Copper(I) Complexes for Thermally Activated Delayed Fluorescence: From Photophysical to Device Properties

  • Markus J. Leitl
  • Daniel M. Zink
  • Alexander Schinabeck
  • Thomas Baumann
  • Daniel Volz
  • Hartmut Yersin
Part of the following topical collections:
  1. Photoluminescent Materials and Electroluminescent Devices


Molecules that exhibit thermally activated delayed fluorescence (TADF) represent a very promising emitter class for application in electroluminescent devices since all electrically generated excitons can be transferred into light according to the singlet harvesting mechanism. Cu(I) compounds are an important class of TADF emitters. In this contribution, we want to give a deeper insight into the photophysical properties of this material class and demonstrate how the emission properties depend on molecular and host rigidity. Moreover, we show that with molecular optimization a significant improvement of selected emission properties can be achieved. From the discussed materials, we select one specific dinuclear complex, for which the two Cu(I) centers are four-fold bridged to fabricate an organic light emitting diode (OLED). This device shows the highest efficiency (of 23 % external quantum efficiency) reported so far for OLEDs based on Cu(I) emitters.


Thermally activated delayed fluorescence TADF Phosphorescence Fluorescence OLED Emitter Triplet harvesting Singlet harvesting Emission properties Electroluminescence Cu(I) Copper 



The authors thank the German Ministry for Education and Research (BMBF) for funding in the scope of the cyCESH project (FKN 13N12668). The authors (T.B., D.V., D.M.Z.) gratefully acknowledge the collaboration with the groups of Prof. Franky So (NCSU), Prof. Christopher Barner-Kowollik (KIT), Prof Clemens Heske (KIT, UNLV), Prof. Uli Lemmer (KIT), and Prof. Stefan Bräse (KIT), as well as the scientific division of CYNORA.


  1. 1.
    Yersin H, Rausch AF, Czerwieniec R, Hofbeck T, Fischer T (2011) Coord Chem Rev 255:2622CrossRefGoogle Scholar
  2. 2.
    Yersin H, Rausch AF, Czerwieniec R (2012) In: Brütting W, Adachi C (eds) Physics of organic semiconductors. Wiley VCH, Weinheim, p 371Google Scholar
  3. 3.
    Czerwieniec R, Yu J, Yersin H (2011) Inorg Chem 50:8293CrossRefGoogle Scholar
  4. 4.
    Parker CA, Hatchard CG (1961) Trans Faraday Soc 57:1894CrossRefGoogle Scholar
  5. 5.
    Tang CW, VanSlyke SA (1987) Appl Phys Lett 51:913CrossRefGoogle Scholar
  6. 6.
    Tang CW, VanSlyke SA, Chen CH (1989) J Appl Phys 65:3610CrossRefGoogle Scholar
  7. 7.
    Shinar J (ed) (2003) Organic light-emitting devices: a survey. Springer, New YorkGoogle Scholar
  8. 8.
    Müllen K, Scherf U (eds) (2006) Organic light emitting devices: synthesis, properties and applications. Wiley VCH, WeinheimGoogle Scholar
  9. 9.
    He SJ, Wang ZB, Wang DK, Jiang N, Lu ZH (2013) Appl Phys Lett 103:083301CrossRefGoogle Scholar
  10. 10.
    Aziz H, Popovic ZD (2004) Chem Mater 16:4522CrossRefGoogle Scholar
  11. 11.
    Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB (1990) Nature 347:539CrossRefGoogle Scholar
  12. 12.
    Bocksrocker T, Hoffmann J, Eschenbaum C, Pargner A, Preinfalk J, Maier-Flaig F, Lemmer U (2013) Org Electron 14:396CrossRefGoogle Scholar
  13. 13.
    Bocksrocker T, Eschenbaum C, Preinfalk JB, Hoffmann J, Asche-Tauscher J, Maier-Flaig F, Lemmer U (2012) Renew energy environ opt photonics congr [OSA technical digest (online)]. Optical Society of America, Eindhoven, p LM3A4Google Scholar
  14. 14.
