Inverse Electron-Demand Diels–Alder Bioorthogonal Reactions

Abstract

Bioorthogonal reactions have been widely used over the last 10 years for imaging, detection, diagnostics, drug delivery, and biomaterials. Tetrazine reactions are a recently developed class of inverse electron-demand Diels–Alder reactions used in bioorthogonal applications. Given their rapid tunable reaction rate and highly fluorogenic properties, tetrazine bioorthogonal reactions have come to be considered highly attractive tools for elucidating biological functions and messages in vitro and in vivo. In this chapter, we present recent advances expanding the scope of precursor reactivity and we introduce new biomedical methodology based on bioorthogonal tetrazine chemistry. We specifically highlight novel applications for different kinds of biomolecules, including nucleic acid, protein, antibodies, lipids, glycans, and bioactive small molecules, in the areas of imaging, detection, and diagnostics. We also briefly present other recently developed inverse electron-demand Diels–Alder bioorthogonal reactions. Lastly, we consider future directions and potential roles that inverse electron-demand Diels–Alder reactions may play in the fields of bioorthogonal and biomedical chemistry.

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 1
Fig. 2
Fig. 3
Scheme 6
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Prescher JA, Bertozzi CR (2005) Nat Chem Biol 1:13–21

    CAS  Article  Google Scholar 

  2. 2.

    Sletten EM, Bertozzi CR (2009) Angew Chem Int Ed 48:6974–6998

    CAS  Article  Google Scholar 

  3. 3.

    Boyce M, Bertozzi CR (2011) Nat Methods 8:638–642

    CAS  Article  Google Scholar 

  4. 4.

    Sletten EM, Bertozzi CR (2011) Acc Chem Res 44:666–676

    CAS  Article  Google Scholar 

  5. 5.

    Agard NJ, Baskin JM, Prescher JA, Lo A, Bertozzi CR (2006) ACS Chem Biol 1:644–648

    CAS  Article  Google Scholar 

  6. 6.

    Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR (2007) Proc Natl Acad Sci 104:16793–16797

    CAS  Article  Google Scholar 

  7. 7.

    Codelli JA, Baskin JM, Agard NJ, Bertozzi CR (2008) J Am Chem Soc 130:11486–11493

    CAS  Article  Google Scholar 

  8. 8.

    Jewett JC, Bertozzi CR (2010) Chem Soc Rev 39:1272–1279

    CAS  Article  Google Scholar 

  9. 9.

    Jewett JC, Sletten EM, Bertozzi CR (2010) J Am Chem Soc 132:3688–3690

    CAS  Article  Google Scholar 

  10. 10.

    Saxon E, Armstrong JI, Bertozzi CR (2000) Org Lett 2:2141–2143

    CAS  Article  Google Scholar 

  11. 11.

    Saxon E, Bertozzi CR (2000) Science 287:2007–2010

    CAS  Article  Google Scholar 

  12. 12.

    Dommerholt J, Schmidt S, Temming R, Hendriks LJA, Rutjes FPJT, van Hest JCM, Lefeber DJ, Friedl P, van Delft FL (2010) Angew Chem Int Ed 49:9422–9425

    CAS  Article  Google Scholar 

  13. 13.

    Ning X, Temming RP, Dommerholt J, Guo J, Ania DB, Debets MF, Wolfert MA, Boons G-J, van Delft FL (2010) Angew Chem Int Ed 49:3065–3068

    CAS  Article  Google Scholar 

  14. 14.

    Sanders BC, Friscourt F, Ledin PA, Mbua NE, Arumugam S, Guo J, Boltje TJ, Popik VV, Boons G-J (2011) J Am Chem Soc 133:949–957

    CAS  Article  Google Scholar 

  15. 15.

    McGrath NA, Raines RT (2012) Chem Sci 3:3237–3240

    CAS  Article  Google Scholar 

  16. 16.

    Lim RKV, Lin Q (2011) Acc Chem Res 44:828–839

    CAS  Article  Google Scholar 

  17. 17.

    Yu Z, Pan Y, Wang Z, Wang J, Lin Q (2012) Angew Chem Int Ed 51:10600–10604

    CAS  Article  Google Scholar 

  18. 18.

    Ramil CP, Lin Q (2013) Chem Commun 49:11007–11022

    CAS  Article  Google Scholar 

  19. 19.

