Abstract
Bioorthogonal reactions have been widely used over the last 10 years for imaging, detection, diagnostics, drug delivery, and biomaterials. Tetrazine reactions are a recently developed class of inverse electron-demand Diels–Alder reactions used in bioorthogonal applications. Given their rapid tunable reaction rate and highly fluorogenic properties, tetrazine bioorthogonal reactions have come to be considered highly attractive tools for elucidating biological functions and messages in vitro and in vivo. In this chapter, we present recent advances expanding the scope of precursor reactivity and we introduce new biomedical methodology based on bioorthogonal tetrazine chemistry. We specifically highlight novel applications for different kinds of biomolecules, including nucleic acid, protein, antibodies, lipids, glycans, and bioactive small molecules, in the areas of imaging, detection, and diagnostics. We also briefly present other recently developed inverse electron-demand Diels–Alder bioorthogonal reactions. Lastly, we consider future directions and potential roles that inverse electron-demand Diels–Alder reactions may play in the fields of bioorthogonal and biomedical chemistry.
This is a preview of subscription content, log in to check access.




















References
- 1.
Prescher JA, Bertozzi CR (2005) Nat Chem Biol 1:13–21
- 2.
Sletten EM, Bertozzi CR (2009) Angew Chem Int Ed 48:6974–6998
- 3.
Boyce M, Bertozzi CR (2011) Nat Methods 8:638–642
- 4.
Sletten EM, Bertozzi CR (2011) Acc Chem Res 44:666–676
- 5.
Agard NJ, Baskin JM, Prescher JA, Lo A, Bertozzi CR (2006) ACS Chem Biol 1:644–648
- 6.
Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR (2007) Proc Natl Acad Sci 104:16793–16797
- 7.
Codelli JA, Baskin JM, Agard NJ, Bertozzi CR (2008) J Am Chem Soc 130:11486–11493
- 8.
Jewett JC, Bertozzi CR (2010) Chem Soc Rev 39:1272–1279
- 9.
Jewett JC, Sletten EM, Bertozzi CR (2010) J Am Chem Soc 132:3688–3690
- 10.
Saxon E, Armstrong JI, Bertozzi CR (2000) Org Lett 2:2141–2143
- 11.
Saxon E, Bertozzi CR (2000) Science 287:2007–2010
- 12.
Dommerholt J, Schmidt S, Temming R, Hendriks LJA, Rutjes FPJT, van Hest JCM, Lefeber DJ, Friedl P, van Delft FL (2010) Angew Chem Int Ed 49:9422–9425
- 13.
Ning X, Temming RP, Dommerholt J, Guo J, Ania DB, Debets MF, Wolfert MA, Boons G-J, van Delft FL (2010) Angew Chem Int Ed 49:3065–3068
- 14.
Sanders BC, Friscourt F, Ledin PA, Mbua NE, Arumugam S, Guo J, Boltje TJ, Popik VV, Boons G-J (2011) J Am Chem Soc 133:949–957
- 15.
McGrath NA, Raines RT (2012) Chem Sci 3:3237–3240
- 16.
Lim RKV, Lin Q (2011) Acc Chem Res 44:828–839
- 17.
Yu Z, Pan Y, Wang Z, Wang J, Lin Q (2012) Angew Chem Int Ed 51:10600–10604
- 18.
Ramil CP, Lin Q (2013) Chem Commun 49:11007–11022
- 19.
Yu Z, Ohulchanskyy TY, An P, Prasad PN, Lin Q (2013) J Am Chem Soc 135:16766–16769
- 20.
Blackman ML, Royzen M, Fox JM (2008) J Am Chem Soc 130:13518–13519
- 21.
Devaraj NK, Weissleder R, Hilderbrand SA (2008) Bioconj Chem 19:2297–2299
- 22.
Devaraj NK, Weissleder R (2011) Acc Chem Res 44:816–827
- 23.
Šečkutė J, Devaraj NK (2013) Curr Opin Chem Biol 17:761–767
- 24.
