Advertisement

Hydrogen-Atom Transfer Reactions

  • Liang Wang
  • Jian Xiao
Review
Part of the following topical collections:
  1. Hydrogen Transfer Reactions

Abstract

The cascade [1,n]-hydrogen transfer/cyclization, recognized as the tert-amino effect one century ago, has received considerable interest in recent decades, and great achievements have been made. With the aid of this strategy, the inert C(sp3)–H bonds can be directly functionalized into C–C, C–N, C–O bonds under catalysis of Lewis acids, Brønsted acids, as well as organocatalysts, and even merely under thermal conditions. Hydrogen can be transferred intramolecularly from hydrogen donor to acceptor in the form of hydride, or proton, followed by cyclization to furnish the cyclic products in processes featuring high atom economy. Methylene/methine adjacent to heteroatoms, e.g., nitrogen, oxygen, sulfur, can be exploited as hydride donor as well as methylene/methine without heteroatom assistance. Miscellaneous electrophilic subunits or intermediates, e.g., alkylidene malonate, carbophilic metal activated alkyne or allene, α,β-unsaturated aldehydes/ketone, saturated aldehydes/iminium, ketenimine/carbodiimide, metal carbenoid, electron-withdrawing groups activated allene/alkyne, in situ generated carbocation, can serve as hydride acceptors. This methodology has shown preeminent power to construct 5-, 6-, or 7-membered heterocyclic as well as carbon rings. In this chapter, various hydrogen donors and acceptors are adequately discussed.

Keywords

Hydrogen transfer Hydrogen donors Hydrogen acceptors C(sp3)–H functionalization Heterocycles 