    Yu Z, Ohulchanskyy TY, An P, Prasad PN, Lin Q (2013) J Am Chem Soc 135:16766–16769

    CAS  Article  Google Scholar 

  20. 20.

    Blackman ML, Royzen M, Fox JM (2008) J Am Chem Soc 130:13518–13519

    CAS  Article  Google Scholar 

  21. 21.

    Devaraj NK, Weissleder R, Hilderbrand SA (2008) Bioconj Chem 19:2297–2299

    CAS  Article  Google Scholar 

  22. 22.

    Devaraj NK, Weissleder R (2011) Acc Chem Res 44:816–827

    CAS  Article  Google Scholar 

  23. 23.

    Šečkutė J, Devaraj NK (2013) Curr Opin Chem Biol 17:761–767

    Article  CAS  Google Scholar 

  24. 24.

    Debets MF, van Hest JCM, Rutjes FPJT (2013) Org Biomol Chem 11:6439–6455

    CAS  Article  Google Scholar 

  25. 25.

    Jing C, Cornish VW (2011) Acc Chem Res 44:784–792

    CAS  Article  Google Scholar 

  26. 26.

    Borrmann A, van Hest JCM (2014) Chem Sci 5:2123–2134

    CAS  Article  Google Scholar 

  27. 27.

    Saracoglu N (2007) Tetrahedron 63:4199–4236

    CAS  Article  Google Scholar 

  28. 28.

    Clavier G, Audebert P (2010) Chem Rev 110:3299–3314

    CAS  Article  Google Scholar 

  29. 29.

    Selvaraj R, Fox JM (2013) Curr Opin Chem Biol 17:753–760

    CAS  Article  Google Scholar 

  30. 30.

    Knall A-C, Slugovc C (2013) Chem Soc Rev 42:5131–5142

    CAS  Article  Google Scholar 

  31. 31.

    Hofmann KA, Ehrhart O (1912) Ber Dtsch Chem Ges 45:2731–2740

    Article  Google Scholar 

  32. 32.

    Curtius T, Hess A (1930) Journal für Praktische Chemie 125:40–53

    CAS  Article  Google Scholar 

  33. 33.

    Karver MR, Weissleder R, Hilderbrand SA (2011) Bioconj Chem 22:2263–2270

    CAS  Article  Google Scholar 

  34. 34.

    Yang J, Karver MR, Li W, Sahu S, Devaraj NK (2012) Angew Chem Int Ed Engl 51:5222–5225

    CAS  Article  Google Scholar 

  35. 35.

    Liu H, Wei Y (2013) Tetrahedron Lett 54:4645–4648

    CAS  Article  Google Scholar 

  36. 36.

    Wang D, Chen W, Zheng Y, Dai C, Wang L, Wang B (2013) Heterocycl Commun 19:171

    Google Scholar 

  37. 37.

    Wu H, Yang J, Seckute J, Devaraj NK (2014) Angew Chem 53:5805–5809

    CAS  Article  Google Scholar 

  38. 38.

    Carlson JC, Meimetis LG, Hilderbrand SA, Weissleder R (2013) Angew Chem Int Ed 52:6917–6920

    CAS  Article  Google Scholar 

  39. 39.

    Meimetis LG, Carlson JCT, Giedt RJ, Kohler RH, Weissleder R (2014) Angew Chem Int Ed 53:7531–7534

    CAS  Article  Google Scholar 

  40. 40.

    Denk C, Svatunek D, Filip T, Wanek T, Lumpi D, Fröhlich J, Kuntner C, Mikula H (2014) Angew Chem Int Ed 53:9655–9659

    CAS  Article  Google Scholar 

  41. 41.

    Ehret F, Wu H, Alexander SC, Devaraj NK (2015) J Am Chem Soc 137:8876–8879

    CAS  Article  Google Scholar 

  42. 42.

    Agarwal P, Beahm BJ, Shieh P, Bertozzi CR (2015) Angew Chem Int Ed 54:11504–11510

    CAS  Article  Google Scholar 

  43. 43.

    Wu H, Cisneros BT, Cole CM, Devaraj NK (2014) J Am Chem Soc 136:17942–17945

    CAS  Article  Google Scholar 

  44. 44.

    Wieczorek A, Buckup T, Wombacher R (2014) Org Biomol Chem 12:4177–4185

    CAS  Article  Google Scholar 

  45. 45.