    Braun D, Heeger AJ, Kroemer H (1991) J Electron Mater 20:945CrossRefGoogle Scholar
  15. 15.
    Braun D, Heeger AJ (1991) Appl Phys Lett 58:1982CrossRefGoogle Scholar
  16. 16.
    Spreitzer H, Becker H, Kluge E, Kreuder W, Schenk H, Demandt R, Schoo H (1998) Adv Mater 10:1340CrossRefGoogle Scholar
  17. 17.
    Gustafsson G, Cao Y, Treacy GM, Klavetter F, Colaneri N, Heeger AJ (1992) Nature 357:477CrossRefGoogle Scholar
  18. 18.
    Helfrich W, Schneider WG (1966) J Chem Phys 44:2902CrossRefGoogle Scholar
  19. 19.
    Yersin H (2004) Top Curr Chem 241:1CrossRefGoogle Scholar
  20. 20.
    Reufer M, Walter MJ, Lagoudakis PG, Hummel AB, Kolb JS, Roskos HG, Scherf U, Lupton JM (2005) Nat Mater 4:340CrossRefGoogle Scholar
  21. 21.
    Reineke S, Thomschke M, Lüssem B, Leo K (2013) Rev Mod Phys 85:1245CrossRefGoogle Scholar
  22. 22.
    Yersin H, Donges D (2001) Top Curr Chem 214:81CrossRefGoogle Scholar
  23. 23.
    Hedley GJ, Ruseckas A, Samuel IDW (2008) J Phys Chem A 113:2CrossRefGoogle Scholar
  24. 24.
    Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR (1998) Nature 395:151CrossRefGoogle Scholar
  25. 25.
    Adachi C, Baldo MA, Thompson ME, Forrest SR (2001) J Appl Phys 90:5048CrossRefGoogle Scholar
  26. 26.
    Baldo MA, Lamansky S, Burrows PE, Thompson ME, Forrest SR (1999) Appl Phys Lett 75:4CrossRefGoogle Scholar
  27. 27.
    Baldo MA, Thompson ME, Forrest SR (2000) Nature 403:750CrossRefGoogle Scholar
  28. 28.
    Hofbeck T, Yersin H (2010) Inorg Chem 49:9290CrossRefGoogle Scholar
  29. 29.
    Yersin H, Finkenzeller WJ (2008) In: Yersin H (ed) Highly efficient OLEDs with phosphorescent materials. Wiley-VCH, Weinheim, p 1Google Scholar
  30. 30.
    Tsuzuki T, Tokito S (2007) Adv Mater 19:276CrossRefGoogle Scholar
  31. 31.
    Tsuboyama A, Iwawaki H, Furugori M, Mukaide T, Kamatani J, Igawa S, Moriyama T, Miura S, Takiguchi T, Okada S, Hoshino M, Ueno K (2003) J Am Chem Soc 125:12971CrossRefGoogle Scholar
  32. 32.
    Cheng G, Kui SCF, Ang WH, Ko M-Y, Chow PK, Kwong CL, Kwok CC, Ma C, Guan X, Low KH, Su SJ, Che CM (2014) Chem Sci 5:4819CrossRefGoogle Scholar
  33. 33.
    Fleetham T, Li G, Wen L, Li J (2014) Adv Mater 26:7116CrossRefGoogle Scholar
  34. 34.
    Li G, Fleetham T, Turner E, Hang X-C, Li J (2015) Adv Opt Mater 3:390CrossRefGoogle Scholar
  35. 35.
    Yersin H (ed) (2008) Highly efficient OLEDs with phosphorescent materials. Wiley-VCH, WeinheimGoogle Scholar
  36. 36.
    Deaton JC, Castellano FN (2016) In: Zysman-Colman E (ed) Iridium(III) in optoelectronic and photonics applications. Wiley VCH, Weinheim, Germany (in press)Google Scholar
  37. 37.
    Giebink NC, Forrest SR (2008) Phys Rev B 77:235215CrossRefGoogle Scholar
  38. 38.
