6):1328–1331CrossRefGoogle Scholar
  10. 10.
    Guillena G, Ramón DJ, Yus M (2010) Hydrogen autotransfer in the N-alkylation of amines and related compounds using alcohols and amines as electrophiles. Chem Rev 110(3):1611–1641CrossRefGoogle Scholar
  11. 11.
    Roundhill DM (1992) Transition metal and enzyme catalyzed reactions involving reactions with ammonia and amines. Chem Rev 92(1):1–27CrossRefGoogle Scholar
  12. 12.
    Shimizu KI (2015) Heterogeneous catalysis for the direct synthesis of chemicals by borrowing hydrogen methodology. Catal Sci Technol 5(3):1412–1427CrossRefGoogle Scholar
  13. 13.
    Grigg R, Mitchell TRB, Sutthivaiyakit S, Tongpenyai N (1981) Transition metal-catalysed N-alkylation of amines by alcohols. J Chem Soc, Chem Commun 12:611–612CrossRefGoogle Scholar
  14. 14.
    Watanabe Y, Tsuji Y, Ohsugi Y (1981) The ruthenium catalyzed N-alkylation and N-heterocyclization of aniline using alcohols and aldehydes. Tetrahedron Lett 22(28):2667–2670CrossRefGoogle Scholar
  15. 15.
    Murahashi S-I, Kondo K, Hakata T (1982) Ruthenium catalyzed synthesis of secondary or tertiary amines from amines and alcohols. Tetrahedron Lett 23(2):229–232CrossRefGoogle Scholar
  16. 16.
    Muzart J (2005) Palladium-catalysed reactions of alcohols. Part B: formation of C-C and C-N bonds from unsaturated alcohols. Tetrahedron 61(17):4179–4212CrossRefGoogle Scholar
  17. 17.
    Detz RJ, Hiemstra H, van Maarseveen JH (2009) Catalyzed propargylic substitution. Eur J Org Chem 36:6263–6276CrossRefGoogle Scholar
  18. 18.
    Emer E, Sinisi R, Cozzi PG et al (2011) Direct nucleophilic SN1-type reactions of alcohols. Eur J Org Chem 4:647–666CrossRefGoogle Scholar
  19. 19.
    Bandini M, Cera G, Chiarucci M (2012) Catalytic enantioselective alkylations with allylic alcohols. Synthesis 4:504–512CrossRefGoogle Scholar
  20. 20.
    Chen L, Yin XP, Zhou J et al (2014) Catalytic functionalization of tertiary alcohols to fully substituted carbon centres. Org Biomol Chem 12(32):6033–6048CrossRefGoogle Scholar
  21. 21.
    Plaut H, Ritter JJ (1951) A new reaction of nitriles. VI. Unsaturated amides1. J Am Chem Soc 73(9):4076–4077CrossRefGoogle Scholar
  22. 22.
    Guérinot A, Reymond S, Cossy J (2012) Ritter reaction: recent catalytic developments. Eur J Org Chem 1:19–28CrossRefGoogle Scholar
  23. 23.
    Hamid MHSE, Slatford P, Williams JMJ (2007) Borrowing hydrogen in the activation of alcohols. Adv Synth Catal 349(10):1555–1575CrossRefGoogle Scholar
  24. 24.
    Nixon TD, Whittlesey MK, Williams JMJ (2009) Transition metal catalysed reactions of alcohols using borrowing hydrogen methodology. Dalton Trans 5:753–762CrossRefGoogle Scholar
  25. 25.
    Watson AJA, Williams JMJ (2010) The give and take of alcohol activation. Science 329:635–636CrossRefGoogle Scholar
  26. 26.
    Dobereiner GE, Crabtree RH (2010) Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis. Chem Rev 110(2):681–703CrossRefGoogle Scholar
  27. 27.
    Suzuki T (2011) Organic synthesis involving iridium-catalyzed oxidation. Chem Rev 111(3):1825–1845CrossRefGoogle Scholar
  28. 28.
    Bähn S, Imm S, Beller M et al (2011) The catalytic amination of alcohols. ChemCatChem 3(12):1853–1864CrossRefGoogle Scholar
  29. 29.
    Yang Q, Wang Q, Yu Z (2015) Substitution of alcohols by N-nucleophiles via transition metal-catalyzed dehydrogenation. Chem Soc Rev 44(8):2305–2329CrossRefGoogle Scholar
  30. 30.
    Marr AC (2012) Organometallic hydrogen transfer and dehydrogenation catalysts for the conversion of bio-renewable alcohols. Catal Sci Technol 2(2):279–287CrossRefGoogle Scholar
  31. 31.
    Hollmann D (2014) Advances in asymmetric borrowing hydrogen catalysis. ChemSusChem 7(9):2411–2413CrossRefGoogle Scholar
  32. 32.
    Leonard J, Blacker AJ, Marsden SP et al (2015) A survey of the borrowing hydrogen approach to the synthesis of some pharmaceutically relevant intermediates. Org Pro Res Deve 19(10):1400–1410CrossRefGoogle Scholar
  33. 33.
    K-I Fujita, Yamaguchi R (2005) Cp*Ir complex-catalyzed hydrogen transfer reactions directed toward environmentally benign organic synthesis. Synlett 4:560–571Google Scholar
  34. 34.
    Yamaguchi R, K-I Fujita, Zhu M (2010) Recent progress of new catalytic synthetic methods for nitrogen heterocycles based on hydrogen transfer reactions. Heterocycles 81(5):1093–1140CrossRefGoogle Scholar
  35. 35.
    Xu Q, Li Q (2013) Recent advances of transition metal-catalyzed aerobic dehydrative reactions of alcohols and amines and related researches. Chin J Org Chem 33(1):18–35CrossRefGoogle Scholar
  36. 36.
    Sheldon RA, Arends IW, Dijksman A et al (2002) Green, catalytic oxidations of alcohols. Acc Chem Res 35(9):774–781CrossRefGoogle Scholar
  37. 37.
    Hashmi ASK (2007) Gold-catalyzed organic reactions. Chem Rev 107(7):3180–3211CrossRefGoogle Scholar
  38. 38.
    Naota T, Takaya H, Murahashi SI (1998) Ruthenium-catalyzed reactions for organic synthesis. Chem Rev 98(7):2599–2660CrossRefGoogle Scholar
  39. 39.
    Sigman MS, Jensen DR (2006) Ligand-modulated palladium-catalyzed aerobic alcohol oxidations. Acc Chem Res 39(3):221–229CrossRefGoogle Scholar
  40. 40.
    Stahl SS (2004) Palladium oxidase catalysis: selective oxidation of organic chemicals by direct dioxygen-coupled turnover. Angew Chem Int Ed 43(26):3400–3420CrossRefGoogle Scholar
  41. 41.
    Zhan BZ, Thompson A (2004) Recent developments in the aerobic oxidation of alcohols. Tetrahedron 60(13):2917–2935CrossRefGoogle Scholar
  42. 42.