    Royzen M, Yap GPA, Fox JM (2008) J Am Chem Soc 130:3760–3761

    CAS  Article  Google Scholar 

  46. 46.

    Taylor MT, Blackman ML, Dmitrenko O, Fox JM (2011) J Am Chem Soc 133:9646–9649

    CAS  Article  Google Scholar 

  47. 47.

    Darko A, Wallace S, Dmitrenko O, Machovina MM, Mehl RA, Chin JW, Fox JM (2014) Chem Sci 5:3770–3776

    CAS  Article  Google Scholar 

  48. 48.

    Rossin R, van den Bosch SM, ten Hoeve W, Carvelli M, Versteegen RM, Lub J, Robillard MS (2013) Bioconj Chem 24:1210–1217

    CAS  Article  Google Scholar 

  49. 49.

    Murrey HE, Judkins JC, Am Ende CW, Ballard TE, Fang Y, Riccardi K, Di L, Guilmette ER, Schwartz JW, Fox JM, Johnson DS (2015) J Am Chem Soc 137:11461–11475

    CAS  Article  Google Scholar 

  50. 50.

    Chen W, Wang D, Dai C, Hamelberg D, Wang B (2012) Chem Commun 48:1736–1738

    CAS  Article  Google Scholar 

  51. 51.

    Yang J, Seckute J, Cole CM, Devaraj NK (2012) Angew Chem Int Ed Engl 51:7476–7479

    CAS  Article  Google Scholar 

  52. 52.

    Yang J, Liang Y, Šečkutė J, Houk KN, Devaraj NK (2014) Chem A Eur J 20:3365–3375

    CAS  Article  Google Scholar 

  53. 53.

    Patterson DM, Nazarova LA, Xie B, Kamber DN, Prescher JA (2012) J Am Chem Soc 134:18638–18643

    CAS  Article  Google Scholar 

  54. 54.

    Kamber DN, Nazarova LA, Liang Y, Lopez SA, Patterson DM, Shih H-W, Houk KN, Prescher JA (2013) J Am Chem Soc 135:13680–13683

    CAS  Article  Google Scholar 

  55. 55.

    Rieder U, Luedtke NW (2014) Angew Chem Int Ed 53:9168–9172

    CAS  Article  Google Scholar 

  56. 56.

    Niederwieser A, Späte A-K, Nguyen LD, Jüngst C, Reutter W, Wittmann V (2013) Angew Chem Int Ed 52:4265–4268

    CAS  Article  Google Scholar 

  57. 57.

    Engelsma SB, Willems LI, van Paaschen CE, van Kasteren SI, van der Marel GA, Overkleeft HS, Filippov DV (2014) Org Lett 16:2744–2747

    CAS  Article  Google Scholar 

  58. 58.

    Alley SC, Okeley NM, Senter PD (2010) Curr Opin Chem Biol 14:529–537

    CAS  Article  Google Scholar 

  59. 59.

    Li J, Jia S, Chen PR (2014) Nat Chem Biol 10:1003–1005

    CAS  Article  Google Scholar 

  60. 60.

    Michaelis J, Roloff A, Seitz O (2014) Org Biomol Chem 12:2821–2833

    CAS  Article  Google Scholar 

  61. 61.

    Versteegen RM, Rossin R, ten Hoeve W, Janssen HM, Robillard MS (2013) Angew Chem Int Ed 52:14112–14116

    CAS  Article  Google Scholar 

  62. 62.

    Li Q, Dong T, Liu X, Lei X (2013) J Am Chem Soc 135:4996–4999

    CAS  Article  Google Scholar 

  63. 63.

    Zhang X, Dong T, Li Q, Liu X, Li L, Chen S, Lei X (2015) ACS Chem Biol 10:1676–1683

    CAS  Article  Google Scholar 

  64. 64.

    Kamber DN, Liang Y, Blizzard RJ, Liu F, Mehl RA, Houk KN, Prescher JA (2015) J Am Chem Soc 137:8388–8391

    CAS  Article  Google Scholar 

  65. 65.

    Keliher EJ, Reiner T, Turetsky A, Hilderbrand SA, Weissleder R (2011) ChemMedChem 6:424–427

    CAS  Article  Google Scholar 

  66. 66.

    Devaraj NK, Thurber GM, Keliher EJ, Marinelli B, Weissleder R (2012) Proc Natl Acad Sci USA 109:4762–4767

    CAS  Article  Google Scholar 

  67. 67.

