Topics in Current Chemistry

, 374:5 | Cite as

Immunochemical Methods Applied to Art-Historical Materials: Identification and Localization of Proteins by ELISA and IFM

  • Laura Cartechini
  • Melissa Palmieri
  • Manuela Vagnini
  • Lucia Pitzurra
Review
  • 170 Downloads
Part of the following topical collections:
  1. Analytical Chemistry for Cultural Heritage

Abstract

Despite the large diffusion of natural organic substances in art-historical materials, their characterization presents many challenges due to the chemical complexity and instability with respect to degradation processes. Among natural products, proteins have been largely used in the past as binders but also as adhesives or additives in coating layers. Nevertheless, biological identification of proteins in art-historical objects is one of the most recent achievements obtained in heritage science thanks to the development of specifically tailored bio-analytical strategies. In the context of this active emerging discipline, immunological methods stand out for sensitivity, specificity and versatility for both protein recognition and localization in micro-samples. Furthermore, the growing use of immunological techniques for advanced diagnostics and clinical applications ensures continuous improvement in their analytical performance. Considering such, this review provides an overview of the most recent applications of enzyme linked immunosorbent assay and immunofluorescence microscopy techniques in the field of heritage materials. Specifically, the main strengths and potentials of the two techniques as well as their limits and drawbacks are presented and discussed herein.

Keywords

ELISA IFM Proteinaceous binders Heritage materials Imaging Painting cross-section 

Notes

Acknowledgments

The authors acknowledge for funding support the CHARISMA project (GA228330)—funded by the European Union FP7-Research Infrastructure programme—and the project “Sviluppo delle attività di ricerca, valutazione e tutela conservative” of the Regione Umbria—“Progetto 1 del Primo atto integrativo all’APQ: Tutela e prevenzione dei beni culturali”.