    Li CJ (2008) Cross-dehydrogenative coupling (CDC): exploring C–C bond formations beyond functional group transformations. Acc Chem Res 42(2):335–344CrossRefGoogle Scholar
  43. 43.
    Scheuermann CJ (2010) Beyond traditional cross couplings: the scope of the cross dehydrogenative coupling reaction. Chem Asian J 5(3):436–451CrossRefGoogle Scholar
  44. 44.
    Blackburn L, Taylor RJK (2001) In situ oxidation-imine formation-reduction routes from alcohols to amines. Org Lett 3(11):1637–1639CrossRefGoogle Scholar
  45. 45.
    Guérin C, Bellosta V, Cossy J et al (2011) Mild nonepimerizing N-alkylation of amines by alcohols without transition metals. Org Lett 13(13):3534–3537CrossRefGoogle Scholar
  46. 46.
    Zassinovich G, Mestroni G, Gladiali S (1992) Asymmetric hydrogen transfer reactions promoted by homogeneous transition metal catalysts. Chem Rev 92(5):1051–1069CrossRefGoogle Scholar
  47. 47.
    Palmer MJ, Wills M (1999) Asymmetric transfer hydrogenation of C=O and C=N bonds. Tetrahedron Asymmetry 10(11):2045–2061CrossRefGoogle Scholar
  48. 48.
    Gladiali S, Alberico E (2006) Asymmetric transfer hydrogenation: chiral ligands and applications. Chem Soc Rev 35(3):226–236CrossRefGoogle Scholar
  49. 49.
    Bäckvall JE (2002) Transition metal hydrides as active intermediates in hydrogen transfer reactions. J Organomet Chem 652(1):105–111CrossRefGoogle Scholar
  50. 50.
    Samec JS, Bäckvall JE, Andersson PG et al (2006) Mechanistic aspects of transition metal-catalyzed hydrogen transfer reactions. Chem Soc Rev 35(3):237–248CrossRefGoogle Scholar
  51. 51.
    Muzart J (2015) Pd-Catalyzed Hydrogen-Transfer Reactions from Alcohols to C=C, C=O, and C=N Bonds. Eur J Org Chem 2015(26):5693–5707CrossRefGoogle Scholar
  52. 52.
    Cha JS (2006) Recent developments in Meerwein-Ponndorf-Verley and related reactions for the reduction of organic functional groups using aluminum, boron, and other metal reagents: a review. Org Pro Res Deve 10(5):1032–1053CrossRefGoogle Scholar
  53. 53.
    De Graauw CF, Peters JA, Huskens J et al (1994) Meerwein-Ponndorf-Verley reductions and Oppenauer oxidations: an integrated approach. Synthesis 10:1007–1017CrossRefGoogle Scholar
  54. 54.
    Xu Q, Li Q, Zhu X et al (2013) Green and scalable aldehyde-catalyzed transition metal-free dehydrative N-alkylation of amides and amines with alcohols. Adv Syn Catal 355(1):73–80CrossRefGoogle Scholar
  55. 55.
    Crabtree RH (2011) An organometallic future in green and energy chemistry? Organometallics 30(1):17–19CrossRefGoogle Scholar
  56. 56.
    Gunanathan C, Ben-David Y, Milstein D (2007) Direct synthesis of amides from alcohols and amines with liberation of H2. Science 317(5839):790–792CrossRefGoogle Scholar
  57. 57.
    Balcells D, Crabtree RH, Eisenstein O et al (2008) Mechanism of homogeneous iridium-catalyzed alkylation of amines with alcohols from a DFT study. Organometallics 27(11):2529–2535CrossRefGoogle Scholar
  58. 58.
    Fristrup P, Tursky M, Madsen R (2012) Mechanistic investigation of the iridium-catalysed alkylation of amines with alcohols. Org Biomol Chem 10(13):2569–2577CrossRefGoogle Scholar
  59. 59.
    Zhao G-M, Liu H-L, Huang X-R et al (2015) Mechanistic study on the Cp* iridium-catalyzed N-alkylation of amines with alcohols. RSC Adv 5(29):22996–23008CrossRefGoogle Scholar
  60. 60.
    Bartoszewicz A, González Miera G, Martín-Matute B et al (2015) Mechanistic studies on the alkylation of amines with alcohols catalyzed by a bifunctional iridium complex. ACS Catal 5(6):3704–3716CrossRefGoogle Scholar
  61. 61.
    Nova A, Crabtree RH, Eisenstein O et al (2010) An experimental-theoretical study of the factors that affect the switch between ruthenium-catalyzed dehydrogenative amide formation versus amine alkylation. Organometallics 29(23):6548–6558CrossRefGoogle Scholar
  62. 62.
    Zhao G-M, Liu H-L, Huang X-R et al (2014) DFT study on mechanism of N-alkylation of amino derivatives with primary alcohols catalyzed by copper(II) acetate. ACS Catal 4(7):2231–2240CrossRefGoogle Scholar
  63. 63.
    Zhao G-M, Liu H-L, Huang X-R et al (2015) DFT study on the homogeneous palladium-catalyzed N-alkylation of amines with alcohols. ACS Catal 5(10):5728–5740CrossRefGoogle Scholar
  64. 64.
    Hamid MHSA, Williams JMJ (2007) Ruthenium-catalysed synthesis of tertiary amines from alcohols. Tetrahedron Lett 48(47):8263–8265CrossRefGoogle Scholar
  65. 65.
    Hamid MHSA, Allen CL, Williams JMJ et al (2009) Ruthenium-catalyzed N-alkylation of amines and sulfonamides using borrowing hydrogen methodology. J Am Chem Soc 131(5):1766–1774CrossRefGoogle Scholar
  66. 66.
    Watson AJ, Maxwell AC, Williams JM (2011) Borrowing hydrogen methodology for amine synthesis under solvent-free microwave conditions. J Org Chem 76(7):2328–2331CrossRefGoogle Scholar
  67. 67.
    Ma WMJ, James TD, Williams JMJ (2013) Synthesis of amines with pendant boronic Esters by borrowing hydrogen catalysis. Org Lett 15(18):4850–4853CrossRefGoogle Scholar
  68. 68.
    Tillack A, Hollmann D, Beller M et al (2006) A novel ruthenium-catalyzed amination of primary and secondary alcohols. Tetrahedron Lett 47(50):8881–8885CrossRefGoogle Scholar
  69. 69.
    Hollmann D, Tillack A, Beller M et al (2007) An improved ruthenium catalyst for the environmentally benign amination of primary and secondary alcohols. Chem-Asian J 2(3):403–410CrossRefGoogle Scholar
  70. 70.
    Tillack A, Hollmann D, Beller M et al (2008) Salt-free synthesis of tertiary amines by ruthenium-catalyzed amination of alcohols. Eur J Org Chem 28:4745–4750CrossRefGoogle Scholar
  71. 71.