    Che CM, Kwok CC, Lai SW, Rausch AF, Finkenzeller WJ, Zhu N, Yersin H (2010) Chem Eur J 16:233CrossRefGoogle Scholar
  39. 39.
    Adachi C, Kwong RC, Djurovich P, Adamovich V, Baldo MA, Thompson ME, Forrest SR (2001) Appl Phys Lett 79:2082CrossRefGoogle Scholar
  40. 40.
    Rossi E, Colombo A, Dragonetti C, Roberto D, Ugo R, Valore A, Falciola L, Brulatti P, Cocchi M, Williams JAG (2012) J Mater Chem 22:10650CrossRefGoogle Scholar
  41. 41.
    Iwamura M, Takeuchi S, Tahara T (2015) Acc Chem Res 48:782CrossRefGoogle Scholar
  42. 42.
    Iwamura M, Takeuchi S, Tahara T (2007) J Am Chem Soc 129:5248CrossRefGoogle Scholar
  43. 43.
    Murawski C, Leo K, Gather MC (2013) Adv Mater 25:6801CrossRefGoogle Scholar
  44. 44.
    Turro NJ (1978) Modern molecular chemistry. Benjamin/Cummings Publishing Company Inc., Menlo ParkGoogle Scholar
  45. 45.
    Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C (2012) Nature 492:234CrossRefGoogle Scholar
  46. 46.
    Zhang QS, Li B, Huang SP, Nomura H, Tanaka H, Adachi C (2014) Nature Photonics 8:326CrossRefGoogle Scholar
  47. 47.
    Goushi K, Yoshida K, Sato K, Adachi C (2012) Nature Photonics 6:253CrossRefGoogle Scholar
  48. 48.
    Nakanotani H, Masui K, Nishide J, Shibata T, Adachi C (2013) Sci Rep 3:2127CrossRefGoogle Scholar
  49. 49.
    Yersin H, Mataranga-Popa NL, Czerwieniec R, Bolz A (2015) WO 2015/121239 A1Google Scholar
  50. 50.
    Blasse G, McMillin DR (1980) Chem Phys Lett 70:1CrossRefGoogle Scholar
  51. 51.
    Ma Y, Che CM, Chao HY, Zhou X, Chan WH, Shen J (1999) Adv Mater 11:852CrossRefGoogle Scholar
  52. 52.
    Ma YG, Chan WH, Zhou XM, Che CM (1999) New J Chem 23:263CrossRefGoogle Scholar
  53. 53.
    Dumur F (2015) Org Electron 21:27CrossRefGoogle Scholar
  54. 54.
    Zhang Q, Zhou Q, Cheng Y, Wang L, Ma D, Jing X, Wang F (2004) Adv Mater 16:432CrossRefGoogle Scholar
  55. 55.
    Keller S, Constable EC, Housecroft CE, Neuburger M, Prescimone A, Longo G, Pertegas A, Sessolo M, Bolink HJ (2014) Dalton Trans 43:16593CrossRefGoogle Scholar
  56. 56.
    Chen XL, Yu RM, Zhang QK, Zhou LJ, Wu CY, Zhang Q, Lu CZ (2013) Chem Mater 25:3910CrossRefGoogle Scholar
  57. 57.
    Che G, Su Z, Li W, Chu B, Li M, Hu Z, Zhang Z (2006) Appl Phys Lett 89:103511CrossRefGoogle Scholar
  58. 58.
    Zhang Q, Komino T, Huang S, Matsunami S, Goushi K, Adachi C (2012) Adv Funct Mater 22:2327CrossRefGoogle Scholar
  59. 59.
    Chen X-L, Yu R, Zhang Q-K, Zhou L-J, Wu X-Y, Zhang Q, Lu C-Z (2013) Chem Mater 25:3910CrossRefGoogle Scholar
  60. 60.
    Wada A, Zhang Q, Yasuda T, Takasu I, Enomoto S, Adachi C (2012) Chem Commun 48:5340CrossRefGoogle Scholar
  61. 61.