References

  1. 1.
    Gosling JP (1990) A decade of development in immunoassay methodology. Clin Chem 36:1408Google Scholar
  2. 2.
    Wild D (2013) The immunoassay handbook, 4th edn. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Gettens RJ, Stout GL (1966) Painting materials: a short encyclopaedia. Dover Publication, New YorkGoogle Scholar
  4. 4.
    Mills JS, White R (eds) (1994) The organic chemistry of museum objects, 2nd edn. Butterworth-Heinemann, LondonGoogle Scholar
  5. 5.
    Colombini MP, Modugno F (2009) Organic materials in art and archaeology. In: Colombini MP, Modugno F (eds) Organic mass spectrometry in art and archaeology, Chapter 1. Wiley, ChichesterCrossRefGoogle Scholar
  6. 6.
    Madariaga JM (2015) Analytical chemistry in the field of cultural heritage. Anal Methods 7:4848CrossRefGoogle Scholar
  7. 7.
    Sgamellotti A, Brunetti BG, Miliani C (2014) Science and art : the painted surface. The Royal Society of Chemistry, London, UKGoogle Scholar
  8. 8.
    Domenech-Carbò MT (2008) Novel analytical methods for characterising binding media and protective coatings in artworks. Anal Chim Acta 621:109CrossRefGoogle Scholar
  9. 9.
    Colombini MP, Andreotti A, Bonaduce I, Modugno F, Ribechini E (2010) Analytical strategies for characterizing organic paint media using gas chromatography/mass spectrometry. Acc Chem Res 43:715CrossRefGoogle Scholar
  10. 10.
    Lluveras A, Bonaduce I, Andreotti A, Colombini MP (2010) GC/MS analytical procedure for the characterization of glycerolipids, natural waxes, terpenoid resins, proteinaceous and polysaccharide materials in the same paint microsample avoiding interferences from inorganic media. Anal Chem 8:376CrossRefGoogle Scholar
  11. 11.
    Leo G, Cartechini L, Pucci P, Sgamellotti A, Marino G, Birolo L (2009) Proteomic strategies for the identification of proteinaceous binders in paintings. Anal Bioanal Chem 395:2269CrossRefGoogle Scholar
  12. 12.
    Kuckova S, Hynek R, Kodicek M (2007) Identification of proteinaceous binders used in artworks by MALDI-TOF mass spectrometry. Anal Bioanal Chem 388:201CrossRefGoogle Scholar
  13. 13.
    Dallongeville S, Koperska M, Garnier N, Reille-Taillefert G, Rolando C, Tokarski C (2011) Identification of animal glue species in artworks using proteomics: application to a 18th century gilt sample. Anal Chem 83:9431CrossRefGoogle Scholar
  14. 14.
    Calvano CD, van der Werf ID, Palmisano F, Sabbatini L (2015) Identification of lipid- and protein-based binders in paintings by direct on-plate wet chemistry and matrix-assisted laser desorption ionization mass spectrometry. Anal Bioanal Chem 407:1015CrossRefGoogle Scholar
  15. 15.
    Albertini E, Raggi L, Vagnini M, Sassolini A, Achilli A, Marconi G, Cartechini L, Veronesi F, Falcinelli M, Brunetti B, Miliani C (2011) Tracing the biological origin of animal glues used in paintings through mitochondrial DNA analysis. Anal Bioanal Chem 399:2987CrossRefGoogle Scholar
  16. 16.
    Johnson M, Packard E (1971) Methods used for the identification of binding media in Italian paintings of fifteenth and sixteenth centuries. Stud Conserv 16:145Google Scholar
  17. 17.
    Kockaert L, Gausset P, Dubi-Rucquoy M (1989) Detection of ovalbumin in paint media by immuno-fluorescence. Stud Conserv 34:183Google Scholar
  18. 18.
    Raminez-Barat B, de la Vinã S (2001) Characterization of proteins in paint media by immuno-fluorescence: a note on methodological aspects. Stud Conserv 46:282Google Scholar
  19. 19.
    Heginbotham A, Millay V, Quick M (2006) The use of immuno-fluorescence microscopy (IFM) and enzyme-linked immunosorbent assay (ELISA) as complementary techniques for protein identification in artists’ materials. J Am Inst Conserv 45:89CrossRefGoogle Scholar
  20. 20.
    Mazurek J, Heginbotham A, Schilling M, Chiari G (2008) Antibody assay to characterize binding media in paint. ICOM Comm Conserv 2:678Google Scholar
  21. 21.
    Cartechini L, Vagnini M, Palmieri M, Pitzurra L, Mello T, Mazurek J, Chiari G (2010) Immunodetection of proteins in ancient paint media. Acc Chem Res 43:867CrossRefGoogle Scholar
  22. 22.
    Sciutto G, Dolci LS, Guardigli M, Zangheri M, Prati S, Mazzeo R, Roda A (2013) Single and multiplexed immunoassays for the chemiluminescent imaging detection of animal glues in historical paint cross-sections. Anal Bioanal Chem 405:933CrossRefGoogle Scholar
  23. 23.