    Imm S, Bahn S, Beller M et al (2010) An efficient and general synthesis of primary amines by ruthenium-catalyzed amination of secondary alcohols with ammonia. Angew Chem Int Ed 49(44):8126–8129CrossRefGoogle Scholar
  72. 72.
    Pingen D, Muller C, Vogt D (2010) Direct amination of secondary alcohols using ammonia. Angew Chem Int Ed 49(44):8130–8133CrossRefGoogle Scholar
  73. 73.
    Gunanathan C, Milstein D (2008) Selective synthesis of primary amines directly from alcohols and ammonia. Angew Chem Int Ed 47(45):8661–8664CrossRefGoogle Scholar
  74. 74.
    Ye X, Plessow PN, Hofmann P (2014) Alcohol amination with ammonia catalyzed by an acridine-based ruthenium pincer complex: a mechanistic study. J Am Chem Soc 136(16):5923–5929CrossRefGoogle Scholar
  75. 75.
    Pingen D, Vogt D (2014) Amino-alcohol cyclization: selective synthesis of lactams and cyclic amines from amino-alcohols. Catal Sci Technol 4(1):47–52CrossRefGoogle Scholar
  76. 76.
    Bahn S, Williams JMJ, Beller M (2010) Selective ruthenium-catalyzed N-alkylation of indoles by using alcohols. Chem-Eur J 16(12):3590–3593CrossRefGoogle Scholar
  77. 77.
    Whitney S, Grigg R, Keep A (2007) [Cp* IrCl2]2-catalyzed indirect functionalization of alcohols: novel strategies for the synthesis of substituted indoles. Org Lett 9(17):3299–3302CrossRefGoogle Scholar
  78. 78.
    Zhang M, Imm S, Beller M et al (2011) Synthesis of alpha-amino acid amides: ruthenium-catalyzed amination of alpha-hydroxy amides. Angew Chem Int Ed 50(47):11197–11201CrossRefGoogle Scholar
  79. 79.
    Imm S, Bahn S, Beller M et al (2011) Improved ruthenium-catalyzed amination of alcohols with ammonia: synthesis of diamines and amino esters. Angew Chem Int Ed 50(33):7599–7603CrossRefGoogle Scholar
  80. 80.
    Baumann W, Spannenberg A, Deutsch J (2013) Utilization of common ligands for the ruthenium-catalyzed amination of alcohols. Chem-Eur J 19(52):17702–17706CrossRefGoogle Scholar
  81. 81.
    Pingen D, Lutz M, Vogt D (2014) Mechanistic study on the ruthenium-catalyzed direct amination of alcohols. Organometallics 33(7):1623–1629CrossRefGoogle Scholar
  82. 82.
    Pingen D, Lebl T, Vogt D et al (2014) Catalytic activity and fluxional behavior of complexes based on RuHCl(CO)(PPh3)3 and Xantphos-type ligands. Organometallics 33(11):2798–2805CrossRefGoogle Scholar
  83. 83.
    Agrawal S, Lenormand M, Martín-Matute B (2012) Selective alkylation of (hetero)aromatic amines with alcohols catalyzed by a ruthenium pincer complex. Org Lett 14(6):1456–1459CrossRefGoogle Scholar
  84. 84.
    Chen M, Zhang M, Jiang H et al (2014) Ruthenium-catalyzed N-alkylation for the synthesis of 2-N-pyridylmethyl benzonitriles and an exploration of its synthetic utility. ChemCatChem 6(10):2993–2997CrossRefGoogle Scholar
  85. 85.
    Enyong AB, Moasser B (2014) Ruthenium-catalyzed N-alkylation of amines with alcohols under mild conditions using the borrowing hydrogen methodology. J Org Chem 79(16):7553–7563CrossRefGoogle Scholar
  86. 86.
    Jumde VR, Gonsalvi L, Taddei M et al (2015) A ruthenium-based catalytic system for a mild borrowing-hydrogen process Eur J Org Chem 2015(8):1829–1833Google Scholar
  87. 87.
    Feng C, Deng G, Li C-J et al (2010) Ruthenium-catalyzed tertiary amine formation from nitroarenes and alcohols. Org Lett 12(21):4888–4891CrossRefGoogle Scholar
  88. 88.
    Cui X, Shi F, Deng Y et al (2011) Ruthenium-catalyzed nitro and nitrile compounds coupling with alcohols: alternative route for N-substituted amine synthesis. Chem-Eur J 17(9):2587–2591CrossRefGoogle Scholar
  89. 89.
    Liu S, Chen R, Deng GJ (2011) Ruthenium-catalyzed formation of tertiary amines from nitriles and alcohols. Chem Lett 40(5):489–491CrossRefGoogle Scholar
  90. 90.
    Werkmeister S, Bornschein C, Beller M et al (2013) Ruthenium-catalyzed transfer hydrogenation of nitriles: reduction and subsequent N-monoalkylation to secondary amines. Eur J Org Chem 18:3671–3674CrossRefGoogle Scholar
  91. 91.
    Wang N, Zou X, Li F et al (2014) The direct synthesis of N-alkylated amides via a tandem hydration/N-alkylation reaction from nitriles, aldoximes and alcohols. Chem Commun 50(61):8303–8305CrossRefGoogle Scholar
  92. 92.
    Kang B, Fu Z, Hong SH (2013) Ruthenium-catalyzed redox-neutral and single-step amide synthesis from alcohol and nitrile with complete atom economy. J Am Chem Soc 135(32):11704–11707CrossRefGoogle Scholar
  93. 93.
    Kim J, Hong SH (2014) Synthesis of cyclic imides from nitriles and diols using hydrogen transfer as a substrate-activating strategy. Org Lett 16(17):4404–4407CrossRefGoogle Scholar
  94. 94.
    Sundararaju B, Tang Z, Bruneau C et al (2010) Ruthenium-catalyzed cascade N- and C(3)-dialkylation of cyclic amines with alcohols involving hydrogen autotransfer processes. Adv Synth Catal 352(18):3141–3146CrossRefGoogle Scholar
  95. 95.
    Yuan K, Jiang F, Bruneau C et al (2012) Iridium-catalyzed oxidant-free dehydrogenative C-H bond functionalization: selective preparation of N-arylpiperidines through tandem hydrogen transfers. Angew Chem Int Ed 51(35):8876–8880CrossRefGoogle Scholar
  96. 96.
    Yamaguchi R, Kawagoe S, K-I Fujita et al (2008) Selective synthesis of secondary and tertiary amines by Cp*iridium-catalyzed multialkylation of ammonium salts with alcohols. Org Lett 10(2):181–184CrossRefGoogle Scholar
  97. 97.