    Bergmann L, Friedrichs J, Mydlak M, Baumann T, Nieger M, Bräse S (2013) Chem Commun 49:6501CrossRefGoogle Scholar
  62. 62.
    Linfoot CL, Leitl MJ, Richardson P, Rausch AF, Chepelin O, White FJ, Yersin H, Robertson N (2014) Inorg Chem 53:10854CrossRefGoogle Scholar
  63. 63.
    Linfoot CL, Richardson P, Hewat TE, Moudam O, Forde MM, Collins A, White F, Robertson N (2010) Dalton Trans 39:8945CrossRefGoogle Scholar
  64. 64.
    Cuttell DG, Kuang SM, Fanwick PE, McMillin DR, Walton RA (2002) J Am Chem Soc 124:6CrossRefGoogle Scholar
  65. 65.
    Czerwieniec R, Yersin H (2015) Inorg Chem 54:4322CrossRefGoogle Scholar
  66. 66.
    Igawa S, Hashimoto M, Kawata I, Yashima M, Hoshino M, Osawa M (2013) J Mater Chem C 1:542CrossRefGoogle Scholar
  67. 67.
    Osawa M, Kawata I, Ishii R, Igawa S, Hashimoto M, Hoshino M (2013) J Mater Chem C 1:4375CrossRefGoogle Scholar
  68. 68.
    Osawa M, Hoshino M, Hashimoto M, Kawata I, Igawa S, Yashima M (2015) Dalton Trans 44:8369CrossRefGoogle Scholar
  69. 69.
    Leitl MJ, Krylova VA, Djurovich PI, Thompson ME, Yersin H (2014) J Am Chem Soc 136:16032CrossRefGoogle Scholar
  70. 70.
    Krylova VA, Djurovich PI, Conley BL, Haiges R, Whited MT, Williams TJ, Thompson ME (2014) Chem Commun 50:7176CrossRefGoogle Scholar
  71. 71.
    Krylova VA, Djurovich PI, Aronson JW, Haiges R, Whited MT, Thompson ME (2012) Organometallics 31:7983CrossRefGoogle Scholar
  72. 72.
    Krylova VA, Djurovich PI, Whited MT, Thompson ME (2010) Chem Commun 46:6696CrossRefGoogle Scholar
  73. 73.
    Osawa M (2014) Chem Commun 50:1801CrossRefGoogle Scholar
  74. 74.
    Tsuboyama A, Kuge K, Furugori M, Okada S, Hoshino M, Ueno K (2007) Inorg Chem 46:1992CrossRefGoogle Scholar
  75. 75.
    Araki H, Tsuge K, Sasaki Y, Ishizaka S, Kitamura N (2007) Inorg Chem 46:10032CrossRefGoogle Scholar
  76. 76.
    Liu Z, Qayyum MF, Wu C, Whited MT, Djurovich PI, Hodgson KO, Hedman B, Solomon EI, Thompson ME (2011) J Am Chem Soc 133:3700CrossRefGoogle Scholar
  77. 77.
    Liu ZW, Qiu J, Wei F, Wang JQ, Liu XC, Helander MG, Rodney S, Wang ZB, Bian ZQ, Lu ZH, Thompson ME, Huang CH (2014) Chem Mater 26:2368CrossRefGoogle Scholar
  78. 78.
    Leitl MJ, Küchle FR, Mayer HA, Wesemann L, Yersin H (2013) J Phys Chem A 117:11823CrossRefGoogle Scholar
  79. 79.
    Tsuge K, Chishina Y, Hashiguchi H, Sasaki Y, Kato M, Ishizaka S, Kitamura N (2016) Coord Chem Rev 306:636CrossRefGoogle Scholar
  80. 80.
    Tsuge K (2013) Chem Lett 42:204CrossRefGoogle Scholar
  81. 81.
    Yersin H, Leitl MJ, Czerwieniec R (2014) Proc SPIE 9183:91830NCrossRefGoogle Scholar
  82. 82.