Debets MF, van Hest JCM, Rutjes FPJT (2013) Org Biomol Chem 11:6439–6455
- 25.
Jing C, Cornish VW (2011) Acc Chem Res 44:784–792
- 26.
Borrmann A, van Hest JCM (2014) Chem Sci 5:2123–2134
- 27.
Saracoglu N (2007) Tetrahedron 63:4199–4236
- 28.
Clavier G, Audebert P (2010) Chem Rev 110:3299–3314
- 29.
Selvaraj R, Fox JM (2013) Curr Opin Chem Biol 17:753–760
- 30.
Knall A-C, Slugovc C (2013) Chem Soc Rev 42:5131–5142
- 31.
Hofmann KA, Ehrhart O (1912) Ber Dtsch Chem Ges 45:2731–2740
- 32.
Curtius T, Hess A (1930) Journal für Praktische Chemie 125:40–53
- 33.
Karver MR, Weissleder R, Hilderbrand SA (2011) Bioconj Chem 22:2263–2270
- 34.
Yang J, Karver MR, Li W, Sahu S, Devaraj NK (2012) Angew Chem Int Ed Engl 51:5222–5225
- 35.
Liu H, Wei Y (2013) Tetrahedron Lett 54:4645–4648
- 36.
Wang D, Chen W, Zheng Y, Dai C, Wang L, Wang B (2013) Heterocycl Commun 19:171
- 37.
Wu H, Yang J, Seckute J, Devaraj NK (2014) Angew Chem 53:5805–5809
- 38.
Carlson JC, Meimetis LG, Hilderbrand SA, Weissleder R (2013) Angew Chem Int Ed 52:6917–6920
- 39.
Meimetis LG, Carlson JCT, Giedt RJ, Kohler RH, Weissleder R (2014) Angew Chem Int Ed 53:7531–7534
- 40.
Denk C, Svatunek D, Filip T, Wanek T, Lumpi D, Fröhlich J, Kuntner C, Mikula H (2014) Angew Chem Int Ed 53:9655–9659
- 41.
Ehret F, Wu H, Alexander SC, Devaraj NK (2015) J Am Chem Soc 137:8876–8879
- 42.
Agarwal P, Beahm BJ, Shieh P, Bertozzi CR (2015) Angew Chem Int Ed 54:11504–11510
- 43.
Wu H, Cisneros BT, Cole CM, Devaraj NK (2014) J Am Chem Soc 136:17942–17945
- 44.
Wieczorek A, Buckup T, Wombacher R (2014) Org Biomol Chem 12:4177–4185
- 45.
Royzen M, Yap GPA, Fox JM (2008) J Am Chem Soc 130:3760–3761
- 46.
Taylor MT, Blackman ML, Dmitrenko O, Fox JM (2011) J Am Chem Soc 133:9646–9649
- 47.
Darko A, Wallace S, Dmitrenko O, Machovina MM, Mehl RA, Chin JW, Fox JM (2014) Chem Sci 5:3770–3776
- 48.
Rossin R, van den Bosch SM, ten Hoeve W, Carvelli M, Versteegen RM, Lub J, Robillard MS (2013) Bioconj Chem 24:1210–1217
- 49.
Murrey HE, Judkins JC, Am Ende CW, Ballard TE, Fang Y, Riccardi K, Di L, Guilmette ER, Schwartz JW, Fox JM, Johnson DS (2015) J Am Chem Soc 137:11461–11475
- 50.
Chen W, Wang D, Dai C, Hamelberg D, Wang B (2012) Chem Commun 48:1736–1738
- 51.
Yang J, Seckute J, Cole CM, Devaraj NK (2012) Angew Chem Int Ed Engl 51:7476–7479
- 52.
Yang J, Liang Y, Šečkutė J, Houk KN, Devaraj NK (2014) Chem A Eur J 20:3365–3375
- 53.
Patterson DM, Nazarova LA, Xie B, Kamber DN, Prescher JA (2012) J Am Chem Soc 134:18638–18643
- 54.
