Emerging Approaches in Synchrotron Studies of Materials from Cultural and Natural History Collections


Synchrotrons have provided significant methods and instruments to study ancient materials from cultural and natural heritages. New ways to visualise (surfacic or volumic) morphologies are developed on the basis of elemental, density and refraction contrasts. They now apply to a wide range of materials, from historic artefacts to paleontological specimens. The tunability of synchrotron beams owing to the high flux and high spectral resolution of photon sources is at the origin of the main chemical speciation capabilities of synchrotron-based techniques. Although, until recently, photon-based speciation was mainly applicable to inorganic materials, novel developments based, for instance, on STXM and deep UV photoluminescence bring new opportunities to study speciation in organic and hybrid materials, such as soaps and organometallics, at a submicrometric spatial resolution over large fields of view. Structural methods are also continuously improved and increasingly applied to hierarchically structured materials for which organisation results either from biological or manufacturing processes. High-definition (spectral) imaging appears as the main driving force of the current trend for new synchrotron techniques for research on cultural and natural heritage materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7



Computed tomography


Deep ultraviolet


Electron energy loss spectroscopy


Electron probe micro-analysis


Full field


Focused ion beam


Field of view


Fourier-transform Infrared spectroscopy






Million year


Near edge X-ray absorption fine structure (=XANES)


Proton induced X-ray emission




Projected pixel (voxel) size on the sample plane


Quantitative scanning SAXS imaging


Region of interest


Small-angle X-ray scattering




Scanning electron microscopy


Synchrotron radiation


Scanning transmission X-ray microscopy


Transmission electron microscopy




X-ray absorption near edge structure


X-ray absorption spectroscopy


X-ray diffraction


X-ray fluorescence


  1. 1.

    Albéric M, Gourrier A, Müller K, Zizak I, Wagermaier W, Fratzl P, Reiche I (2014) Early diagenesis of elephant tusk in marine environment. Palaeogeogr Palaeoclimatol Palaeoecol 416:120–132

    Article  Google Scholar 

  2. 2.

    Albertin F, Astolfo A, Stampanoni M, Peccenini E, Hwu Y, Kaplan F, Margaritondo G (2015) Ancient administrative handwritten documents: X-ray analysis and imaging. J Synchrotron Radiat 22(2):446–451. doi:10.1107/S1600577515000314

    CAS  Article  Google Scholar 

  3. 3.

    Albertin F, Astolfo A, Stampanoni M, Peccenini E, Hwu Y, Kaplan F, Margaritondo G (2015) X-ray spectrometry and imaging for ancient administrative handwritten documents. X-ray Spectrom 44(3):93–98

    CAS  Article  Google Scholar 

  4. 4.

    Alfeld M, Pedroso JV, van Eikema Hommes M, Van der Snickt G, Tauber G, Blaas J, Haschke M, Erler K, Dik J, Janssens K (2013) A mobile instrument for in situ scanning macro-XRF investigation of historical paintings. J Anal At Spectrom 28(5):760–767

    CAS  Article  Google Scholar 

  5. 5.

    Alfeld M, Siddons DP, Janssens K, Dik J, Woll AR, Kirkham R, van de Wetering E (2013) Visualizing the 17th century underpainting in Portrait of an old man by Rembrandt van Rijn using synchrotron-based scanning macro-XRF. Appl Phys A 111(1):157–164. doi:10.1007/s00339-012-7490-5

    CAS  Article  Google Scholar 

  6. 6.

    Alleon J, Bernard S, Remusat L, Robert F (2015) Estimation of nitrogen-to-carbon ratios of organics and carbon materials at the submicrometer scale. Carbon 84:290–298

    CAS  Article  Google Scholar 

  7. 7.

    Als-Nielsen J, McMorrow D (2011) Elements of modern X-ray physics, 2nd edn. Wiley, New York

    Google Scholar 

  8. 8.

    Barbi M, Tokaryk T, Tolhurst T (2014) Synchrotron radiation as a tool in paleontology. Phys Can 70(1):8–12

    Google Scholar 

  9. 9.