    Palmieri M, Vagnini M, Pitzurra L, Brunetti BG, Cartechini L (2013) Identification of animal glue and hen-egg yolk in paintings by use of enzyme-linked immunosorbent assay (ELISA). Anal Bioanal Chem 405:6365CrossRefGoogle Scholar
  24. 24.
    Arslanoglu J, Zaleski S, Loike J (2011) An improved method of protein localization in artworks through SERS nanotag-complexed antibodies. Anal Bioanal Chem 399:2997CrossRefGoogle Scholar
  25. 25.
    Sciutto G, Prati S, Mazzeo R, Zangheri M, Roda A, Bardini L, Valenti G, Rapino S, Marcaccio M (2014) Localization of proteins in paint cross-sections by scanning electrochemical microscopy as an alternative immunochemical detection technique. Anal Chim Acta 831:31CrossRefGoogle Scholar
  26. 26.
    Lee HY, Atlasevich N, Granzotto C, Schultz J, Loike J, Arslanoglu J (2015) Development and application of an ELISA method for the analysis of protein-based binding media of artworks. Anal Methods 7:187CrossRefGoogle Scholar
  27. 27.
    Magrini D, Bracci S, Sandu ICA (2013) Fluorescence of organic binders in painting cross-sections. Procedia Chem 8:194–201CrossRefGoogle Scholar
  28. 28.
    Pinna D, Galleotti M, Mazzeo R (2009) Scientific examination for the investigation of paintings: a handbook for conservators-restorers. Ed. Centro Di, FirenzeGoogle Scholar
  29. 29.
    Sciutto G, Litti L, Lofrumento C, Prati S, Ricci M, Gobbo M, Roda A, Castellucci E, Meneghetti M, Mazzeo R (2013) Alternative SERRS probes for the immunochemical localization of ovalbumin in paintings: an advanced mapping detection approach. Analyst 138:4532–4541CrossRefGoogle Scholar
  30. 30.
    Perets EA, Indrasekara ASDS, Kurmis A, Atlasevich N, Fabris L, Arslanoglu J (2015) Carboxy-terminated immuno-SERS tags overcome non-specific aggregation for the robust detection and localization of organic media in artworks. Analyst 140:5971–5980CrossRefGoogle Scholar
  31. 31.
    Avci R, Schweitzer MH, Boyd RD, Wittmeyer JL, Terán Arce F, Calvo JO (2005) Preservation of bone collagen from the late cretaceous period studied by immunological techniques and atomic force microscopy. Langmuir 21:3584–3590CrossRefGoogle Scholar
  32. 32.
    Lindgren J, Uvdal P, Engdahl A, Lee AH, Alwmark C, Bergquist C-E, Nilsson E, Ekström P, Rasmussen M, Douglas DA, Polcyn MJ, Jacobs LL (2011) Microspectroscopic evidence of cretaceous bone proteins. PLoS ONE 6(4):e19445CrossRefGoogle Scholar
  33. 33.
    Vagnini M, Pitzurra L, Cartechini L, Miliani C, Brunetti BG, Sgamellotti A (2008) Identification of proteins in painting cross-sections by immunofluorescence microscopy. Anal Bioanal Chem 392:57–64CrossRefGoogle Scholar
  34. 34.
    Klausmeyer PA, Albertson RP, Woodland RT, Schmidt MR, Blewett M (2009) FTIR and ELISA for the analysis of a Kees Van Dongen painting. e-PS 6:151Google Scholar
  35. 35.
    Scott DA, Warmlander S, Mazurek J, Quirke S (2009) Examination of some pigments, grounds and media from Egyptian cartonnage fragments in the Petrie Museum, University College London. J Archaeol Sci 36:923–932CrossRefGoogle Scholar
  36. 36.
    Palmieri M, Vagnini M, Pitzurra L, Rocchi P, Brunetti BG, Sgamellotti A, Cartechini L (2011) Development of an analytical protocol for a fast, sensitive and specific protein recognition in paintings by enzyme-linked immunosorbent assay (ELISA). Anal Bioanal Chem 399:3011–3023CrossRefGoogle Scholar
  37. 37.
    Dolci LS, Sciutto G, Guardigli A, Rizzoli M, Prati S, Mazzeo R, Roda A (2008) Ultrasensitive chemiluminescent immunochemical identification and localization of protein components in painting cross-sections by microscope low-light imaging. Anal Bioanal Chem 392:29–35CrossRefGoogle Scholar
  38. 38.
    Sciutto G, Dolci LS, Buragina A, Prati S, Guardigli A, Mazzeo R, Roda A (2011) Development of a multiplexed chemiluminescent immunochemical imaging technique for the simultaneous localization of different proteins in painting micro cross-sections. Anal Bioanal Chem 399:2889–2897CrossRefGoogle Scholar
  39. 39.
    Zangheri M, Sciutto G, Mirasoli M, Prati S, Mazzeo R, Roda A, Guardigli M (2016) A portable device for on site detection of chicken ovalbumin in artworks by chemiluminescent immunochemical contact imaging. Microchem J 124:247–255CrossRefGoogle Scholar
  40. 40.
    Mazurek J, Svoboda M, Maish J, Kawahara K, Fukakusa S, Nakazawa T, Taniguchi Y (2014) Characterization of binding media in Egyptian Romano portraits using enzyme-linked immunosorbent assay and mass spectrometry. e-PS 11:76Google Scholar
  41. 41.