    K-I Fujita, Yamaguchi R, Mingwen Z et al (2009) A new atom-economical and selective synthesis of secondary and tertiary alkylamines by means of Cp*iridium complex catalyzed multiple N-alkylation of ammonium salts with alcohols without solvent. Synthesis 2009(07):1220–1223CrossRefGoogle Scholar
  98. 98.
    K-I Fujita, Komatsubara A, Yamaguchi R (2009) N-alkylation of carbamates and amides with alcohols catalyzed by a Cp*Ir complex. Tetrahedron 65(18):3624–3628CrossRefGoogle Scholar
  99. 99.
    Zhu M, K-I Fujita, Yamaguchi R (2010) Simple and versatile catalytic system for N-alkylation of sulfonamides with various alcohols. Org Lett 12(6):1336–1339CrossRefGoogle Scholar
  100. 100.
    Apsunde T, Trudell M (2014) Solvent-free, base-free microwave-mediated iridium-catalyzed N-alkylation of amides with alcohols. Synthesis 46(02):230–234Google Scholar
  101. 101.
    Lu L, Ma J, Li F et al (2015) Effective recognition of different types of amino groups: from aminobenzenesulfonamides to amino-(N-alkyl)benzenesulfonamides via iridium-catalyzed N-alkylation with alcohols. Org Lett 17(10):2350–2353CrossRefGoogle Scholar
  102. 102.
    Li F, Shan H, Chen L (2012) Direct N-alkylation of amino-azoles with alcohols catalyzed by an iridium complex/base system. Chem Commun 48(4):603–605CrossRefGoogle Scholar
  103. 103.
    Li F, Kang Q (2012) Shan H (2012) Regioselective N-alkylation of 2-aminoimidazoles with alcohols to 2-(N-alkylamino)imidazoles catalyzed by the [Cp*IrCl2]2/K2CO3 System. Eur J Org Chem 26:5085–5092CrossRefGoogle Scholar
  104. 104.
    Li F, Chen L, Kang Q (2013) Regioselective N-alkylation with alcohols for the preparation of 2-(N-alkylamino)quinazolines and 2-(N-alkylamino)pyrimidines. New J Chem 37(3):624–631CrossRefGoogle Scholar
  105. 105.
    Berliner MA, Dubant SPA, Makowski T (2011) Use of an iridium-catalyzed redox-neutral alcohol-amine coupling on kilogram scale for the synthesis of a GlyT1 inhibitor. Org Proc Res Deve 15(5):1052–1062CrossRefGoogle Scholar
  106. 106.
    Cumpstey I, Agrawal S, Martín-Matute B et al (2011) Iridium-catalysed condensation of alcohols and amines as a method for aminosugar synthesis. Chem Commun 47(27):7827–7829CrossRefGoogle Scholar
  107. 107.
    Liu S, Stephens G, Marr AC et al (2009) Adding value to renewables: a one pot process combining microbial cells and hydrogen transfer catalysis to utilise waste glycerol from biodiesel production. Chem Commun 45(17):2308–2310CrossRefGoogle Scholar
  108. 108.
    Lacroix SD, Pennycook A, Marr AC et al (2012) Amination and dehydration of 1,3-propanediol by hydrogen transfer: reactions of a bio-renewable platform chemical. Catal Sci Technol 2(2):288–290CrossRefGoogle Scholar
  109. 109.
    Bhat S, Sridharan V (2012) Iridium catalysed chemoselective alkylation of 2′-aminoacetophenone with primary benzyl type alcohols under microwave conditions. Chem Commun 48(39):4701–4703CrossRefGoogle Scholar
  110. 110.
    Blank B, Michlik S, Kempe R (2009) Selective iridium-catalyzed alkylation of (hetero)aromatic amines and diamines with alcohols under mild reaction conditions. Chem-Eur J 15(15):3790–3799CrossRefGoogle Scholar
  111. 111.
    Michlik S, Kempe R (2010) New iridium catalysts for the efficient alkylation of anilines by alcohols under mild conditions. Chem-Eur J 16(44):13193–13198CrossRefGoogle Scholar
  112. 112.
    Michlik S, Hille T, Kempe R (2012) The iridium-catalyzed synthesis of symmetrically and unsymmetrically alkylated diamines under mild reaction conditions. Adv Synth Catal 354(5):847–862CrossRefGoogle Scholar
  113. 113.
    Zou Q, Wang C, Xiao J et al (2015) Alkylation of amines with alcohols and amines by a single catalyst under mild conditions. Chem-Eur J 21(27):9656–9661CrossRefGoogle Scholar
  114. 114.
    Li JQ, Andersson PG (2013) Room temperature and solvent-free iridium-catalyzed selective alkylation of anilines with alcohols. Chem Commun 49(55):6131–6133CrossRefGoogle Scholar
  115. 115.
    Saidi O, Blacker AJ, Williams JMJ (2010) Borrowing hydrogen in water and ionic liquids: iridium-catalyzed alkylation of amines with alcohols. Org Proc Res Deve 14(4):1046–1049CrossRefGoogle Scholar
  116. 116.
    Kawahara R, K-I Fujita, Yamaguchi R (2010) Multialkylation of aqueous ammonia with alcohols catalyzed by water-soluble Cp*Ir-ammine complexes. J Am Chem Soc 132(43):15108–15111CrossRefGoogle Scholar
  117. 117.
    Lorentz-Petersen LLR, Nordstrøm LU (2012) Madsen R (2012) Iridium-catalyzed condensation of amines and vicinal diols to substituted piperazines. Eur J Org Chem 34:6752–6759CrossRefGoogle Scholar
  118. 118.
    Trudell M, Apsunde T (2013) Microwave-assisted iridium-catalyzed synthesis of nicotine and anabasine derivatives. Synthesis 45(15):2120–2124CrossRefGoogle Scholar
  119. 119.
    Qu P, Sun C, Li F et al (2014) The N-alkylation of sulfonamides with alcohols in water catalyzed by the water-soluble iridium complex {Cp*Ir[6,6′-(OH)2bpy](H2O)}[OTf]2. Adv Synth Catal 356(2–3):447–459CrossRefGoogle Scholar
  120. 120.
    Ramón D, Martínez-Asencio A, Yus M (2011) Palladium(II) acetate as catalyst for the N-alkylation of aromatic amines, sulfonamides, and related nitrogenated compounds with alcohols by a hydrogen autotransfer process. Synthesis 22:3730–3740CrossRefGoogle Scholar
  121. 121.
    Dang TT, Ramalingam B, Seayad AM et al (2013) An efficient palladium-catalyzed N-alkylation of amines using primary and secondary alcohols. ACS Catal 3(11):2536–2540CrossRefGoogle Scholar
  122. 122.
    Bertoli M, Choualeb A, Gusev DG et al (2011) PNP pincer osmium polyhydrides for catalytic dehydrogenation of primary alcohols. Dalton Trans 40(35):8941–8949CrossRefGoogle Scholar
  123. 123.