    Benzerara K, Menguy N, López-García P, Yoon TH, Kazmierczak J, Tyliszczak T, Guyot F, Brown GE (2006) Nanoscale detection of organic signatures in carbonate microbialites. Proc Nat Acad Sci 103(25):9440–9445

    CAS  Article  Google Scholar 

  10. 10.

    Bergmann U (2007) Archimedes brought to light. Phys World 20:39–42. doi:10.1038/435257a

    CAS  Article  Google Scholar 

  11. 11.

    Bergmann U (2011) Imaging with X-ray fluorescence. In: Netz R, Noel W, Wilson N, Tchernetska N (eds) The archimedes palimpsest, vol 1, chap. 6. Cambridge University Press, Cambridge

  12. 12.

    Bergmann U, Knox KT (2009) Pseudo-color enhanced X-ray fluorescence imaging of the archimedes palimpsest. In: IS&T/SPIE electronic imaging. International Society for Optics and Photonics, pp 724702–724702

  13. 13.

    Bergmann U, Manning PL, Wogelius RA (2012) Chemical mapping of paleontological and archaeological artifacts with synchrotron X-rays. Ann Rev Anal Chem 5(1):361–389. doi:10.1146/annurev-anchem-062011-143019

    CAS  Article  Google Scholar 

  14. 14.

    Bergmann U, Morton RW, Manning PL, Sellers WI, Farrar S, Huntley KG, Wogelius RA, Larson P (2010) Archaeopteryx feathers and bone chemistry fully revealed via synchrotron imaging. Proc Natl Acad Sci USA 107(20):9060–9065. doi:10.1073/pnas.1001569107

    CAS  Article  Google Scholar 

  15. 15.

    Berna F, Matthews A, Weiner S (2004) Solubilities of bone mineral from archaeological sites: the recrystallization window. J Archaeol Sci 31(7):867–882

    Article  Google Scholar 

  16. 16.

    Bernard S, Benzerara K, Beyssac O, Brown GE Jr, Stamm LG, Duringer P (2009) Ultrastructural and chemical study of modern and fossil sporoderms by scanning transmission X-ray microscopy (STXM). Rev Palaeobot Palynol 156(1–2):248–261. doi:10.1016/j.revpalbo.2008.09.002

    Article  Google Scholar 

  17. 17.

    Bernard S, Benzerara K, Beyssac O, Menguy N, Guyot F, Brown GE Jr, Goffe B (2007) Exceptional preservation of fossil plant spores in high-pressure metamorphic rocks. Earth Planet Sci Lett 262(1–2):257–272. doi:10.1016/j.epsl.2007.07.041

    CAS  Article  Google Scholar 

  18. 18.

    Bernard S, Papineau D (2014) Graphitic carbons and biosignatures. Elements 10:435–440

    CAS  Article  Google Scholar 

  19. 19.

    Bertini M, Mokso R, Krupp EM (2014) Unwinding the spiral: discovering the manufacturing method of iron age scottish glass beads. J Archaeol Sci 43:256–266

    CAS  Article  Google Scholar 

  20. 20.

    Bertrand L, Cotte M, Stampanoni M, Thoury M, Marone F, Schöder S (2012) Development and trends in synchrotron studies of ancient and historical materials. Phys Rep 519(2):51–96. doi:10.1016/j.physrep.2012.03.003

    Article  Google Scholar 

  21. 21.

    Bertrand L, Dillmann P, Reiche I (2015) Synchrotron radiation and neutrons in art and archaeology 2014 (editorial). J Anal At Spectrom 30:540–541. doi:10.1039/C5JA90006A

    CAS  Article  Google Scholar 

  22. 22.

    Bertrand L, Doucet J, Dumas P, Simionovici A, Tsoucaris G, Walter P (2003) Microbeam synchrotron imaging of hairs from Ancient Egyptian mummies. J Synchrotron Rad 10(5):387–392. doi:10.1107/S0909049503015334

    CAS  Article  Google Scholar 

  23. 23.