    Hu W, Zhang K, Zhang H, Zhang B, Rong B (2015) Analysis of polychromy binder on Qin Shihuang’s terracotta warriors by immunofluorescence microscopy. J Cult Herit 16:244CrossRefGoogle Scholar
  42. 42.
    Gambino M, Cappitelli F, Cattò C, Carpen A, Principi P, Ghezzi L, Bonaduce I, Galano E, Pucci P, Birolo L, Villa F, Forlani F (2013) A simple and reliable methodology to detect egg white in art samples. J Biosci 38:397CrossRefGoogle Scholar
  43. 43.
    Potenza M, Sabatino G, Giambi F, Rosi L, Papini AM, Dei L (2013) Analysis of egg-based model wall paintings by use of an innovative combined dot-ELISA and UPLC-based approach. Anal Bioanal Chem 405:691CrossRefGoogle Scholar
  44. 44.
    Bottari F, Oliveri P, Ugo P (2014) Electrochemical immunosensor based on ensemble of nanoelectrodes for immunoglobulin IgY detection: application to identify hen’s egg yolk in tempera paintings. Biosens Bioelectron 52:403CrossRefGoogle Scholar
  45. 45.
    Zheng Q, Wu X, Zheng H, Zhou Y (2015) Development of an enzyme-linked-immunosorbent-assay technique for accurate identification of poorly preserved silks unearthed in ancient tombs. Anal Bioanal Chem 407:3861–3867CrossRefGoogle Scholar
  46. 46.
    Sela-Culang I, Kunik V, Ofran Y (2013) The structural basis of antibody-antigen recognition. Front Immunol 4:302. doi: 10.3389/fimmu.2013.00302 CrossRefGoogle Scholar
  47. 47.
    Akiba H, Tsumoto K (2015) Thermodynamics of antibody-antigen interaction revealed by mutation analysis of antibody variable regions. J Biochem 158:1–13CrossRefGoogle Scholar
  48. 48.
    Moreira IS, Fernandes PA, Ramos MJ (2007) Hot spots—a review of the protein–protein interface determinant amino-acid residues. Proteins 68:803–812CrossRefGoogle Scholar
  49. 49.
    Borrebaeck CAK (2000) Antibodies in diagnostics—from immunoassays to protein chips. Immunol Today 21:379CrossRefGoogle Scholar
  50. 50.
    Hage DS (1995) Immunoassays. Anal Chem 67:455RCrossRefGoogle Scholar
  51. 51.
    Blake C, Gould BJ (1984) Use of enzymes in immunoassay techniques. A review. Analyst 109:53CrossRefGoogle Scholar
  52. 52.
    Porstmann T, Kiessig ST (1992) Enzyme immunoassay techniques. An overview. J Immunol Methods 150:5CrossRefGoogle Scholar
  53. 53.
    Petty HR (2007) Fluorescence microscopy: established and emerging methods, experimental strategies, and applications in immunology. Microsc Res Tech 70:687CrossRefGoogle Scholar
  54. 54.
    Lequin RM (2005) Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem 51:2415–2418CrossRefGoogle Scholar
  55. 55.
    Crowther JR (2009) The ELISA guidebook, 2nd edn. Humana Press, Totowa, NJCrossRefGoogle Scholar
  56. 56.
    Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217CrossRefGoogle Scholar
  57. 57.
    Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775CrossRefGoogle Scholar
  58. 58.
    Rino J, Braga J, Henriques R, Carmo-Fonseca M (2009) Frontiers in fluorescence microscopy Int. J Dev Biol 53:1569CrossRefGoogle Scholar
  59. 59.
    Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165CrossRefGoogle Scholar
  60. 60.
    Colombini MP, Modugno F (2004) Characterisation of proteinaceous binders in artistic paintings by chromatographic techniques. J Sep Sci 27:147CrossRefGoogle Scholar
  61. 61.
    Lai MC, Topp EM (1999) Solid-state chemical stability of proteins and peptides. J Pharm Sci 88:489–500CrossRefGoogle Scholar
  62. 62.
    Karpowicz A (1981) Ageing and deterioration of proteinaceous media. Stud Conserv 26:153–160Google Scholar
  63. 63.
    Bonaduce I, Cito M, Colombini MP (2009) The development of a gas chromatographic–mass spectrometric analytical procedure for the determination of lipids, proteins and resins in the same paint micro-sample avoiding interferences from inorganic media. J Chromatogr A 1216:5931CrossRefGoogle Scholar
  64. 64.
    Leo G, Bonaduce I, Andreotti A, Marino G, Pucci P, Colombini MP, Birolo L (2011) Deamidation at asparagine and glutamine as a major modification upon deterioration/aging of proteinaceous binders in mural paintings. Anal Chem 83:2056CrossRefGoogle Scholar
  65. 65.
    Duce C, Bramanti E, Ghezzi L, Bernazzani L, Bonaduce I, Colombini MP, Spepi A, Biagi S, Tine MR (2013) Interactions between inorganic pigments and proteinaceous binders in reference paint reconstructions. Dalton Trans 42:5975CrossRefGoogle Scholar
  66. 66.