Abbreviations

Cbz

Benzyloxycarbonyl

Cod

1,5-Cyclooctadiene

CSA

Camphorsulfonic acid

DCE

1,1-Dichloroethane

DFT

Density functional theory

DMF

N,N-dimethylformamide

DNBS

2,4-Dinitrobenzensulfonic acid

DPP

Diphenyl phosphate

ERC

Electrocyclic ring closure

Fmoc

9-Fluorenylmethoxycarbonyl

HT

Hydrogen transfer

IBX

O-iodoxybenzoic acid

m-CPBA

meta-Chloroperbenzoic acid

MW

Microwave

MS

Molecular sieves

Pg

Protecting group

PTSA

p-Toluenesulfonic acid

RT

Room temperature

TCE

1,1,2-Trichloroethane

TFA

Trifluoroacetic acid

TMS

Trimethylsilyl

References

  1. 1.
    Deno NC, Peterson HJ, Saines GS (1960) Chem Rev 60:7CrossRefGoogle Scholar
  2. 2.
    Russell AE, Miller SP, Morken JP (2000) J Org Chem 65:8381CrossRefGoogle Scholar
  3. 3.
    Yoshizawa K, Toyota S, Toda F (2001) Tetrahedron Lett 42:7983CrossRefGoogle Scholar
  4. 4.
    Evans DA, Hoveyda AH (1990) J Am Chem Soc 112:6447CrossRefGoogle Scholar
  5. 5.
    Evans DA, Nelson SG, Gagne MR, Muci AR (1993) J Am Chem Soc 115:9800CrossRefGoogle Scholar
  6. 6.
    Node M, Nishide K, Shigeta Y, Shiraki H, Obata K (2000) J Am Chem Soc 122:1927CrossRefGoogle Scholar
  7. 7.
    Ooi T, Ichikawa H, Maruoka K (2001) Angew Chem Int Ed 40:3610CrossRefGoogle Scholar
  8. 8.
    Ishihara K, Kurihara H, Yamamoto H (1997) J Org Chem 62:5664CrossRefGoogle Scholar
  9. 9.
    Ooi T, Otsuka H, Miura T, Ichikawa H, Maruoka K (2002) Org Lett 4:2669CrossRefGoogle Scholar
  10. 10.
    Suzuki T, Morita K, Tsuchida M, Hiroi K (2003) J Org Chem 68:1601CrossRefGoogle Scholar
  11. 11.
    Godula K, Sames D (2006) Science 312:67CrossRefGoogle Scholar
  12. 12.
    Chen X, Engle KM, Wang DH, Yu JQ (2009) Angew Chem Int Ed 48(28):5094CrossRefGoogle Scholar
  13. 13.
    Giri R, Shi BF, Engle KM, Maugel N, Yu JQ (2009) Chem Soc Rev 38(11):3242CrossRefGoogle Scholar
  14. 14.
    Gunay A, Theopold KH (2010) Chem Rev 110:1060CrossRefGoogle Scholar
  15. 15.
    Mátyus P, Éliás O, Tapolcsányi P, Polonka-Bálint Á, Halász-Dajka B (2006) Synthesis (16):2625–2639. doi: 10.1055/s-2006-942490
  16. 16.
    Peng B, Maulide N (2013) Chem Eur J 19:13274CrossRefGoogle Scholar
  17. 17.
    Haibach MC, Seidel D (2014) Angew Chem Int Ed 53:5010CrossRefGoogle Scholar
  18. 18.
    Wang L, Xiao J (2014) Adv Synth Catal 356:1137CrossRefGoogle Scholar
  19. 19.
    Pan SC (2012) Beil J Org Chem 8:1374CrossRefGoogle Scholar
  20. 20.
    Wang M (2013) ChemCatChem 5:1291CrossRefGoogle Scholar
  21. 21.
    Pinnow J (1895) Ber Dtsch Chem Ges 28:3039CrossRefGoogle Scholar
  22. 22.
    Katritzky AR, Rachwal S, Rachwal B (1996) Tetrahedron 52:15031CrossRefGoogle Scholar
  23. 23.
    Koufaki M, Theodorou E, Galaris D, Nousis L, Katsanou ES, Alexis MN (2006) J Med Chem 49:300CrossRefGoogle Scholar
  24. 24.
    Lee SB, Lin CY, Gill PMW, Webster RD (2005) J Org Chem 70:10466CrossRefGoogle Scholar
  25. 25.
    Toyota M, Omatsu I, Asakawa Y (2001) Chem Pharm Bull 924Google Scholar
  26. 26.
    Nozoe S, Morisaki M, Iitaka Y, Takahashi N, Tamura S, Ki K, Shirasaka M (1965) J Am Chem Soc 87:4968CrossRefGoogle Scholar
  27. 27.