    Bertrand L, Languille MA, Cohen SX, Robinet L, Gervais C, Leroy S, Bernard D, Le Pennec E, Josse W, Doucet J, Schöder S (2011) European research platform IPANEMA at the SOLEIL synchrotron for ancient and historical materials. J Synchrotron Rad 18(5):765–772. doi:10.1107/S090904951102334X

    CAS  Article  Google Scholar 

  24. 24.

    Bertrand L, Réfrégiers M, Berrie B, Echard JP, Thoury M (2013) A multiscalar photoluminescence approach to discriminate among semiconducting historical zinc white pigments. Analyst 138(16):4463–4469. doi:10.1039/C3AN36874B

    CAS  Article  Google Scholar 

  25. 25.

    Bertrand L, Réguer S, Doucet J (2007) Le synchrotron, un outil polyvalent pour l’étude chimique des matériaux du patrimoine (Synchrotron: a versatile tool for the chemical study of heritage materials). Act Chim 312–313:105–111

    Google Scholar 

  26. 26.

    Bertrand L, Robinet L, Cohen SX, Sandt C, Le Hô AS, Soulier B, Lattuati-Derieux A, Echard JP (2011) Identification of the finishing technique of an early eighteenth century musical instrument using FTIR spectromicroscopy. Anal Bioanal Chem 399(9):3025–3032. doi:10.1007/s00216-010-4288-1

    CAS  Article  Google Scholar 

  27. 27.

    Bertrand L, Robinet L, Thoury M, Janssens K, Cohen SX, Schöder S (2012) Cultural heritage and archaeology materials studied by synchrotron spectroscopy and imaging. Appl Phys A 106(2):377–396. doi:10.1007/s00339-011-6686-4

    CAS  Article  Google Scholar 

  28. 28.

    Bertrand L, Schöder S, Anglos D, Breese MBH, Janssens K, Moini M, Simon A (2015) Mitigation strategies for radiation damage in the analysis of ancient materials. Trends Anal Chem 66:128–145. doi:10.1016/j.trac.2014.10.005

    CAS  Article  Google Scholar 

  29. 29.

    Bertrand L, Thoury M, Anheim E (2013) Ancient materials specificities for their synchrotron examination and insights into their epistemological implications. J Cult Heritage 14(4):277–289. doi:10.1016/j.culher.2012.09.003

    Article  Google Scholar 

  30. 30.

    Bocherens H, Polet C, Toussaint M (2007) Palaeodiet of Mesolithic and Neolithic populations of Meuse Basin (Belgium): evidence from stable isotopes. J Archaeol Sci 34(1):10–27

    Article  Google Scholar 

  31. 31.

    Bonse U, Hart M (1965) An x-ray interferometer with long separated interfering beam paths. Appl Phys Lett 7(4):99–100. doi:10.1063/1.1754330

    Article  Google Scholar 

  32. 32.

    Born M, Wolf E (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Cambridge University Press, Cambridge

    Google Scholar 

  33. 33.

    Branco W (1906) Die Anwendung der Röntgenstrahlen in der Paläontologie. der Königl. Akad. der Wiss, Verlag

    Google Scholar 

  34. 34.

    Braun A, Huggins FE, Shah N, Chen Y, Wirick S, Mun SB, Jacobsen C, Huffman GP (2005) Advantages of soft X-ray absorption over TEM-EELS for solid carbon studies—a comparative study on diesel soot with EELS and NEXAFS. Carbon 43:117–124

    CAS  Article  Google Scholar 

  35. 35.

    Briggs DE, Summons RE (2014) Ancient biomolecules: their origins, fossilization, and role in revealing the history of life. BioEssays 36(5):482–490

    CAS  Article  Google Scholar 

  36. 36.

    Bronnikov AV (2002) Theory of quantitative phase-contrast computed tomography. J Opt Soc Am A 19(3):472–480

    Article  Google Scholar 

  37. 37.