    Uttamapinant C, Howe JD, Lang K, Beránek V, Davis L, Mahesh M, Barry NP, Chin JW (2015) J Am Chem Soc 137:4602–4605

    CAS  Article  Google Scholar 

  68. 68.

    Li Z, Wang D, Li L, Pan S, Na Z, Tan CYJ, Yao SQ (2014) J Am Chem Soc 136:9990–9998

    CAS  Article  Google Scholar 

  69. 69.

    Schoch J, Wiessler M, Jäschke A (2010) J Am Chem Soc 132:8846–8847

    CAS  Article  Google Scholar 

  70. 70.

    Schoch J, Staudt M, Samanta A, Wiessler M, Jäschke A (2012) Bioconj Chem 23:1382–1386

    CAS  Article  Google Scholar 

  71. 71.

    Schoch J, Ameta S, Jaschke A (2011) Chem Commun 47:12536–12537

    CAS  Article  Google Scholar 

  72. 72.

    Asare-Okai PN, Agustin E, Fabris D, Royzen M (2014) Chem Commun 50:7844–7847

    CAS  Article  Google Scholar 

  73. 73.

    Pyka AM, Domnick C, Braun F, Kath-Schorr S (2014) Bioconj Chem 25:1438–1443

    CAS  Article  Google Scholar 

  74. 74.

    Kumar R, El-Sagheer A, Tumpane J, Lincoln P, Wilhelmsson LM, Brown T (2007) J Am Chem Soc 129:6859–6864

    CAS  Article  Google Scholar 

  75. 75.

    Chen XH, Roloff A, Seitz O (2012) Angew Chem 51:4479–4483

    CAS  Article  Google Scholar 

  76. 76.

    Sando S, Kool ET (2002) J Am Chem Soc 124:9686–9687

    CAS  Article  Google Scholar 

  77. 77.

    Franzini RM, Kool ET (2009) J Am Chem Soc 131:16021–16023

    CAS  Article  Google Scholar 

  78. 78.

    Seckute J, Yang J, Devaraj NK (2013) Nucleic Acids Res 41:e148

    CAS  Article  Google Scholar 

  79. 79.

    Cai J, Li X, Yue X, Taylor JS (2004) J Am Chem Soc 126:16324

    CAS  Article  Google Scholar 

  80. 80.

    Gorska K, Keklikoglou I, Tschulena U, Winssinger N (2011) Chem Sci 2:1969

    CAS  Article  Google Scholar 

  81. 81.

    Gorska K, Winssinger N (2013) Angew Chem 52:6820–6843

    CAS  Article  Google Scholar 

  82. 82.

    Furukawa K, Abe H, Tamura Y, Yoshimoto R, Yoshida M, Tsuneda S, Ito Y (2011) Angew Chem 50:12020–12023

    CAS  Article  Google Scholar 

  83. 83.

    Shibata A, Uzawa T, Nakashima Y, Ito M, Nakano Y, Shuto S, Ito Y, Abe H (2013) J Am Chem Soc 135:14172–14178

    CAS  Article  Google Scholar 

  84. 84.

    Lang K, Chin JW (2014) Chem Rev 114:4764–4806

    CAS  Article  Google Scholar 

  85. 85.

    Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Science 263:802–805

    CAS  Article  Google Scholar 

  86. 86.

    Heim R, Prasher DC, Tsien RY (1994) Proc Natl Acad Sci 91:12501–12504

    CAS  Article  Google Scholar 

  87. 87.

    Shaner NC, Steinbach PA, Tsien RY (2005) Nat Methods 2:905–909

    CAS  Article  Google Scholar 

  88. 88.

    Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K (2003) Nat Biotechnol 21:86–89

    CAS  Article  Google Scholar 

  89. 89.

    Fernandez-Suarez M, Baruah H, Martinez-Hernandez L, Xie KT, Baskin JM, Bertozzi CR, Ting AY (2007) Nat Biotechnol 25:1483–1487

    CAS  Article  Google Scholar 

  90. 90.

    George N, Pick H, Vogel H, Johnsson N, Johnsson K (2004) J Am Chem Soc 126:8896–8897

    CAS  Article  Google Scholar 

  91. 91.

    Griffin BA, Adams SR, Tsien RY (1998) Science 281:269–272

    CAS  Article  Google Scholar 

  92. 92.