    Entzeroth M, Blackman AJ, Mynderse JS, Moore RE (1985) J Org Chem 50:1255CrossRefGoogle Scholar
  28. 28.
    Aoki S, Watanabe Y, Sanagawa M, Setiawan A, Kotoku N, Kobayashi M (2006) J Am Chem Soc 128:3148CrossRefGoogle Scholar
  29. 29.
    Macias FA, Galindo JLG, Varela RM, Torres A, Molinillo JMG, Fronczek FR (2006) Org Lett 8:4513CrossRefGoogle Scholar
  30. 30.
    Katsoulis IA, Kythreoti G, Papakyriakou A, Koltsida K, Anastasopoulou P, Stathakis CI, Mavridis I, Cottin T, Saridakis E, Vourloumis D (2011) ChemBioChem 12(8):1188CrossRefGoogle Scholar
  31. 31.
    Boivin TLB (1987) Tetrahedron 43:3309CrossRefGoogle Scholar
  32. 32.
    Elliott MC, Williams E (2001) J Chem Soc Perkin Trans 1(19):2303CrossRefGoogle Scholar
  33. 33.
    Marmsater FP, West FG (2002) Chem Eur J 8:4347CrossRefGoogle Scholar
  34. 34.
    Hale KJ, Hummersone MG, Manaviazar S, Frigerio M (2002) Nat Prod Rep 19(4):413CrossRefGoogle Scholar
  35. 35.
    Haustedt LO, Hartung IV, Hoffmann HM (2003) Angew Chem Int Ed 42(24):2711CrossRefGoogle Scholar
  36. 36.
    Wang L, Li P, Menche D (2010) Angew Chem Int Ed 49(48):9270CrossRefGoogle Scholar
  37. 37.
    Pastine SJ, Sames D (2005) Org Lett 7:5429CrossRefGoogle Scholar
  38. 38.
    McQuaid KM, Sames D (2009) J Am Chem Soc 131:402CrossRefGoogle Scholar
  39. 39.
    Vadola PA, Sames D (2009) J Am Chem Soc 131:16525CrossRefGoogle Scholar
  40. 40.
    Tobisu M, Nakai H, Chatani N (2009) J Org Chem 74:5471CrossRefGoogle Scholar
  41. 41.
    Zhou G, Liu F, Zhang J (2011) Chem Eur J 17:3101CrossRefGoogle Scholar
  42. 42.
    Xia X, Song X, Wang N, Wei H, Liua X, Liang Y (2012) RSC Adv 2:560CrossRefGoogle Scholar
  43. 43.
    Datta S, Odedra A, Liu R (2005) J Am Chem Soc 127:11606CrossRefGoogle Scholar
  44. 44.
    Odedra A, Datta S, Liu R (2007) J Org Chem 72:3289CrossRefGoogle Scholar
  45. 45.
    Shu X, Ji K, Zhao S, Zheng Z, Chen J, Lu L, Liu X, Liang Y (2008) Chem Eur J 14:10556CrossRefGoogle Scholar
  46. 46.
    Meth-Cohn O (1996) Adv Heterocycl Chem 65:1CrossRefGoogle Scholar
  47. 47.
    Nijhuis WHN, Verboom W, Reinhoudt DN (1987) J Am Chem Soc 109:3136CrossRefGoogle Scholar
  48. 48.
    Nijhuis WHN, Verboom W, El-Fadl AA, Hummel GJV, Reinhoudt DN (1987) J Org Chem 54:209CrossRefGoogle Scholar
  49. 49.
    Chen L, Zhang L, Lv J, Cheng J, Luo S (2012) Chem Eur J 18:8891CrossRefGoogle Scholar
  50. 50.
    Zhang L, Chen L, Lv J, Cheng J-P, Luo S (2012) Chem Asian J 7:2569CrossRefGoogle Scholar
  51. 51.
    Barluenga J, Fananas-Mastral M, Aznar F, Valdes C (2008) Angew Chem Int Ed 47:6594CrossRefGoogle Scholar
  52. 52.
    Alajarin M, Bonillo B, Marin-Luna M, Sanchez-Andrada P, Vidal A (2013) Chem Eur J 47:16093CrossRefGoogle Scholar
  53. 53.
    Zhao S, Shu X, Ji K, Zhou A, He T, Liu X, Liang Y (2011) J Org Chem 76:1941CrossRefGoogle Scholar
  54. 54.
    Alajarin M, Bonillo B, Ortin M-M, Sanchez-Andrada P, Vidal A (2011) Eur J Org Chem 1896–1913. doi: 10.1002/ejoc.201001372
  55. 55.
    Alajarin M, Bonillo B, Ortin M, Sanchez-Andrada P, Vidal A, Orenes R (2010) Org Biomol Chem 8:4690CrossRefGoogle Scholar
  56. 56.
    Alajarin M, Bonillo B, Orenes RA, Ortin MM, Vidal A (2012) Org Biomol Chem 10(48):9523CrossRefGoogle Scholar