    Yersin H, Monkowius U, Fischer T, Hofbeck T (2009) DE 10 2009 030 475 A1Google Scholar
  83. 83.
    Yersin H, Monkowius U, Fischer T, Hofbeck T, Baumann T, Grab T (2015) EP 2 408 787 B1Google Scholar
  84. 84.
    Zink DM, Bächle M, Baumann T, Nieger M, Kuhn M, Wang C, Klopper W, Monkowius U, Hofbeck T, Yersin H, Bräse S (2013) Inorg Chem 52:2292CrossRefGoogle Scholar
  85. 85.
    Musina EI, Shamsieva AV, Strelnik ID, Gerasimova TP, Krivolapov DB, Kolesnikov IE, Grachova EV, Tunik SP, Bannwarth C, Grimme S, Katsyuba SA, Karasik AA, Sinyashin OG (2016) Dalton Trans 45:2250CrossRefGoogle Scholar
  86. 86.
    Volz D, Wallesch M, Fléchon C, Danz M, Verma A, Navarro JM, Zink DM, Bräse S, Baumann T (2015) Green Chem 17:1988CrossRefGoogle Scholar
  87. 87.
    Volz D, Hirschbiel AF, Zink DM, Friedrichs J, Nieger M, Baumann T, Bräse S, Barner-Kowollik C (2014) J Mater Chem C 2:1457CrossRefGoogle Scholar
  88. 88.
    Volz D, Zink DM, Bocksrocker T, Friedrichs J, Nieger M, Baumann T, Lemmer U, Bräse S (2013) Chem Mater 25:3414CrossRefGoogle Scholar
  89. 89.
    Volz D, Baumann T, Flügge H, Mydlak M, Grab T, Bächle M, Barner-Kowollik C, Bräse S (2012) J Mater Chem 22:20786CrossRefGoogle Scholar
  90. 90.
    Volz D, Nieger M, Friedrichs J, Baumann T, Bräse S (2013) Langmuir 29:3034CrossRefGoogle Scholar
  91. 91.
    Zink DM, Volz D, Baumann T, Mydlak M, Flügge H, Friedrichs J, Nieger M, Bräse S (2013) Chem Mater 25:4471CrossRefGoogle Scholar
  92. 92.
    Zink DM, Baumann T, Friedrichs J, Nieger M, Bräse S (2013) Inorg Chem 52:13509CrossRefGoogle Scholar
  93. 93.
    Wallesch M, Volz D, Zink DM, Schepers U, Nieger M, Baumann T, Bräse S (2014) Chem Eur J 20:6578CrossRefGoogle Scholar
  94. 94.
    Volz D, Chen Y, Wallesch M, Liu R, Fléchon C, Zink DM, Friedrichs J, Flügge H, Steininger R, Göttlicher J, Heske C, Weinhardt L, Bräse S, So F, Baumann T (2015) Adv Mater 27:2538CrossRefGoogle Scholar
  95. 95.
    Wallesch M, Volz D, Fléchon C, Zink DM, Bräse S, Baumann T (2014) Proc SPIE 9183:918309CrossRefGoogle Scholar
  96. 96.
    Ni T, Liu X, Zhang T, Bao H, Zhan G, Jiang N, Wang J, Liu Z, Bian Z, Lu Z, Huang C (2015) J Mater Chem C 3:5835CrossRefGoogle Scholar
  97. 97.
    Cheng G, So GKM, To WP, Chen Y, Kwok CC, Ma CS, Guan XG, Chang X, Kwok WM, Che CM (2015) Chem Sci 6:4623CrossRefGoogle Scholar
  98. 98.
    Hashimoto M, Igawa S, Yashima M, Kawata I, Hoshino M, Osawa M (2011) J Am Chem Soc 133:10348CrossRefGoogle Scholar
  99. 99.
    Zhang Q, Ding J, Cheng Y, Wang L, Xie Z, Jing X, Wang F (2007) Adv Funct Mater 17:2983CrossRefGoogle Scholar
  100. 100.