    Abdukader A, Jin H, Zhu C et al (2014) Rhenium-catalyzed amination of alcohols by hydrogen transfer process. Tetrahedron Lett 55(30):4172–4174CrossRefGoogle Scholar
  124. 124.
    Yang H, Mao R, Cheng G et al (2014) An efficient homogeneous gold(I) catalyst for N-alkylation of amines with alcohols by hydrogen autotransfer. Tetrahedron 70(46):8829–8835CrossRefGoogle Scholar
  125. 125.
    Martínez-Asencio A, Ramón DJ, Yus M (2010) N-Alkylation of poor nucleophilic amine and sulfonamide derivatives with alcohols by a hydrogen autotransfer process catalyzed by copper(II) acetate. Tetrahedron Lett 51(2):325–327CrossRefGoogle Scholar
  126. 126.
    Martínez-Asencio A, Ramón DJ, Yus M (2011) N-alkylation of poor nucleophilic amines and derivatives with alcohols by a hydrogen autotransfer process catalyzed by copper(II) acetate: scope and mechanistic considerations. Tetrahedron 67(17):3140–3149CrossRefGoogle Scholar
  127. 127.
    Li F, Shan H, Kang Q et al (2011) Regioselective N-alkylation of 2-aminobenzothiazoles with benzylic alcohols. Chem Commun 47(17):5058–5060CrossRefGoogle Scholar
  128. 128.
    Cui X, Shi F, Deng Y et al (2010) Fe(II)-catalyzed N-alkylation of sulfonamides with benzylic alcohols. Tetrahedron Lett 51(15):2048–2051CrossRefGoogle Scholar
  129. 129.
    Bala M, Verma PK, Singh B (2013) Iron phthalocyanine as an efficient and versatile catalyst for N-alkylation of heterocyclic amines with alcohols: one-pot synthesis of 2-substituted benzimidazoles, benzothiazoles and benzoxazoles. Green Chem 15(6):1687–1693CrossRefGoogle Scholar
  130. 130.
    Yan T, Feringa BL, Barta K (2014) Iron catalysed direct alkylation of amines with alcohols. Nat Commun 5:5602. doi: 10.1038/ncomms6602
  131. 131.
    Pan H-J, Ng TW, Zhao Y (2015) Iron-catalyzed amination of alcohols assisted by Lewis acid. Chem Commun 51(59):11907–11910CrossRefGoogle Scholar
  132. 132.
    Rawlings AJ, Diorazio LJ, Wills M (2015) C–N bond formation between alcohols and amines using an iron cyclopentadienone catalyst. Org Lett 17(5):1086–1089CrossRefGoogle Scholar
  133. 133.
    Rösler S, Ertl M, Kempe R et al (2015) Cobalt-catalyzed alkylation of aromatic amines by alcohols. Angew Chem Inl Ed 54(50):15046–15050CrossRefGoogle Scholar
  134. 134.
    Zhang G, Yin Z, Zheng S (2016) Cobalt-catalyzed N-alkylation of amines with alcohols. Org Lett 18(2):300–303CrossRefGoogle Scholar
  135. 135.
    Kim JW, Yamaguchi K, Mizuno N (2009) Heterogeneously catalyzed selective N-alkylation of aromatic and heteroaromatic amines with alcohols by a supported ruthenium hydroxide. J Catal 263(1):205–208CrossRefGoogle Scholar
  136. 136.
    He J, Kim JW, Mizuno N et al (2009) Efficient catalytic synthesis of tertiary and secondary amines from alcohols and urea. Angew Chem Int Ed 48(52):9888–9891CrossRefGoogle Scholar
  137. 137.
    Yamaguchi K, He J, Mizuno N et al (2010) The “borrowing hydrogen strategy” by supported ruthenium hydroxide catalysts: synthetic scope of symmetrically and unsymmetrically substituted amines. Chem-Eur J 16(24):7199–7207CrossRefGoogle Scholar
  138. 138.
    Martínez R, Ramón DJ, Yus M (2009) Selective N-monoalkylation of aromatic amines with benzylic alcohols by a hydrogen autotransfer process catalyzed by unmodified magnetite. Org Biomol Chem 7(10):2176–2181CrossRefGoogle Scholar
  139. 139.
    Cano R, Ramón DJ, Yus M (2011) Impregnated ruthenium on magnetite as a recyclable catalyst for the N-alkylation of amines, sulfonamides, sulfinamides, and nitroarenes using alcohols as electrophiles by a hydrogen autotransfer process. J Org Chem 76(14):5547–5557CrossRefGoogle Scholar
  140. 140.
    Pei Shan S, Seayad AM, Ramalingam B et al (2014) Reusable supported ruthenium catalysts for the alkylation of amines by using primary alcohols. ChemCatChem 6(3):808–814CrossRefGoogle Scholar
  141. 141.
    Wang D, Gao Z-W, Hou X-F et al (2013) An efficient and recyclable catalyst for N-alkylation of amines and β-alkylation of secondary alcohols with primary alcohols: SBA-15 supported N-heterocyclic carbene iridium complex. Adv Synth Catal 355(6):1117–1125CrossRefGoogle Scholar
  142. 142.
    He W, Wang L, Yu Z et al (2011) Pt-Sn/γ-Al2O3-catalyzed highly efficient direct synthesis of secondary and tertiary amines and imines. Chem-Eur J 17(47):13308–13317CrossRefGoogle Scholar
  143. 143.
    Wang L, He W, Yu Z et al (2011) Heterogeneous bimetallic Pt–Sn/γ-Al2O3 catalyzed direct synthesis of diamines from N-alkylation of amines with diols through a borrowing hydrogen strategy. Tetrahedron Lett 52(52):7103–7107CrossRefGoogle Scholar
  144. 144.
    Zhang Y, Shi F, Deng Y et al (2011) Palladium catalyzed N-alkylation of amines with alcohols. Tetrahedron Lett 52(12):1334–1338CrossRefGoogle Scholar
  145. 145.
    Ousmane M, Perrussel G, Pera-Titus M et al (2014) Highly selective direct amination of primary alcohols over a Pd/K-OMS-2 catalyst. J Catal 309:439–452CrossRefGoogle Scholar
  146. 146.
    Dang TT, Ramalingam B, Seayad AM et al (2015) An efficient heterogenized palladium catalyst for N-alkylation of amines and alpha-alkylation of ketones using alcohols. RSC Adv 5(53):42399–42406CrossRefGoogle Scholar
  147. 147.
    He L, Cao Y, Fan KN et al (2010) Efficient and clean gold-catalyzed one-pot selective N-alkylation of amines with alcohols. Chem-Eur J 16(47):13965–13969CrossRefGoogle Scholar
  148. 148.
    Tang CH, Cao Y, Fan KN et al (2011) Direct one-pot reductive N-alkylation of nitroarenes by using alcohols with supported gold catalysts. Chem-Eur J 17(26):7172–7177CrossRefGoogle Scholar
  149. 149.