  57. 57.
    Brunet P, Wuest JD (1996) J Org Chem 61:2020CrossRefGoogle Scholar
  58. 58.
    Alajarin M, Bonillo B, Ortin M, Sanchez-Andrada P, Vidal A (2006) Org Lett 8:5645CrossRefGoogle Scholar
  59. 59.
    Mori K, Sueoka S, Akiyama T (2011) Chem Lett 40(12):1386CrossRefGoogle Scholar
  60. 60.
    Apeloig Y, Karni M (1988) J Chem Soc Perkin Trans II:625CrossRefGoogle Scholar
  61. 61.
    Cui L, Peng Y, Zhang L (2009) J Am Chem Soc 131:8394CrossRefGoogle Scholar
  62. 62.
    Noey EL, Luo Y, Zhang L, Houk KN (2012) J Am Chem Soc 134:1078CrossRefGoogle Scholar
  63. 63.
    Yu P, Lin JS, Li L, Zheng SC, Xiong YP, Zhao LJ, Tan B, Liu XY (2014) Angew Chem Int Ed 53(44):11890CrossRefGoogle Scholar
  64. 64.
    Zhang C, De CK, Mal R, Seidel D (2008) J Am Chem Soc 130:416CrossRefGoogle Scholar
  65. 65.
    Richers MT, Deb I, Platonova AY, Zhang C, Seidel D (2013) Synthesis 45:1730CrossRefGoogle Scholar
  66. 66.
    Dieckmann A, Richers MT, Platonova AY, Zhang C, Seidel D, Houk KN (2013) J Org Chem 78:4132CrossRefGoogle Scholar
  67. 67.
    Bhunia S, Ghorpade S, Huple DB, Liu R (2012) Angew Chem Int Ed 51:2939CrossRefGoogle Scholar
  68. 68.
    Cui L, Ye L, Zhang L (2010) Chem Commun 46(19):3351CrossRefGoogle Scholar
  69. 69.
    Yang S, Li Z, Jian X, He C (2009) Angew Chem Int Ed 48:3999CrossRefGoogle Scholar
  70. 70.
    Alajarin M, Marin-Luna M, Vidal A (2011) Adv Synth Catal 353(4):557CrossRefGoogle Scholar
  71. 71.
    Meth-Cohn O, Naqui MA (1967) Chem Commun 1157Google Scholar
  72. 72.
    Volochnyuk DM, Shivanyuk AN, Tolmachev AA, Ryabukhin SV, Plaskon AS (2007) J Org Chem 72:7417CrossRefGoogle Scholar
  73. 73.
    Che X, Zheng L, Dang Q, Bai X (2008) Synlett (15):2373–2375. doi: 10.1055/s-2008-1078212
  74. 74.
    Mori K, Sueoka S, Akiyama T (2011) J Am Chem Soc 133:2424CrossRefGoogle Scholar
  75. 75.
    Reinhoudt DN, Visser GW, Verboom W, Benders PH, Pennings MLM (1983) J Am Chem Soc 105:4775CrossRefGoogle Scholar
  76. 76.
    Cambeiro F, Lopez S, Varela JA, Saa C (2012) Angew Chem Int Ed 51(3):723CrossRefGoogle Scholar
  77. 77.
    Orlemans EM, Lammerink BHM, Veggel FCJMV, Verboom W, Harkema S, Reinhoudt DN (1988) J Org Chem 53:2278CrossRefGoogle Scholar
  78. 78.
    Dunkel P, Turos G, Bényeib A, Ludanyic K, Matyus P (2010) Tetrahedron 66:2331CrossRefGoogle Scholar
  79. 79.
    Zhou G, Zhang J (2010) Chem Commun 46:6593CrossRefGoogle Scholar
  80. 80.
    Haibach MC, Deb I, De CK, Seidel D (2011) J Am Chem Soc 133:2100CrossRefGoogle Scholar
  81. 81.
    Cao T, Fan W, Zhu C (2013) Org Lett 15:2254CrossRefGoogle Scholar
  82. 82.
    Lo VK-Y, Wong M-K, Che C-M (2008) Org Lett 10:517CrossRefGoogle Scholar
  83. 83.
    Kuang J, Ma S (2010) J Am Chem Soc 132:1786CrossRefGoogle Scholar
  84. 84.
    Sugiishi T, Nakamura H (2012) J Am Chem Soc 134:2504CrossRefGoogle Scholar
  85. 85.
    Meth-Cohn O, Suschitzky H (1972) Adv Heterocycl Chem 14:211CrossRefGoogle Scholar
  86. 86.
    Verboom W, Reinhoudt DN (1990) Recl Trav Chim Pays-Bas 109:311CrossRefGoogle Scholar
  87. 87.
    Quintela JM (2003) Recent Res Dev Org Chem 7:259Google Scholar
  88. 88.