    Moudam O, Kaeser A, Delavaux-Nicot B, Duhayon C, Holler M, Accorsi G, Armaroli N, Seguy I, Navarro J, Destruel P, Nierengarten JF (2007) Chem Commun: 3077Google Scholar
  101. 101.
    Qin L, Zhang Q, Sun W, Wang J, Lu C, Cheng Y, Wang L (2009) Dalton Trans: 9388Google Scholar
  102. 102.
    Czerwieniec R, Kowalski K, Yersin H (2013) Dalton Trans 42:9826CrossRefGoogle Scholar
  103. 103.
    Vorontsov II, Graber T, Kovalevsky AY, Novozhilova IV, Gembicky M, Chen YS, Coppens P (2009) J Am Chem Soc 131:6566CrossRefGoogle Scholar
  104. 104.
    Liu XF, Li RF, Ma LF, Feng X, Ding YQ (2016) New J Chem 40:619CrossRefGoogle Scholar
  105. 105.
    Chen XL, Lin CS, Wu XY, Yu R, Teng T, Zhang QK, Zhang Q, Yang WB, Lu CZ (2015) J Mater Chem C 3:1187CrossRefGoogle Scholar
  106. 106.
    Capano G, Rothlisberger U, Tavernelli I, Penfold TJ (2015) J Phys Chem A 119:7026CrossRefGoogle Scholar
  107. 107.
    Hsu CW, Lin CC, Chung MW, Chi Y, Lee GH, Chou PT, Chang CH, Chen PY (2011) J Am Chem Soc 133:12085CrossRefGoogle Scholar
  108. 108.
    Kaeser A, Mohankumar M, Mohanraj J, Monti F, Holler M, Cid JJ, Moudam O, Nierengarten I, Karmazin-Brelot L, Duhayon C, Delavaux-Nicot B, Armaroli N, Nierengarten JF (2013) Inorg Chem 52:12140CrossRefGoogle Scholar
  109. 109.
    Femoni C, Muzzioli S, Palazzi A, Stagni S, Zacchini S, Monti F, Accorsi G, Bolognesi M, Armaroli N, Massi M, Valenti G, Marcaccio M (2013) Dalton Trans 42:997CrossRefGoogle Scholar
  110. 110.
    Armaroli N, Accorsi G, Holler M, Moudam O, Nierengarten JF, Zhou Z, Wegh RT, Welter R (2006) Adv Mater 18:1313CrossRefGoogle Scholar
  111. 111.
    Deaton JC, Switalski SC, Kondakov DY, Young RH, Pawlik TD, Giesen DJ, Harkins SB, Miller AJM, Mickenberg SF, Peters JC (2010) J Am Chem Soc 132:9499CrossRefGoogle Scholar
  112. 112.
    Ohara H, Kobayashi A, Kato M (2014) Dalton Trans 43:17317CrossRefGoogle Scholar
  113. 113.
    Cid JJ, Mohanraj J, Mohankumar M, Holler M, Monti F, Accorsi G, Karmazin-Brelot L, Nierengarten I, Malicka JM, Cocchi M, Delavaux-Nicot B, Armaroli N, Nierengarten JF (2014) Polyhedron 82:158CrossRefGoogle Scholar
  114. 114.
    Jesser A, Rohrmüller M, Schmidt WG, Herres-Pawlis S (2014) J Comput Chem 35:1CrossRefGoogle Scholar
  115. 115.
    Niehaus TA, Hofbeck T, Yersin H (2015) RSC advancesGoogle Scholar
  116. 116.
    Hua L, Iwamura M, Takeuchi S, Tahara T (2015) Phys Chem Chem Phys 17:2067CrossRefGoogle Scholar
  117. 117.
    Gliemann G, Yersin H (1985) Clusters. Springer, Berlin, p 87CrossRefGoogle Scholar
  118. 118.
    Azumi T, O’Donnell CM, McGlynn SP (1966) J Chem Phys 45:2735CrossRefGoogle Scholar
  119. 119.