    He L, Fan KN, Cao Y et al (2012) Highly efficient heterogeneous gold-catalyzed direct synthesis of tertiary and secondary amines from alcohols and urea. ChemSusChem 5(4):621–624CrossRefGoogle Scholar
  150. 150.
    Shimizu K, Nishimura M, Satsuma A (2009) γ-Alumina-supported silver cluster for N-benzylation of anilines with alcohols. ChemCatChem 1(4):497–503CrossRefGoogle Scholar
  151. 151.
    Liu H, Chuah G-K, Jaenicke S (2012) N-alkylation of amines with alcohols over alumina-entrapped Ag catalysts using the “borrowing hydrogen” methodology. J Catal 292:130–137CrossRefGoogle Scholar
  152. 152.
    Cui X, Shi F, Deng Y et al (2011) Organic ligand-free alkylation of amines, carboxamides, sulfonamides, and ketones by using alcohols catalyzed by heterogeneous Ag/Mo oxides. Chem- Eur J 17(3):1021–1028CrossRefGoogle Scholar
  153. 153.
    Sun J, Jin X, Li R et al (2012) Ni–Cu/γ-Al2O3 catalyzed N-alkylation of amines with alcohols. Catal Commun 24:30–33CrossRefGoogle Scholar
  154. 154.
    K-I Shimizu, Kon K, Onodera W et al (2013) Heterogeneous Ni catalyst for direct synthesis of primary amines from alcohols and ammonia. ACS Catal 3(1):112–117CrossRefGoogle Scholar
  155. 155.
    K-I Shimizu, Imaiida N, Kon K et al (2013) Heterogeneous Ni catalysts for N-alkylation of amines with alcohols. ACS Catal 3(5):998–1005CrossRefGoogle Scholar
  156. 156.
    K-I Shimizu, Kanno S, Kon K et al (2014) N-alkylation of ammonia and amines with alcohols catalyzed by Ni-loaded CaSiO3. Catal Today 232:134–138CrossRefGoogle Scholar
  157. 157.
    Cui X, Deng Y, Shi F et al (2013) Development of a general non-noble metal catalyst for the benign amination of alcohols with amines and ammonia. Chem-Eur J 19(11):3665–3675CrossRefGoogle Scholar
  158. 158.
    Mehta A, Thaker A, Nandan SR et al (2014) Reinvestigating Raney nickel mediated selective alkylation of amines with alcohols via hydrogen autotransfer methodology. Appl Catal A: Gen 478:241–251CrossRefGoogle Scholar
  159. 159.
    He J, Yamaguchi K, Mizuno N (2010) Selective synthesis of secondary amines via N-alkylation of primary amines and ammonia with alcohols by supported copper hydroxide catalysts. Chem Lett 39(11):1182–1183CrossRefGoogle Scholar
  160. 160.
    K-I Shimizu, Shimura K, Nishimura M et al (2011) Silver cluster-promoted heterogeneous copper catalyst for N-alkylation of amines with alcohols. RSC Adv 1(7):1310–1317CrossRefGoogle Scholar
  161. 161.
    Santoro F, Psaro R, Ravasio N et al (2012) Reductive amination of ketones or amination of alcohols over heterogeneous Cu catalysts: matching the catalyst support with the N-alkylating agent. ChemCatChem 4(9):1249–1254CrossRefGoogle Scholar
  162. 162.
    Santoro F, Psaro R, Ravasio N et al (2014) N-Alkylation of amines through hydrogen borrowing over a heterogeneous Cu catalyst. RSC Adv 4(6):2596–2600CrossRefGoogle Scholar
  163. 163.
    Dixit M, Mishra M, Joshi PA et al (2013) Clean borrowing hydrogen methodology using hydrotalcite supported copper catalyst. Catal Commun 33:80–83CrossRefGoogle Scholar
  164. 164.
    Shi F, Tse MK, Beller M et al (2009) Green and efficient synthesis of sulfonamides catalyzed by nano-Ru/Fe3O4. J Am Chem Soc 131(5):1775–1779CrossRefGoogle Scholar
  165. 165.
    K-I Shimizu, Miyamoto Y, Satsuma A (2010) Silica-supported silver nanoparticles with surface oxygen species as a reusable catalyst for alkylation of arenes. ChemCatChem 2(1):84–91CrossRefGoogle Scholar
  166. 166.
    Cui X, Shi F, Deng Y et al (2012) Au/Ag-Mo nano-rods catalyzed reductive coupling of nitrobenzenes and alcohols using glycerol as the hydrogen source. Chem Commun 48(75):9391–9393CrossRefGoogle Scholar
  167. 167.
    Corma A, Navas J, Sabater MJ (2012) Coupling of two multistep catalytic cycles for the one-pot synthesis of propargylamines from alcohols and primary amines on a nanoparticulated gold catalyst. Chem-Eur J 18(44):14150–14156CrossRefGoogle Scholar
  168. 168.
    Geukens I, Vermoortele F, De Vos DE et al (2014) Ag nanoparticles on mixed Al2O3-Ga2O3 supports as catalysts for the N-alkylation of amines with alcohols. Appl Catal A: Gen 469:373–379CrossRefGoogle Scholar
  169. 169.
    Choo GCY, Miyamura H, Kobayashi S (2015) Synergistic cascade catalysis by metal nanoparticles and Lewis acids in hydrogen autotransfer. Chem Sci 6(3):1719–1727CrossRefGoogle Scholar
  170. 170.
    Gonzalez-Arellano C, Luque R, Gai PL et al (2010) Highly active and selective supported iron oxide nanoparticles in microwave-assisted N-alkylations of amines with alcohols. Green Chem 12(7):1281–1287CrossRefGoogle Scholar
  171. 171.
    Lamb GW, Al Badran FA, Williams JMJ et al (2010) Production of pharmaceuticals: amines from alcohols in a continuous flow fixed bed catalytic reactor. Chem Eng Res Des 88(12):1533–1540CrossRefGoogle Scholar
  172. 172.
    Sipos G, Kocsis L, Jones RV et al (2013) Important industrial procedures revisited in flow: very efficient oxidation and N-alkylation reactions with high atom-economy. J Flow Chem 3(2):51–58CrossRefGoogle Scholar
  173. 173.
    Sattler JH, Fuchs M, Kroutil W et al (2012) Redox self-sufficient biocatalyst network for the amination of primary alcohols. Angew Chem Int Ed 51(36):9156–9159CrossRefGoogle Scholar
  174. 174.
    Yang H, Deng Y, Shi F et al (2015) Carbon-catalysed reductive hydrogen atom transfer reactions. Nat Commun 6:6478. doi: 10.1038/ncomms7478
  175. 175.
    Miao L, DiMaggio SC, Trudell ML et al (2009) Enantioselective syntheses of both enantiomers of noranabasamine. Org Lett 11(7):1579–1582CrossRefGoogle Scholar
  176. 176.