    Ruble JC, Hurd AR, Johnson TA, Sherry DA, Barbachyn MR, Toogood PL, Bundy GL, Graber DR, Kamilar GM (2009) J Am Chem Soc 131:3991CrossRefGoogle Scholar
  89. 89.
    Murarka S, Zhang C, Konieczynska MD, Seidel D (2009) Org Lett 11:129CrossRefGoogle Scholar
  90. 90.
    Mori K, Ehara K, Kurihara K, Akiyama T (2011) J Am Chem Soc 133:6166CrossRefGoogle Scholar
  91. 91.
    Cao W, Liu X, Wang W, Lin L, Feng X (2011) Org Lett 13:600CrossRefGoogle Scholar
  92. 92.
    Toth L, Fu Y, Zhang HY, Mandi A, Kover KE, Illyes TZ, Kiss-Szikszai A, Balogh B, Kurtan T, Antus S, Matyus P (2014) Beilstein J Org Chem 10:2594CrossRefGoogle Scholar
  93. 93.
    Barluenga J, Fañanás-Mastral M, Fernández A, Aznar F (2011) Eur J Org Chem 1961–1967. doi: 10.1002/ejoc.201001717
  94. 94.
    Xiao J, Li X (2011) Angew Chem Int Ed 50(32):7226CrossRefGoogle Scholar
  95. 95.
    Pastine SJ, McQuaid KM, Sames D (2005) J Am Chem Soc 127:12180CrossRefGoogle Scholar
  96. 96.
    Vadola PA, Carrera I, Sames D (2012) J Org Chem 77:6689CrossRefGoogle Scholar
  97. 97.
    Murarka S, Deb I, Zhang C, Seidel D (2009) J Am Chem Soc 131:13226CrossRefGoogle Scholar
  98. 98.
    Kang YK, Kim SM, Kim DY (2010) J Am Chem Soc 132:11847CrossRefGoogle Scholar
  99. 99.
    Suh CW, Kim DY (2014) Org Lett 16(20):5374CrossRefGoogle Scholar
  100. 100.
    Suh CW, Woo SB, Kim DY (2014) Asian J Org Chem 3(4):399CrossRefGoogle Scholar
  101. 101.
    Zhang S-L, Xie H-X, Zhu J, Li H, Zhang X-S, Li J, Wang W (2011) Nat Commun 2:211CrossRefGoogle Scholar
  102. 102.
    Kang YK, Kim DY (2014) Chem Commun 50(2):222CrossRefGoogle Scholar
  103. 103.
    Kang YK, Kim DY (2013) Adv Synth Catal 355:3131CrossRefGoogle Scholar
  104. 104.
    Han Y, Han W, Hou X, Zhang X, Yuan W (2012) Org Lett 14:4054CrossRefGoogle Scholar
  105. 105.
    Cao W, Liu X, Guo J, Lin L, Feng X (2015) Chem Eur J 21(4):1632CrossRefGoogle Scholar
  106. 106.
    Mori K, Kurihara K, Yabe S, Yamanaka M, Akiyama T (2014) J Am Chem Soc 136(10):3744CrossRefGoogle Scholar
  107. 107.
    Zhao T, Zhang H, Cui L, Qu J, Wang B (2015) RSC Adv 5(105):86056CrossRefGoogle Scholar
  108. 108.
    Kaval N, Dehaen W, Mátyus P, Eycken EV (2004) Green Chem 6:125CrossRefGoogle Scholar
  109. 109.
    Kaval N, Halasz-Dajka B, Vo-Thanh G, Dehaen W, Eycken JV, Matyus P, Loupy A, Eyckena EV (2005) Tetrahedron 61:9052CrossRefGoogle Scholar
  110. 110.
    Jurberg ID, Peng B, Woestefeld E, Wasserloos M, Maulide N (2012) Angew Chem Int Ed 51:1950CrossRefGoogle Scholar
  111. 111.
    Zhang C, Murarka S, Seidel D (2009) J Org Chem 74:419CrossRefGoogle Scholar
  112. 112.
    Mori K, Ohshima Y, Ehara K, Akiyama T (2009) Chem Lett 38:524CrossRefGoogle Scholar
  113. 113.
    Du Y, Luo S, Gong L (2011) Tetrahedron Lett 52:7064CrossRefGoogle Scholar
  114. 114.
    Zheng L, Yang F, Dang Q, Bai X (2008) Org Lett 10:889CrossRefGoogle Scholar
  115. 115.
    He YP, Wu H, Chen DF, Yu J, Gong LZ (2013) Chem Eur J 19(17):5232CrossRefGoogle Scholar
  116. 116.
    Rabong C, Hametner C, Mereiter K, Kartsev VG, Jordisa U (2008) Heterocycles 75:799CrossRefGoogle Scholar
  117. 117.