    Buckley M, Kansa SW, Howard S, Campbell S, Thomas-Oates J, Collins M (2010) Distinguishing between archaeological sheep and goat bones using a single collagen peptide. J Archaeol Sci 37(1):13–20

    Article  Google Scholar 

  38. 38.

    Buckley M, Walker A, Ho SYW, Yang Y, Smith C, Ashton P, Oates JT, Cappellini E, Koon H, Penkman K, Elsworth B, Ashford D, Solazzo C, Andrews P, Strahler J, Shapiro B, Ostrom P, Gandhi H, Miller W, Raney B, Zylber MI, Gilbert MTP, Prigodich RV, Ryan M, Rijsdijk KF, Janoo A, Collins MJ (2008) Comment on “protein sequences from mastodon and tyrannosaurus rex revealed by mass spectrometry”. Science 319(5859):33. doi:10.1126/science.1147046. http://www.sciencemag.org/content/319/5859/33.3.abstract

  39. 39.

    Burger C, Zhou H, Wang H, Sics I, Hsiao BS, Chu B, Graham L, Glimcher MJ (2008) Lateral packing of mineral crystals in bone collagen fibrils. Biophys J 95(4):1985–1992

    CAS  Article  Google Scholar 

  40. 40.

    Casini A, Lotti F, Picollo M, Stefani L, Aldrovandi A (2003) Fourier transform interferometric imaging spectrometry: a new tool for the study of reflectance and fluorescence of polychrome surfaces. Conservation science 2002: papers from the conference held in Edinburgh, Scotland 22–24 May 2002. Archetype Publications, Edinburgh, Scotland, pp 249–253

  41. 41.

    Chadefaux C., Reiche I. (2009) Archaeological bone from macro-to nanoscale: heat-induced modifications at low temperatures. J Nano Res 8:157–172. Trans Tech Publ

  42. 42.

    Chadefaux C, Vignaud C, Chalmin É, Robles-Camacho J, Arroyo-Cabrales J, Johnson E, Reiche I (2009) Color origin and heat evidence of paleontological bones: case study of blue and gray bones from San Josecito Cave. Mexico Am Miner 94(1):27–33. doi:10.2138/am.2009.2860

    CAS  Article  Google Scholar 

  43. 43.

    Chapman D, Thomlinson W, Johnston RE, Washburn D, Pisano E, Gmur N, Zhong Z, Menk R, Arfelli F, Sayers D (1997) Diffraction enhanced x-ray imaging. Phys Med Biol 42(11): 2015–2025. http://stacks.iop.org/0031-9155/42/2015

  44. 44.

    Cianchetta I, Trentelman K, Maish J, Saunders D, Foran B, Walton M, Sciau P, Wang T, Pouyet E, Cotte M, Meirer F, Liu Y, Pianetta P, Mehta A (2015) Evidence for an unorthodox firing sequence employed by the Berlin Painter: deciphering ancient ceramic firing conditions through high-resolution material characterization and replication. J Anal At Spectrom 30(3):666–676. doi:10.1039/C4JA00376D

    CAS  Article  Google Scholar 

  45. 45.

    Cloetens P, Barrett R, Baruchel J, Guigay JP, Schlenker M (1996) Phase objects in synchrotron radiation hard X-ray imaging. J Phys D Appl Phys 29(1):133–146

    CAS  Article  Google Scholar 

  46. 46.

    Cloetens P, Ludwig W, Baruchel J, van Dyck D, van Landuyt J, Guigay JP, Schlenker M (1999) Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation X-rays. Appl Phys Lett 75(19):2912–2914. doi:10.1063/1.125225

    CAS  Article  Google Scholar 

  47. 47.

    Cody GD, Gupta NS, Briggs DEG, Kilcoyne ALD, Summons RE, Kenig F, Plotnick RE, Scott AC (2011) Molecular signature of chitin-protein complex in Paleozoic arthropods. Geology 39(3):255–258. doi:10.1130/G31648.1

    CAS  Article  Google Scholar 

  48. 48.