    Oldenhuis NJ, Dong VM, Guan Z (2014) From racemic alcohols to enantiopure amines: Ru-catalyzed diastereoselective amination. J Am Chem Soc 136(36):12548–12551CrossRefGoogle Scholar
  177. 177.
    Eka Putra A, Oe Y, Ohta T (2013) Ruthenium-catalyzed enantioselective synthesis of β-amino alcohols from 1,2-diols by “borrowing hydrogen”. Eur J Org Chem 2013(27):6146–6151CrossRefGoogle Scholar
  178. 178.
    Zhang Y, Lim CS, Zhao Y et al (2014) Catalytic enantioselective amination of alcohols by the use of borrowing hydrogen methodology: cooperative catalysis by iridium and a chiral phosphoric acid. Angew Chem Int Ed 53(5):1399–1403CrossRefGoogle Scholar
  179. 179.
    Rong Z-Q, Zhang Y, Zhao Y et al (2015) Dynamic kinetic asymmetric amination of alcohols: from a mixture of four isomers to diastereo- and enantiopure α-branched amines. J Am Chem Soc 137(15):4944–4947CrossRefGoogle Scholar
  180. 180.
    Shi F, Tse MK, Beller M et al (2009) Copper-catalyzed alkylation of sulfonamides with alcohols. Angew Chem Int Ed 48(32):5912–5915CrossRefGoogle Scholar
  181. 181.
    Cui X, Shi F, Beller M et al (2009) Copper-catalyzed N-alkylation of sulfonamides with benzylic alcohols: catalysis and mechanistic studies. Adv Synth Catal 351(17):2949–2958CrossRefGoogle Scholar
  182. 182.
    Likhar PR, Arundhathi R, Kantam ML et al (2009) Amination of alcohols catalyzed by copper-aluminium hydrotalcite: a green synthesis of amines. Eur J Org Chem 2009(31):5383–5389CrossRefGoogle Scholar
  183. 183.
    Kawahara R, K-I Fujita, Yamaguchi R (2011) N-alkylation of amines with alcohols catalyzed by a water-soluble Cp* iridium complex: an efficient method for the synthesis of amines in aqueous media. Adv Synth Catal 353(7):1161–1168CrossRefGoogle Scholar
  184. 184.
    Ohta H, Uozumi Y, Yamada YM et al (2011) In-water dehydrative alkylation of ammonia and amines with alcohols by a polymeric bimetallic catalyst. Org Lett 13(15):3892–3895CrossRefGoogle Scholar
  185. 185.
    Feng SL, Liu CZ, Xu Q et al (2011) Rhodium-catalyzed aerobic N-alkylation of sulfonamides with alcohols. Chin Chem Lett 22(9):1021–1024CrossRefGoogle Scholar
  186. 186.
    Liu C, Liao S, Xu Q et al (2011) Discovery and mechanistic studies of a general air-promoted metal-catalyzed aerobic N-alkylation reaction of amides and amines with alcohols. J Org Chem 76(14):5759–5773CrossRefGoogle Scholar
  187. 187.
    Yamada YM, Uozumi Y (2006) A solid-phase self-organized catalyst of nanopalladium with main-chain viologen polymers: α-alkylation of ketones with primary alcohols. Org Lett 8(7):1375–1378CrossRefGoogle Scholar
  188. 188.
    Yamada YM, Uozumi Y (2007) Development of a convoluted polymeric nanopalladium catalyst: α-alkylation of ketones and ring-opening alkylation of cyclic 1, 3-diketones with primary alcohols. Tetrahedron 63(35):8492–8498CrossRefGoogle Scholar
  189. 189.
    Allen LJ, Crabtree RH (2010) Green alcohol couplings without transition metal catalysts: base-mediated β-alkylation of alcohols in aerobic conditions. Green Chem 12(8):1362–1364CrossRefGoogle Scholar
  190. 190.
    Yu X, Liu C, Xu Q et al (2011) Manganese dioxide catalyzed N-alkylation of sulfonamides and amines with alcohols under air. Org Lett 13(23):6184–6187CrossRefGoogle Scholar
  191. 191.
    Yu X, Jiang L, Xu Q et al (2012) Palladium-catalyzed N-alkylation of amides and amines with alcohols employing the aerobic relay race methodology. Chin J Chem 30(10):2322–2332CrossRefGoogle Scholar
  192. 192.
    Li Q, Fan S, Xu Q et al (2012) Copper-catalyzed N-alkylation of amides and amines with alcohols employing the aerobic relay race methodology. Org Biomol Chem 10(15):2966–2972CrossRefGoogle Scholar
  193. 193.
    Deutsch C, Krause N, Lipshutz BH (2008) CuH-catalyzed reactions. Chem Rev 108(8):2916–2927CrossRefGoogle Scholar
  194. 194.
    Rendler S, Oestreich M (2007) Polishing a diamond in the rough:“Cu–H” catalysis with silanes. Angew Chem In. Ed 46(4):498–504CrossRefGoogle Scholar
  195. 195.
    Lipshutz BH (2009) Rediscovering organocopper chemistry through copper hydride. It’s all about the ligand. Synlett 2009(04):509–524Google Scholar
  196. 196.
    Liao S, Yu K, Xu Q et al (2012) Copper-catalyzed C-alkylation of secondary alcohols and methyl ketones with alcohols employing the aerobic relay race methodology. Org Biomol Chem 10(15):2973–2978CrossRefGoogle Scholar
  197. 197.
    Sharma RK, Monga Y, Gaba G et al (2013) Magnetite (Fe3O4) silica based organic–inorganic hybrid copper (ii) nanocatalyst: a platform for aerobic N-alkylation of amines. Green Chem 15(10):2800–2809CrossRefGoogle Scholar
  198. 198.
    Zotova N, Hellgardt K, Hii KKM et al (2012) Catalysis in flow: Au-catalysed alkylation of amines by alcohols. Green Chem 14(1):226–232CrossRefGoogle Scholar
  199. 199.
    Xu Q, Chen J, Liu Q et al (2013) Aldehyde-catalyzed transition metal-free dehydrative β-alkylation of methyl carbinols with alcohols. Adv Synth Catal 355(4):697–704CrossRefGoogle Scholar
  200. 200.
    Xu Q, Chen J, Tian H et al (2014) Catalyst-free dehydrative α-alkylation of ketones with alcohols: green and selective autocatalyzed synthesis of alcohols and ketones. Angew Chem Int Ed 53(1):225–229CrossRefGoogle Scholar
  201. 201.
    Han X, Wu J (2013) Redox chain reaction-indole and pyrrole alkylation with unactivated secondary alcohols. Angew Chem Int Ed 52(17):4637–4640CrossRefGoogle Scholar
  202. 202.