    Wang P-F, Huang Y-P, Wen X, Sun H, Xu Q-L (2015) Eur J Org Chem 2015(30):6727CrossRefGoogle Scholar
  118. 118.
    Wang PF, Jiang CH, Wen X, Xu QL, Sun H (2015) J Org Chem 80:1155CrossRefGoogle Scholar
  119. 119.
    Chen D, Han Z, He Y, Yu J, Gong L (2012) Angew Chem Int Ed 51:12307CrossRefGoogle Scholar
  120. 120.
    Gao X, Gaddam V, Altenhofer E, Tata RR, Cai Z, Yongpruksa N, Garimallaprabhakaran AK, Harmata M (2012) Angew Chem Int Ed 51(28):7016CrossRefGoogle Scholar
  121. 121.
    Chang YZ, Li ML, Zhao WF, Wen X, Sun H, Xu QL (2015) J Org Chem 80(19):9620CrossRefGoogle Scholar
  122. 122.
    McQuaid KM, Long JZ, Sames D (2009) Org Lett 11:2972CrossRefGoogle Scholar
  123. 123.
    Mori K, Kawasaki T, Sueoka S, Akiyama T (2010) Org Lett 12:1732CrossRefGoogle Scholar
  124. 124.
    Bajracharya GB, Pahadi NK, Gridnev ID, Yamamoto Y (2006) J Org Chem 71:6204CrossRefGoogle Scholar
  125. 125.
    Bhunia S, Liu R (2008) J Am Chem Soc 130:16488CrossRefGoogle Scholar
  126. 126.
    Shikanai D, Murase H, Hata T, Urabe H (2009) J Am Chem Soc 131:3166CrossRefGoogle Scholar
  127. 127.
    Jurberg ID, Odabachian Y, Gagosz F (2010) J Am Chem Soc 132:3543CrossRefGoogle Scholar
  128. 128.
    Bolte B, Gagosz F (2011) J Am Chem Soc 133:7696CrossRefGoogle Scholar
  129. 129.
    Jiao Z, Zhang S, He C, Tu Y, Wang S, Zhang F, Zhang Y, Li H (2012) Angew Chem Int Ed 51:8811CrossRefGoogle Scholar
  130. 130.
    Koizumi Y, Kobayashi H, Wakimoto T, Furuta T, Fukuyama T, Kan T (2008) J Am Chem Soc 130:16854CrossRefGoogle Scholar
  131. 131.
    Kurosawa W, Kan T, Fukuyama T (2003) J Am Chem Soc 125:8112CrossRefGoogle Scholar
  132. 132.
    Kurosawa W, Kan T, Fukuyama T (2003) Synlett 1028–1030Google Scholar
  133. 133.
    Kurosawa W, Kobayashi H, Kan T, Fukuyama T (2004) Tetrahedron 60:9615CrossRefGoogle Scholar
  134. 134.
    Reddy RP, Lee GH, Davies HML (2006) Org Lett 8:3437CrossRefGoogle Scholar
  135. 135.
    Wakimoto T, Miyata K, Ohuchi H, Asakawa T, Nukaya H, Suwa Y, Kan T (2011) Org Lett 13:2789CrossRefGoogle Scholar
  136. 136.
    Mahoney SJ, Moon DT, Hollinger J, Fillion E (2009) Tetrahedron Lett 50:4706CrossRefGoogle Scholar
  137. 137.
    Woelfling J, Frank É, Schneider G, Tietze L (1999) Angew Chem Int Ed 38:200CrossRefGoogle Scholar
  138. 138.
    Wölfling J, Frank E, Schneider G, Tietze LF (1999) Eur J Org Chem 3013–3020Google Scholar
  139. 139.
    Wölfling J, Frank E, Schneider G, Tietze LF (2004) Eur J Org Chem 90–100. doi: 10.1002/ejoc.200300500
  140. 140.
    Frank É, Schneider G, Kádár Z, Wölfling J (2009) Eur J Org Chem 3544–3553. doi: 10.1002/ejoc.200900301
  141. 141.
    Mori K, Kawasaki T, Akiyama T (2012) Org Lett 14:1436CrossRefGoogle Scholar
  142. 142.
    Mori K, Umehara N, Akiyama T (2015) Adv Synth Catal 357(5):901CrossRefGoogle Scholar
  143. 143.
    Theunissen C, Metayer B, Henry N, Compain G, Marrot J, Martin-Mingot A, Thibaudeau S, Evano G (2014) J Am Chem Soc 136(36):12528CrossRefGoogle Scholar
  144. 144.
    Barluenga J, Sigueiro R, Vicente R, Ballesteros A, Tomas M, Rodriguez MA (2012) Angew Chem Int Ed 51(41):10377CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdaoChina

Personalised recommendations