    Cohen SX, Pennec EL (2014) Unsupervised segmentation of spectral images with a spatialized gaussian mixture model and model selection. Oil Gas Sci Technol 69(2):245–260

    Article  Google Scholar 

  49. 49.

    Collins M, Nielsen-Marsh C, Hiller J, Smith C, Roberts J, Prigodich R, Wess T, Csapo J, Millard A, Turner-Walker G (2002) The survival of organic matter in bone: a review. Archaeometry 44(3):383–394

    CAS  Article  Google Scholar 

  50. 50.

    Collinson ME, Smith SY, Manchester SR, Wilde V, Howard LE, Robson BE, Ford DS, Marone F, Fife JL, Stampanoni M (2012) The value of x-ray approaches in the study of the messel fruit and seed flora. Palaeobiodiversity Palaeoenvironments 92(4):403–416

    Article  Google Scholar 

  51. 51.

    Cook PK, Dufour É, Languille MA, Mocuta C, Réguer S, Bertrand L (2015) Strontium speciation in archaeological otoliths. J Anal At Spectrom. doi:10.1039/C5JA00426H

    Google Scholar 

  52. 52.

    Cook PK, Languille MA, Dufour É, Mocuta C, Tombret O, Fortuna F, Bertrand L (2015) Biogenic and diagenetic indicators in archaeological and modern otoliths: potential and limits of high-definition synchrotron micro-XRF elemental mapping. Chem Geol 414:1–15. doi:10.1016/j.chemgeo.2015.08.017

    CAS  Article  Google Scholar 

  53. 53.

    Cosmidis J, Benzerara K (2014) Soft X-ray scanning transmission spectromicroscopy. In: DiMasi E, Gower LB (eds) Biomineralization Sourcebook: characterization of biominerals and biomimetic materials, chap. 8. CRC Press, Boca Raton, Florida, USA, pp 115–134

  54. 54.

    Cosmidis J, Benzerara K, Gheerbrant E, Esteve I, Bouya B, Amaghzaz M (2013) Nanometer-scale characterization of exceptionally preserved bacterial fossils in Paleocene phosphorites from Ouled Abdoun (Morocco). Geobiology 11(2):139–153. doi:10.1111/gbi.12022

    CAS  Article  Google Scholar 

  55. 55.

    Cosmidis J, Benzerara K, Menguy N, Arning E (2013) Microscopy evidence of bacterial microfossils in phosphorite crusts of the Peruvian shelf: Implications for phosphogenesis mechanisms. Chem Geol 359:10–22

    CAS  Article  Google Scholar 

  56. 56.

    Cotte M, Checroun É, Mazel V, Solé VA, Richardin P, Taniguchi Y, Walter P, Susini J (2009) Combination of FTIR and X-rays synchrotron-based micro-imaging techniques for the study of ancient paintings. A practical point of view. e-Preserv. Science 6:1–9

    CAS  Google Scholar 

  57. 57.

    Cotte M, Dumas P, Taniguchi Y, Checroun É, Walter P, Susini J (2009) Recent applications and current trends in Cultural Heritage Science using synchrotron-based Fourier transform infrared micro-spectroscopy. C R Phys 10(7):590–600. doi:10.1016/j.crhy.2009.03.016

    CAS  Article  Google Scholar 

  58. 58.

    Cotte M, Susini J, Dik J, Janssens K (2010) Synchrotron-based X-ray absorption spectroscopy for art conservation: looking back and looking forward. Acc Chem Res 43(6):705–714. doi:10.1021/ar900199m

    CAS  Article  Google Scholar 

  59. 59.

    Cunningham JA, Rahman IA, Lautenschlager S, Rayfield EJ, Donoghue PC (2014) A virtual world of paleontology. Trends Ecol Evol 29(6):347–357

    Article  Google Scholar 

  60. 60.