    Halo TL, Appelbaum J, Hobert EM, Balkin DM, Schepartz A (2009) J Am Chem Soc 131:438–439

    CAS  Article  Google Scholar 

  93. 93.

    Noren CJ, Anthony-Cahill SJ, Griffith MC, Schultz PG (1989) Science 244:182–188

    CAS  Article  Google Scholar 

  94. 94.

    Neumann H, Wang K, Davis L, Garcia-Alai M, Chin JW (2010) Nature 464:441–444

    CAS  Article  Google Scholar 

  95. 95.

    Greiss S, Chin JW (2011) J Am Chem Soc 133:14196–14199

    CAS  Article  Google Scholar 

  96. 96.

    Seitchik JL, Peeler JC, Taylor MT, Blackman ML, Rhoads TW, Cooley RB, Refakis C, Fox JM, Mehl RA (2012) J Am Chem Soc 134:2898–2901

    CAS  Article  Google Scholar 

  97. 97.

    Lang K, Davis L, Torres-Kolbus J, Chou C, Deiters A, Chin JW (2012) Nat Chem 4:298–304

    CAS  Article  Google Scholar 

  98. 98.

    Lang K, Davis L, Wallace S, Mahesh M, Cox DJ, Blackman ML, Fox JM, Chin JW (2012) J Am Chem Soc 134:10317–10320

    CAS  Article  Google Scholar 

  99. 99.

    Plass T, Milles S, Koehler C, Szymański J, Mueller R, Wießler M, Schultz C, Lemke EA (2012) Angew Chem Int Ed 51:4166–4170

    CAS  Article  Google Scholar 

  100. 100.

    Kurra Y, Odoi KA, Lee Y-J, Yang Y, Lu T, Wheeler SE, Torres-Kolbus J, Deiters A, Liu WR (2014) Bioconj Chem 25:1730–1738

    CAS  Article  Google Scholar 

  101. 101.

    Sachdeva A, Wang K, Elliott T, Chin JW (2014) J Am Chem Soc 136:7785–7788

    CAS  Article  Google Scholar 

  102. 102.

    Wang K, Sachdeva A, Cox DJ, Wilf NW, Lang K, Wallace S, Mehl RA, Chin JW (2014) Nat Chem 6:393–403

    CAS  Article  Google Scholar 

  103. 103.

    Lukinavičius G, Umezawa K, Olivier N, Honigmann A, Yang G, Plass T, Mueller V, Reymond L, Corrêa IR Jr, Luo Z-G, Schultz C, Lemke EA, Heppenstall P, Eggeling C, Manley S, Johnsson K (2013) Nat Chem 5:132–139

    Article  CAS  Google Scholar 

  104. 104.

    Liu DS, Tangpeerachaikul A, Selvaraj R, Taylor MT, Fox JM, Ting AY (2012) J Am Chem Soc 134:792–795

    CAS  Article  Google Scholar 

  105. 105.

    Brown SP, Smith AB (2015) J Am Chem Soc 137:4034–4037

    CAS  Article  Google Scholar 

  106. 106.

    Devaraj NK, Upadhyay R, Haun JB, Hilderbrand SA, Weissleder R (2009) Angew Chem Int Ed 48:7013–7016

    CAS  Article  Google Scholar 

  107. 107.

    Karver MR, Weissleder R, Hilderbrand SA (2012) Angew Chem Int Ed 51:920–922

    CAS  Article  Google Scholar 

  108. 108.

    Devaraj NK, Hilderbrand S, Upadhyay R, Mazitschek R, Weissleder R (2010) Angew Chem Int Ed Engl 49:2869–2872

    CAS  Article  Google Scholar 

  109. 109.

    Han H-S, Devaraj NK, Lee J, Hilderbrand SA, Weissleder R, Bawendi MG (2010) J Am Chem Soc 132:7838–7839

    CAS  Article  Google Scholar 

  110. 110.

    Haun JB, Devaraj NK, Hilderbrand SA, Lee H, Weissleder R (2010) Nat Nano 5:660–665

    CAS  Article  Google Scholar 

  111. 111.

    Haun JB, Devaraj NK, Marinelli BS, Lee H, Weissleder R (2011) ACS Nano 5:3204–3213

    CAS  Article  Google Scholar 

  112. 112.

    Haun JB, Castro CM, Wang R, Peterson VM, Marinelli BS, Lee H, Weissleder R (2011) Scince Transl Med 3:71ra16

    Google Scholar 

  113. 113.