Kamber DN, Nazarova LA, Liang Y, Lopez SA, Patterson DM, Shih H-W, Houk KN, Prescher JA (2013) J Am Chem Soc 135:13680–13683
- 55.
Rieder U, Luedtke NW (2014) Angew Chem Int Ed 53:9168–9172
- 56.
Niederwieser A, Späte A-K, Nguyen LD, Jüngst C, Reutter W, Wittmann V (2013) Angew Chem Int Ed 52:4265–4268
- 57.
Engelsma SB, Willems LI, van Paaschen CE, van Kasteren SI, van der Marel GA, Overkleeft HS, Filippov DV (2014) Org Lett 16:2744–2747
- 58.
Alley SC, Okeley NM, Senter PD (2010) Curr Opin Chem Biol 14:529–537
- 59.
Li J, Jia S, Chen PR (2014) Nat Chem Biol 10:1003–1005
- 60.
Michaelis J, Roloff A, Seitz O (2014) Org Biomol Chem 12:2821–2833
- 61.
Versteegen RM, Rossin R, ten Hoeve W, Janssen HM, Robillard MS (2013) Angew Chem Int Ed 52:14112–14116
- 62.
Li Q, Dong T, Liu X, Lei X (2013) J Am Chem Soc 135:4996–4999
- 63.
Zhang X, Dong T, Li Q, Liu X, Li L, Chen S, Lei X (2015) ACS Chem Biol 10:1676–1683
- 64.
Kamber DN, Liang Y, Blizzard RJ, Liu F, Mehl RA, Houk KN, Prescher JA (2015) J Am Chem Soc 137:8388–8391
- 65.
Keliher EJ, Reiner T, Turetsky A, Hilderbrand SA, Weissleder R (2011) ChemMedChem 6:424–427
- 66.
Devaraj NK, Thurber GM, Keliher EJ, Marinelli B, Weissleder R (2012) Proc Natl Acad Sci USA 109:4762–4767
- 67.
Uttamapinant C, Howe JD, Lang K, Beránek V, Davis L, Mahesh M, Barry NP, Chin JW (2015) J Am Chem Soc 137:4602–4605
- 68.
Li Z, Wang D, Li L, Pan S, Na Z, Tan CYJ, Yao SQ (2014) J Am Chem Soc 136:9990–9998
- 69.
Schoch J, Wiessler M, Jäschke A (2010) J Am Chem Soc 132:8846–8847
- 70.
Schoch J, Staudt M, Samanta A, Wiessler M, Jäschke A (2012) Bioconj Chem 23:1382–1386
- 71.
Schoch J, Ameta S, Jaschke A (2011) Chem Commun 47:12536–12537
- 72.
Asare-Okai PN, Agustin E, Fabris D, Royzen M (2014) Chem Commun 50:7844–7847
- 73.
Pyka AM, Domnick C, Braun F, Kath-Schorr S (2014) Bioconj Chem 25:1438–1443
- 74.
Kumar R, El-Sagheer A, Tumpane J, Lincoln P, Wilhelmsson LM, Brown T (2007) J Am Chem Soc 129:6859–6864
- 75.
Chen XH, Roloff A, Seitz O (2012) Angew Chem 51:4479–4483
- 76.
Sando S, Kool ET (2002) J Am Chem Soc 124:9686–9687
- 77.
Franzini RM, Kool ET (2009) J Am Chem Soc 131:16021–16023
- 78.
Seckute J, Yang J, Devaraj NK (2013) Nucleic Acids Res 41:e148
- 79.
Cai J, Li X, Yue X, Taylor JS (2004) J Am Chem Soc 126:16324
- 80.
Gorska K, Keklikoglou I, Tschulena U, Winssinger N (2011) Chem Sci 2:1969
- 81.
Gorska K, Winssinger N (2013) Angew Chem 52:6820–6843
- 82.
Furukawa K, Abe H, Tamura Y, Yoshimoto R, Yoshida M, Tsuneda S, Ito Y (2011) Angew Chem 50:12020–12023
- 83.