    Tschierlei S, Karnahl M, Rockstroh N, Junge H, Beller M, Lochbrunner S (2014) Chem Phys Chem 15:3709CrossRefGoogle Scholar
  120. 120.
    Iwamura M, Watanabe H, Ishii K, Takeuchi S, Tahara T (2011) J Am Chem Soc 133:7728CrossRefGoogle Scholar
  121. 121.
    Yersin H, Strasser J (2000) Coord Chem Rev 208:331CrossRefGoogle Scholar
  122. 122.
    Yersin H, Humbs W, Strasser J (1997) Top Curr Chem 191:153CrossRefGoogle Scholar
  123. 123.
    Yersin H, Donges D, Nagle JK, Sitters R, Glasbeek M (2000) Inorg Chem 39:770CrossRefGoogle Scholar
  124. 124.
    Arnby CH, Jagner S, Dance I (2004) CrystEngComm 6:257CrossRefGoogle Scholar
  125. 125.
    Araki H, Tsuge K, Sasaki Y, Ishizaka S, Kitamura N (2005) Inorg Chem 44:9667CrossRefGoogle Scholar
  126. 126.
    Hofbeck T, Monkowius U, Yersin H (2015) J Am Chem Soc 137:399CrossRefGoogle Scholar
  127. 127.
    Xiao L, Chen Z, Qu B, Luo J, Kong S, Gong Q, Kido J (2011) Adv Mater 23:926CrossRefGoogle Scholar
  128. 128.
    Brütting W, Frischeisen J, Schmidt TD, Scholz BJ, Mayr C (2013) Phys Status Solidi A 210:44CrossRefGoogle Scholar
  129. 129.
    Leiva AM, Rivera L, Loeb B (1991) Polyhedron 10:347CrossRefGoogle Scholar
  130. 130.
    Williams EL, Haavisto K, Li J, Jabbour GE (2007) Adv Mater 19:197CrossRefGoogle Scholar
  131. 131.
    Gneuß T, Leitl MJ, Finger LH, Rau N, Yersin H, Sundermeyer J (2015) Dalton Trans 44:8506CrossRefGoogle Scholar
  132. 132.
    Yersin H, Czerwieniec R, Monkowius U (2011) DE 10 2011 000282 A1Google Scholar
  133. 133.
    Wei F, Zhang T, Liu X, Li X, Jiang N, Liu Z, Bian Z, Zhao Y, Lu Z, Huang C (2014) Organ Electron 15:3292CrossRefGoogle Scholar
  134. 134.
    Franco E, López-Torres E, Mendiola M, Sevilla M (2000) Polyhedron 19:441CrossRefGoogle Scholar
  135. 135.
    Manbeck GF, Brennessel WW, Eisenberg R (2011) Inorg Chem 50:3431CrossRefGoogle Scholar
  136. 136.
    Yang L, Powell DR, Houser RP (2007) Dalton Trans: 955Google Scholar
  137. 137.
    Yersin H, Czerwieniec R, Monkowius U (2010) DE10 2010 031831Google Scholar
  138. 138.
    Liaptsis G, Hertel D, Meerholz K (2013) Angew Chem Int Ed 125:9742CrossRefGoogle Scholar
  139. 139.
    Xiang C, Chopra N, Wang J, Brown C, Ho S, Mathai M, So F (2014) Organ Electron 15:1702CrossRefGoogle Scholar
  140. 140.
    Yersin H (2004) Proc SPIE 5214:124CrossRefGoogle Scholar
  141. 141.
    Czerwieniec R, Hofbeck T, Leitl MJ, Monkowius U, Yersin H (2013) DE 10 2013 106 426 A1Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Markus J. Leitl
    • 1
  • Daniel M. Zink
    • 2
  • Alexander Schinabeck
    • 1
  • Thomas Baumann
    • 2
  • Daniel Volz
    • 2
  • Hartmut Yersin
    • 1
  1. 1.Institut für Physikalische Chemie, Universität RegensburgRegensburgGermany
  2. 2.Cynora GmbHBruchsalGermany

Personalised recommendations