    Han H-S, Niemeyer E, Huang Y, Kamoun WS, Martin JD, Bhaumik J, Chen Y, Roberge S, Cui J, Martin MR, Fukumura D, Jain RK, Bawendi MG, Duda DG (2015) Proc Natl Acad Sci 112:1350–1355

    CAS  Article  Google Scholar 

  114. 114.

    Zlitni A, Janzen N, Foster FS, Valliant JF (2014) Angew Chem Int Ed 53:6459–6463

    CAS  Article  Google Scholar 

  115. 115.

    Li Z, Cai H, Hassink M, Blackman ML, Brown RCD, Conti PS, Fox JM (2010) Chem Commun 46:8043–8045

    CAS  Article  Google Scholar 

  116. 116.

    Herth MM, Andersen VL, Lehel S, Madsen J, Knudsen GM, Kristensen JL (2013) Chem Commun 49:3805–3807

    CAS  Article  Google Scholar 

  117. 117.

    Knight JC, Richter S, Wuest M, Way JD, Wuest F (2013) Org Biomol Chem 11:3817–3825

    CAS  Article  Google Scholar 

  118. 118.

    Rossin R, Renart Verkerk P, van den Bosch SM, Vulders RCM, Verel I, Lub J, Robillard MS (2010) Angew Chem Int Ed 49:3375–3378

    CAS  Article  Google Scholar 

  119. 119.

    Evans HL, Nguyen Q-D, Carroll LS, Kaliszczak M, Twyman FJ, Spivey AC, Aboagye EO (2014) Chem Commun 50:9557–9560

    CAS  Article  Google Scholar 

  120. 120.

    Nichols B, Qin Z, Yang J, Vera DR, Devaraj NK (2014) Chem Commun 50:5215–5217

    CAS  Article  Google Scholar 

  121. 121.

    Zeglis BM, Sevak KK, Reiner T, Mohindra P, Carlin SD, Zanzonico P, Weissleder R, Lewis JS (2013) J Nucl Med 54:1389–1396

    CAS  Article  Google Scholar 

  122. 122.

    Hang HC, Linder ME (2011) Chem Rev 111:6341–6358

    CAS  Article  Google Scholar 

  123. 123.

    Erdmann RS, Takakura H, Thompson AD, Rivera-Molina F, Allgeyer ES, Bewersdorf J, Toomre D, Schepartz A (2014) Angew Chem Int Ed 53:10242–10246

    CAS  Article  Google Scholar 

  124. 124.

    Simon JP, Ivanov IE, Adesnik M, Sabatini DD (1996) J Cell Biol 135:355–370

    CAS  Article  Google Scholar 

  125. 125.

    Dube DH, Bertozzi CR (2005) Nat Rev Drug Discov 4:477–488

    CAS  Article  Google Scholar 

  126. 126.

    Prescher JA, Bertozzi CR (2006) Cell 126:851–854

    CAS  Article  Google Scholar 

  127. 127.

    Chang PV, Prescher JA, Hangauer MJ, Bertozzi CR (2007) J Am Chem Soc 129:8400–8401

    CAS  Article  Google Scholar 

  128. 128.

    Cole CM, Yang J, Seckute J, Devaraj NK (2013) ChemBioChem 14:205–208

    CAS  Article  Google Scholar 

  129. 129.

    Budin G, Yang KS, Reiner T, Weissleder R (2011) Angew Chem Int Ed 50:9378–9381

    CAS  Article  Google Scholar 

  130. 130.

    Yang KS, Budin G, Reiner T, Vinegoni C, Weissleder R (2012) Angew Chem Int Ed Engl 51:6598–6603

    CAS  Article  Google Scholar 

  131. 131.

    Su Y, Pan S, Li Z, Li L, Wu X, Hao P, Sze SK, Yao SQ (2015) Sci Rep 5:7724

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge S. Alexander and C.Y. Zhou for their many helpful discussions and suggestions. We thank the University of California, San Diego, for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Neal K. Devaraj.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Devaraj, N.K. Inverse Electron-Demand Diels–Alder Bioorthogonal Reactions. Top Curr Chem (Z) 374, 3 (2016). https://doi.org/10.1007/s41061-015-0005-z

Download citation

Keywords

  • Diels–Alder
  • Tetrazine
  • Bioorthogonal
  • Imaging
  • Detection