Shibata A, Uzawa T, Nakashima Y, Ito M, Nakano Y, Shuto S, Ito Y, Abe H (2013) J Am Chem Soc 135:14172–14178
- 84.
Lang K, Chin JW (2014) Chem Rev 114:4764–4806
- 85.
Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Science 263:802–805
- 86.
Heim R, Prasher DC, Tsien RY (1994) Proc Natl Acad Sci 91:12501–12504
- 87.
Shaner NC, Steinbach PA, Tsien RY (2005) Nat Methods 2:905–909
- 88.
Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K (2003) Nat Biotechnol 21:86–89
- 89.
Fernandez-Suarez M, Baruah H, Martinez-Hernandez L, Xie KT, Baskin JM, Bertozzi CR, Ting AY (2007) Nat Biotechnol 25:1483–1487
- 90.
George N, Pick H, Vogel H, Johnsson N, Johnsson K (2004) J Am Chem Soc 126:8896–8897
- 91.
Griffin BA, Adams SR, Tsien RY (1998) Science 281:269–272
- 92.
Halo TL, Appelbaum J, Hobert EM, Balkin DM, Schepartz A (2009) J Am Chem Soc 131:438–439
- 93.
Noren CJ, Anthony-Cahill SJ, Griffith MC, Schultz PG (1989) Science 244:182–188
- 94.
Neumann H, Wang K, Davis L, Garcia-Alai M, Chin JW (2010) Nature 464:441–444
- 95.
Greiss S, Chin JW (2011) J Am Chem Soc 133:14196–14199
- 96.
Seitchik JL, Peeler JC, Taylor MT, Blackman ML, Rhoads TW, Cooley RB, Refakis C, Fox JM, Mehl RA (2012) J Am Chem Soc 134:2898–2901
- 97.
Lang K, Davis L, Torres-Kolbus J, Chou C, Deiters A, Chin JW (2012) Nat Chem 4:298–304
- 98.
Lang K, Davis L, Wallace S, Mahesh M, Cox DJ, Blackman ML, Fox JM, Chin JW (2012) J Am Chem Soc 134:10317–10320
- 99.
Plass T, Milles S, Koehler C, Szymański J, Mueller R, Wießler M, Schultz C, Lemke EA (2012) Angew Chem Int Ed 51:4166–4170
- 100.
Kurra Y, Odoi KA, Lee Y-J, Yang Y, Lu T, Wheeler SE, Torres-Kolbus J, Deiters A, Liu WR (2014) Bioconj Chem 25:1730–1738
- 101.
Sachdeva A, Wang K, Elliott T, Chin JW (2014) J Am Chem Soc 136:7785–7788
- 102.
Wang K, Sachdeva A, Cox DJ, Wilf NW, Lang K, Wallace S, Mehl RA, Chin JW (2014) Nat Chem 6:393–403
- 103.
Lukinavičius G, Umezawa K, Olivier N, Honigmann A, Yang G, Plass T, Mueller V, Reymond L, Corrêa IR Jr, Luo Z-G, Schultz C, Lemke EA, Heppenstall P, Eggeling C, Manley S, Johnsson K (2013) Nat Chem 5:132–139
- 104.
Liu DS, Tangpeerachaikul A, Selvaraj R, Taylor MT, Fox JM, Ting AY (2012) J Am Chem Soc 134:792–795
- 105.
Brown SP, Smith AB (2015) J Am Chem Soc 137:4034–4037
- 106.
Devaraj NK, Upadhyay R, Haun JB, Hilderbrand SA, Weissleder R (2009) Angew Chem Int Ed 48:7013–7016
- 107.
Karver MR, Weissleder R, Hilderbrand SA (2012) Angew Chem Int Ed 51:920–922
- 108.
Devaraj NK, Hilderbrand S, Upadhyay R, Mazitschek R, Weissleder R (2010) Angew Chem Int Ed Engl 49:2869–2872
- 109.
Han H-S, Devaraj NK, Lee J, Hilderbrand SA, Weissleder R, Bawendi MG (2010) J Am Chem Soc 132:7838–7839
- 110.