    Dai X, Deng Y, Shi F et al (2015) A conjugated ketone as a catalyst in alcohol amination reactions under transition-metal and hetero-atom free conditions. RSC Adv 5(54):43589–43593CrossRefGoogle Scholar
  203. 203.
    Donthiri RR, Pappula V, Adimurthy S et al (2013) Sodium hydroxide catalyzed N-alkylation of (hetero)aromatic primary amines and N1, C5-dialkylation of 4-phenyl-2-aminothiazoles with benzyl alcohols. J Org Chem 78(13):6775–6781CrossRefGoogle Scholar
  204. 204.
    Donthiri RR, Patil RD, Adimurthy S et al (2012) NaOH-catalyzed imine synthesis: aerobic oxidative coupling of alcohols and amines. Eur J Org Chem 24:4457–4460CrossRefGoogle Scholar
  205. 205.
    Lu XH, Sun YW, Xia QH et al (2014) Solid base catalyzed highly efficient N-alkylation of amines with alcohols in a solvent-free system. Catal Commun 55:78–82CrossRefGoogle Scholar
  206. 206.
    Yadav DKT, Bhanage B (2014) Base-mediated synthesis of imines and amines from N-phenylureas and alcohols. Synlett 25:1611–1615CrossRefGoogle Scholar
  207. 207.
    Li S, Li X, Xu Q et al (2015) Structure-dependent tautomerization induced catalyst-free autocatalyzed N-alkylation of heteroaryl amines with alcohols. Green Chem 17(6):3260–3265CrossRefGoogle Scholar
  208. 208.
    Wang C, Yao Y, Zhao Y et al (2015) Insight into O2-promoted base-catalyzed N-alkylation of amines with alcohols. Eur J Org Chem 13:2972–2977CrossRefGoogle Scholar
  209. 209.
    Li X, Li S, Xu Q et al (2016) Efficient and practical catalyst-free-like dehydrative N-alkylation of amines and sulfinamides with alcohols initiated by aerobic oxidation of alcohols under air. Tetrahedron 72(2):264–272CrossRefGoogle Scholar
  210. 210.
    Li QQ, Xiao ZF, Kang YB (2015) Direct alkylation of amines with alcohols catalyzed by base. Org Lett 17(21):5328–5331CrossRefGoogle Scholar
  211. 211.
    Shvo Y, Laine RM (1980) Homogeneous catalytic activation of C–N bonds. Alkyl exchange between tertiary amines. J Chem Soc, Chem Commun 16:753–754CrossRefGoogle Scholar
  212. 212.
    Bui The K, Concilio C, Porzi G (1981) A facile synthesis of symmetrical secondary amines from primary amines promoted by the homogeneous catalyst RuCl2(Ph3P)3. J Organomet Chem 208(2):249–251CrossRefGoogle Scholar
  213. 213.
    Bui The K, Concilio C, Porzi G (1981) Cyclization of alpha, omega aliphatic diamines and conversion of primary amines to symmetrical tertiary amines by a homogeneous ruthenium catalyst. J Org Chem 46(8):1759–1760CrossRefGoogle Scholar
  214. 214.
    Hollmann D, Bahn S, Beller M et al (2007) A general ruthenium-catalyzed synthesis of aromatic amines. Angew Chem Int Ed 46(43):8291–8294CrossRefGoogle Scholar
  215. 215.
    Hollmann D, Bahn S, Beller M et al (2008) N-dealkylation of aliphatic amines and selective synthesis of monoalkylated aryl amines. Chem Commun 44(27):3199–3201CrossRefGoogle Scholar
  216. 216.
    Bähn S, Hollmann D, Beller M et al (2008) Ruthenium-catalyzed synthesis of secondary alkylamines: selective alkylation with aliphatic amines. Adv Synth Catal 350(13):2099–2103CrossRefGoogle Scholar
  217. 217.
    Bahn S, Imm S, Beller M et al (2011) Synthesis of primary amines from secondary and tertiary amines: ruthenium-catalyzed amination using ammonia. Chem-Eur J 17(17):4705–4708CrossRefGoogle Scholar
  218. 218.
    Prades A, Corberan R, Peris E et al (2008) [IrCl2Cp*(NHC)] complexes as highly versatile efficient catalysts for the cross-coupling of alcohols and amines. Chem-Eur J 14(36):11474–11479CrossRefGoogle Scholar
  219. 219.
    Corberán R, Peris (2008) An unusual example of base-free catalyzed reduction of C=O and C=NR bonds by transfer hydrogenation and some useful implications. Organometallics 27(8):1954–1958CrossRefGoogle Scholar
  220. 220.
    Saidi O, Marsden SP, Williams JM et al (2009) Selective amine cross-coupling using iridium-catalyzed “borrowing hydrogen” methodology. Angew Chem Int Ed 48(40):7375–7378CrossRefGoogle Scholar
  221. 221.
    K-I Shimizu, Shimura K, Ohshima K et al (2011) Selective cross-coupling of amines by alumina-supported palladium nanocluster catalysts. Green Chem 13(11):3096–3100CrossRefGoogle Scholar
  222. 222.
    Lubinu MC, De Luca L, Porcheddu A et al (2011) Microwave-promoted selective mono-N-alkylation of anilines with tertiary amines by heterogeneous catalysis. Chem-Eur J 17(1):82–85CrossRefGoogle Scholar
  223. 223.
    K-I Shimizu, Shimura K, Kato K et al (2012) Electronic effect of Na promotion for selective mono-N-alkylation of aniline with di-iso-propylamine by Pt/SiO2 catalysts. J Mol Catal A: Chem 353–354:171–177Google Scholar
  224. 224.
    K-I Shimizu, Shimura K, Tamagawa N et al (2012) Sulfur promoted Pt/SiO2 catalyzed cross-coupling of anilines and amines. Appl Catal A: Gen 417–418:37–42Google Scholar
  225. 225.
    Largeron M, Fleury M-B (2009) A biomimetic electrocatalytic system for the atom-economical chemoselective synthesis of secondary amines. Org Lett 11(4):883–886CrossRefGoogle Scholar
  226. 226.
    Schümperli MT, Hammond C, Hermans I (2012) Developments in the aerobic oxidation of amines. ACS Catal 2(6):1108–1117CrossRefGoogle Scholar
  227. 227.
    Largeron M, Fleury MB (2013) Bioinspired oxidation catalysts. Science 339(6115):43–44CrossRefGoogle Scholar
  228. 228.
    Largeron M (2013) Protocols for the catalytic oxidation of primary amines to imines. Eur J Org Chem 2013(24):5225–5235CrossRefGoogle Scholar
  229. 229.
    Chen B, Wang L, Gao S (2015) Recent advances in aerobic oxidation of alcohols and amines to imines. ACS Catal 5(10):5851–5876CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.College of Chemistry and Materials EngineeringWenzhou UniversityWenzhouChina
  2. 2.SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic EngineeringShenzhen UniversityShenzhenChina

Personalised recommendations