    Cunningham JA, Vargas K, Pengju L, Belivanova V, Marone F, Martínez-Pérez C, Guizar-Sicairos M, Holler M, Bengtson S, Donoghue PC (2015) Critical appraisal of tubular putative eumetazoans from the Ediacaran Weng’an Doushantuo biota. Proc R Soc B 282(1812):20151,169

    Article  Google Scholar 

  61. 61.

    Currey JD (2002) Bones: structure and mechanics. Princeton University Press, Princeton

    Google Scholar 

  62. 62.

    Davis GR, Mills D (2014) Brute force absorption contrast microtomography. In: Stock SR (ed) Developments in X-ray tomography IX, SPIE optical engineering and applications, p 92120I. International Society for Optics and Photonics

  63. 63.

    Davis T, Gao D, Gureyev T, Stevenson A, Wilkins S (1995) Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature 373(6515):595–598

    CAS  Article  Google Scholar 

  64. 64.

    De Gregorio BT, Sharp TG, Flynn GJ, Wirick S, Hervig RL (2009) Biogenic origin for earth’s oldest putative microfossils. Geology 37(7):631–634

    Article  CAS  Google Scholar 

  65. 65.

    Dejoie C, McCusker LB, Baerlocher C, Kunz M, Tamura N (2013) Can Laue microdiffraction be used to solve and refine complex inorganic structures? J Appl Crystallogr 46(6):1805–1816

    CAS  Article  Google Scholar 

  66. 66.

    Dejoie C, Sciau P, Li W, Noé L, Mehta A, Chen K, Luo H, Kunz M, Tamura N, Liu Z (2014) Learning from the past: rare \(\varepsilon \)-Fe2O3 in the ancient black-glazed Jian (Tenmoku) wares. Sci Rep 4(4941). doi:10.1038/srep04941

  67. 67.

    Dejoie C, Tamura N, Kunz M, Goudeau P, Sciau P (2015) Complementary use of monochromatic and white-beam X-ray micro-diffraction for the investigation of ancient materials. J Appl Cryst 48. doi:10.1107/S1600576715014983

  68. 68.

    Dik J, Janssens K, van der Snickt G, van der Loeff L, Rickers K, Cotte M (2008) Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based X-ray fluorescence elemental mapping. Anal Chem 80:6436–6442. doi:10.1021/ac800965g

    CAS  Article  Google Scholar 

  69. 69.

    Dooryhée É, Martinetto P, Walter P, Anne M (2004) Synchrotron X-ray analyses in art and archaeology. Rad Phys Chem 71(3–4):863–868. doi:10.1016/j.radphyschem.2004.04.129

    Article  CAS  Google Scholar 

  70. 70.

    Echard JP, Thoury M, Berrie BH, Séverin-Fabiani T, Vichi A, Didier M, Réfrégiers M, Bertrand L (2015) Synchrotron DUV luminescence micro-imaging to identify and map historical organic coatings on wood. Analyst 140(15):5344–5353. doi:10.1039/C5AN00483G

    CAS  Article  Google Scholar 

  71. 71.

    Edwards N, Wogelius RA, Bergmann U, Larson P, Sellers W, Manning P (2013) Mapping prehistoric ghosts in the synchrotron. Appl Phys A 111(1):147–155

    CAS  Article  Google Scholar 

  72. 72.

    Ehrlich H, Rigby JK, Botting J, Tsurkan M, Werner C, Schwille P, Petrášek Z, Pisera A, Simon P, Sivkov V et al (2013) Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta. Sci Rep 3:3497

    CAS  Article  Google Scholar 

  73. 73.

    Ferreira ESB., Boon JJ, Stampanoni M, Marone F (2011) Study of the mechanism of formation of calcium soaps in an early 20th-century easel painting with correlative 2D and 3D microscopy. In: Proceedings of 16th ICOM-CC triennial conference, Lisbon, Portugal, September 19–23, 2011

  74. 74.

    Francis J, Hitchcock A (1992) Inner-shell spectroscopy of p-benzoquinone, hydroquinone, and phenol: distinguishing quinoid and benzenoid structures. J Phys Chem 96(16):6598–6610

    CAS  Article  Google Scholar 

  75. 75.