Haun JB, Devaraj NK, Hilderbrand SA, Lee H, Weissleder R (2010) Nat Nano 5:660–665
- 111.
Haun JB, Devaraj NK, Marinelli BS, Lee H, Weissleder R (2011) ACS Nano 5:3204–3213
- 112.
Haun JB, Castro CM, Wang R, Peterson VM, Marinelli BS, Lee H, Weissleder R (2011) Scince Transl Med 3:71ra16
- 113.
Han H-S, Niemeyer E, Huang Y, Kamoun WS, Martin JD, Bhaumik J, Chen Y, Roberge S, Cui J, Martin MR, Fukumura D, Jain RK, Bawendi MG, Duda DG (2015) Proc Natl Acad Sci 112:1350–1355
- 114.
Zlitni A, Janzen N, Foster FS, Valliant JF (2014) Angew Chem Int Ed 53:6459–6463
- 115.
Li Z, Cai H, Hassink M, Blackman ML, Brown RCD, Conti PS, Fox JM (2010) Chem Commun 46:8043–8045
- 116.
Herth MM, Andersen VL, Lehel S, Madsen J, Knudsen GM, Kristensen JL (2013) Chem Commun 49:3805–3807
- 117.
Knight JC, Richter S, Wuest M, Way JD, Wuest F (2013) Org Biomol Chem 11:3817–3825
- 118.
Rossin R, Renart Verkerk P, van den Bosch SM, Vulders RCM, Verel I, Lub J, Robillard MS (2010) Angew Chem Int Ed 49:3375–3378
- 119.
Evans HL, Nguyen Q-D, Carroll LS, Kaliszczak M, Twyman FJ, Spivey AC, Aboagye EO (2014) Chem Commun 50:9557–9560
- 120.
Nichols B, Qin Z, Yang J, Vera DR, Devaraj NK (2014) Chem Commun 50:5215–5217
- 121.
Zeglis BM, Sevak KK, Reiner T, Mohindra P, Carlin SD, Zanzonico P, Weissleder R, Lewis JS (2013) J Nucl Med 54:1389–1396
- 122.
Hang HC, Linder ME (2011) Chem Rev 111:6341–6358
- 123.
Erdmann RS, Takakura H, Thompson AD, Rivera-Molina F, Allgeyer ES, Bewersdorf J, Toomre D, Schepartz A (2014) Angew Chem Int Ed 53:10242–10246
- 124.
Simon JP, Ivanov IE, Adesnik M, Sabatini DD (1996) J Cell Biol 135:355–370
- 125.
Dube DH, Bertozzi CR (2005) Nat Rev Drug Discov 4:477–488
- 126.
Prescher JA, Bertozzi CR (2006) Cell 126:851–854
- 127.
Chang PV, Prescher JA, Hangauer MJ, Bertozzi CR (2007) J Am Chem Soc 129:8400–8401
- 128.
Cole CM, Yang J, Seckute J, Devaraj NK (2013) ChemBioChem 14:205–208
- 129.
Budin G, Yang KS, Reiner T, Weissleder R (2011) Angew Chem Int Ed 50:9378–9381
- 130.
Yang KS, Budin G, Reiner T, Vinegoni C, Weissleder R (2012) Angew Chem Int Ed Engl 51:6598–6603
- 131.
Su Y, Pan S, Li Z, Li L, Wu X, Hao P, Sze SK, Yao SQ (2015) Sci Rep 5:7724
Acknowledgments
The authors gratefully acknowledge S. Alexander and C.Y. Zhou for their many helpful discussions and suggestions. We thank the University of California, San Diego, for financial support.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wu, H., Devaraj, N.K. Inverse Electron-Demand Diels–Alder Bioorthogonal Reactions. Top Curr Chem (Z) 374, 3 (2016). https://doi.org/10.1007/s41061-015-0005-z
Received:
Accepted:
Published:
Keywords
- Diels–Alder
- Tetrazine
- Bioorthogonal
- Imaging
- Detection