    Ghezzi L, Duce C, Bernazzani L, Bramanti E, Colombini MP, Tiné MR, Bonaduce I (2015) Interactions between inorganic pigments and rabbit skin glue in reference paint reconstructions. J Therm Anal Calorim 122:315–322CrossRefGoogle Scholar
  67. 67.
    Arslanoglu J, Schultz J, Loike J, Peterson K (2010) Immunology and art: using antibody-based techniques to identify proteins and gums in artworks. J Biosci 35:3CrossRefGoogle Scholar
  68. 68.
    Ren F, Atlasevich N, Baade B, Loike J, Arslanoglu J (2015) Influence of pigments and protein aging on protein identification in historically representative casein-based paints using enzyme-linked immunosorbent assay. Anal Bioanal Chem. doi: 10.1007/s00216-015-9089-0 Google Scholar
  69. 69.
    Zevgiti S, Sackarellos C, Sackarellos-Daitsiotis M, Ioakimoglou E, Panou-Pomonis E (2007) Collagen models as a probe in the decay of works of art: synthesis, conformation and immunological studies. J Pept Sci 13:121–127CrossRefGoogle Scholar
  70. 70.
    Brunello F (1982) Il libro dell’arte, Neri, Pozza edn. Vicenza, ItalyGoogle Scholar
  71. 71.
    Ishikawa E, Hashida S, Kohno T (1991) Development of ultrasensitive enzyme immunoassay reviewed with emphasis on factors which limit the sensitivity. Mol Cell Probes 5:81–95CrossRefGoogle Scholar
  72. 72.
    Towbin H, Gordon J (1984) Immunoblotting and dot immunobinding—current status and outlook. J Immunol Method 72:313–340CrossRefGoogle Scholar
  73. 73.
    Lichtman JW, Conchello JA (2005) Fluorescence microscopy. Nat Methods 2:910–919CrossRefGoogle Scholar
  74. 74.
    Matteini P, Camaiti M, Agati G, Baldo MA, Mutoc S, Matteini M (2009) Discrimination of painting binders subjected to photo-ageing by using microspectrofluorometry coupled with deconvolution analysis. J Cult Herit 10:198–205CrossRefGoogle Scholar
  75. 75.
    Nevin A, Anglos D, Cather S, Burnstock A (2008) The influence of visible light and inorganic pigments on fluorescence excitation emission spectra of egg-, casein- and collagen-based painting media. Appl Phys A 92:69–76CrossRefGoogle Scholar
  76. 76.
    Sandu ICA, Roque ACA, Matteini P, Schaefer S, Aagati G, Correia CR, Viana JFFP (2012) Fluorescence recognition of proteinaceous binders in works of art by a novel integrated system of investigation. Microsc Microanal 75:316–324Google Scholar
  77. 77.
    Sandu ICA, Schaefer S, Magrini D, Bracci S, Roque ACA (2012) Cross-section and staining-based techniques for investigation of organic materials in painted and polychrome works of art—a review. Microsc Microanal 18:860–865CrossRefGoogle Scholar
  78. 78.
    Földes-Papp Z, Demel U, Tilz GP (2003) Laser scanning confocal fluorescence microscopy: an overview. Int Immunopharmacol 3:1715–1729CrossRefGoogle Scholar
  79. 79.
    Panchuk-Voloshina N, Haugland RP, Bishop-Stewart J, Bhalgat MK, Millard PJ, Mao F, Leung W-Y, Haugland RP (1999) Alexa Dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J Histochem Cytochem 47:1179–1188CrossRefGoogle Scholar
  80. 80.
    Sarkar P, Sridharan S, Luchowski R, Desai S, Dworecki B, Nlend M, Gryczynski Z, Gryczynski I (2010) Photophysical properties of a new DyLight 594 dye. J Photochem Photobiol, B 98:35–39CrossRefGoogle Scholar
  81. 81.
    Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175CrossRefGoogle Scholar
  82. 82.
    Pavelka J, Kovaciková L, Smejda L (2011) The determination of domesticated animal species from a Neolithic sample using the ELISA test. C R Palevol 10:61–70CrossRefGoogle Scholar
  83. 83.
    Yao J, Yang M, Duan Y (2014) Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem Rev 114:6130–6178CrossRefGoogle Scholar
  84. 84.
    Day JJ, Marquez BV, Beck HE, Aweda TA, Gawande PD, Meares CF (2010) Chemically modified antibodies as diagnostic imaging agents. Curr Opin Chem Biol 14:803–809CrossRefGoogle Scholar
  85. 85.
    Beltran V, Salvadó N, Butí S, Cinque G, Wehbe K, Pradell T (2015) Optimal sample preparation for the analysis of micrometric heterogeneous samples. Anal Chem 87:6500–6504CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Laura Cartechini
    • 1
  • Melissa Palmieri
    • 2
    • 4
  • Manuela Vagnini
    • 3
  • Lucia Pitzurra
    • 4
  1. 1.Isitituto di Scienze e Tecnologie Molecolari, ISTM-CNR PerugiaItaly
  2. 2.Dipartimento di Chimica, Biologia e BiotecnologieUniversità degli Studi di Perugia PerugiaItaly
  3. 3.Laboratorio di Diagnostica per i Beni Culturali di Spoleto SpoletoItaly
  4. 4.Dipartimento di Medicina SperimentaleUniversità degli Studi di Perugia PerugiaItaly

Personalised recommendations