    Fratzl P, Fratzl-Zelman N, Klaushofer K, Vogl G, Koller K (1991) Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Calcif Tissue Int 48(6):407–413

    CAS  Article  Google Scholar 

  76. 76.

    Fratzl P, Gupta HS, Paris O, Valenta A, Roschger P, Klaushofer K (2005) Diffracting “stacks of cards”—some thoughts about small-angle scattering from bone. In: Scattering methods and the properties of polymer materials. Springer, New York, pp 33–39

  77. 77.

    Fratzl P, Schreiber S, Klaushofer K (1996) Bone mineralization as studied by small-angle X-ray scattering. Connect Tissue Res 34(4):247–254

    CAS  Article  Google Scholar 

  78. 78.

    Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mat Sci 52(8):1263–1334. doi:10.1016/j.pmatsci.2007.06.001

    CAS  Article  Google Scholar 

  79. 79.

    Friis EM, Marone F, Pedersen KR, Crane PR, Stampanoni M (2014) Three-dimensional visualization of fossil flowers, fruits, seeds, and other plant remains using synchrotron radiation x-ray tomographic microscopy (srxtm): new insights into cretaceous plant diversity. J Paleontol 88(4):684–701

    Article  Google Scholar 

  80. 80.

    Friis EM, Pedersen KR, Marone F (2014) Arcellites punctatus sp. nov.: a new megaspore from the early cretaceous of portugal studied using high resolution synchrotron radiation X-ray tomographic microscopy (SRXTM). Grana 53(2):91–102

    Article  Google Scholar 

  81. 81.

    Garino C, Borfecchia E, Gobetto R, van Bokhoven JA, Lamberti C (2014) Determination of the electronic and structural configuration of coordination compounds by synchrotron-radiation techniques. Coord Chem Rev 277:130–186

    Article  CAS  Google Scholar 

  82. 82.

    Gerritsen HC, van der Oord CJR, Levine YK, Munro HI, Jones GR, Shaw DA, Rommerts FF (1994) Fluorescence imaging and time-resolved spectroscopy of steroid using confocal synchrotron radiation microscopy. In: Lakowicz JR (ed) Time-resolved laser spectroscopy in biochemistry IV, vol 2137. Los Angeles, CA

  83. 83.

    Gervais C, Thoury M, Reguer S, Mass J (2015) Radiation damages during synchrotron X-ray micro-analyses of prussian blue and zinc white historic paintings: detection, mitigation and integration. Appl Phys A 121(3):949–955

    CAS  Article  Google Scholar 

  84. 84.

    Gill PG, Purnell MA, Crumpton N, Brown KR, Gostling NJ, Stampanoni M, Rayfield EJ (2014) Dietary specializations and diversity in feeding ecology of the earliest stem mammals. Nature 512(7514):303–305

    CAS  Article  Google Scholar 

  85. 85.

    Gourrier A, Bunk O, Müller K, Reiche I (2011) Artificially heated bone at low temperatures: a quantitative scanning-small-angle X-ray scattering imaging study of the mineral particle size. ArcheoSciences Revue d’archéométrie 35:191–199

    Article  Google Scholar 

  86. 86.

    Gourrier A, Li C, Siegel S, Paris O, Roschger P, Klaushofer K, Fratzl P (2010) Scanning small-angle X-ray scattering analysis of the size and organization of the mineral nanoparticles in fluorotic bone using a stack of cards model. J Appl Crystallogr 43(6):1385–1392

    CAS  Article  Google Scholar 

  87. 87.

    Gourrier A, Wagermaier W, Burghammer M, Lammie D, Gupta HS, Fratzl P, Riekel C, Wess TJ, Paris O (2007) Scanning X-ray imaging with small-angle scattering contrast. J Appl Cryst 40:S78–S82

    CAS  Article  Google Scholar 

  88. 88.

    Groso A, Abela R, Stampanoni M (2006) Implementation of a fast method for high resolution phase contrast tomography. Opt Exp 14(18):8103–8110

    CAS  Article  Google Scholar 

  89. 89.

    Gueriau P, Bernard S, Bertrand L (2016) Synchrotron advanced imaging of paleontological specimens. Elements 12(1) (in press)

  90. 90.

    Gueriau P, Bertrand L (2015) Deciphering exceptional preservation of fossils through trace elemental imaging. Microsc Today 23(3):2–6. doi:10.1017/S1551929515000024

    Article  Google Scholar 

  91. 91.

    Gueriau P, Mocuta C, Bertrand L (2015) Cerium anomaly at microscale in fossils. Anal Chem 87(17):8827–8836. doi:10.1021/acs.analchem.5b01820

    CAS  Article  Google Scholar 

  92. 92.

    Gueriau P, Mocuta C, Dutheil DB, Cohen SX, Thiaudière D, The OT1 consortium, Charbonnier S, Clément G, Bertrand L (2014) Trace elemental imaging of rare earth elements discriminates tissues at microscale in flat fossils. Plos One 9(1):e86946

  93. 93.

    Hedges RE (2002) Bone diagenesis: an overview of processes. Archaeometry 44(3):319–328

    CAS  Article  Google Scholar 

  94. 94.

    Hernández Cruz D, Rousseau ME, West MM, Pézolet M, Hitchcock AP (2006) Quantitative mapping of the orientation of fibroin \(\beta \)-sheets in B. mori cocoon fibers by scanning transmission X-ray microscopy. Biomacromolecules 7(3):836–843

    Article  CAS  Google Scholar 

  95. 95.

    Hiller JC, Thompson TJU, Evison MP, Chamberlain AT, Wess TJ (2003) Bone mineral change during experimental heating: an X-ray scattering investigation. Biomaterials 24(28):5091–5097. doi:10.1016/S0142-9612(03)00427-7

    CAS  Article  Google Scholar 

  96. 96.

    Hiller JC, Wess TJ (2006) The use of small-angle X-ray scattering to study archaeological and experimentally altered bone. J Archaeol Sci 33(4):560–572. doi:10.1016/j.jas.2005.09.012

    Article  Google Scholar 

  97. 97.

    Hitchcock A, Morin C, Heng Y, Cornelius R, Brash J (2002) Towards practical soft X-ray spectromicroscopy of biomaterials. J Biomater Sci Polym Ed 13(8):919–937

    CAS  Article  Google Scholar 

  98. 98.

    Hitchcock AP, Dynes JJ, Johansson G, Wang J, Botton G (2008) Comparison of NEXAFS microscopy and TEM-EELS for studies of soft matter. Micron 39:311–319

    CAS  Article  Google Scholar 

  99. 99.

    Holmes JM, Beebe RA, Posner AS, Harper RA (1970) Surface areas of synthetic calcium phosphates and bone mineral. Exp Biol Med 133(4):1250–1253

    CAS  Article  Google Scholar 

  100. 100.

    Ice GE, Budai JD, Pang JW (2011) The race to X-ray microbeam and nanobeam science. Science 334(6060):1234–1239

    CAS  Article  Google Scholar 

  101. 101.

    Ice GE, Pang JW (2009) Tutorial on X-ray microLaue diffraction. Mat Charact 60(11):1191–1201

    CAS  Article  Google Scholar 

  102. 102.

    Ishii I, Hitchcook A (1988) The oscillator strengths for C1s and O1s excitation of some saturated and unsaturated organic alcohols, acids and esters. J Elect Spectrosc Relat Phenom 46(1):55–84

    CAS  Article  Google Scholar 

  103. 103.

    Janssens K, Alfeld M, Van der Snickt G, De Nolf W, Vanmeert F, Radepont M, Monico L, Dik J, Cotte M, Falkenberg G, Miliani C, Brunetti BG (2013) The use of synchrotron radiation for the characterization of artists’ pigments and paintings. Ann Rev Anal Chem 6(1):399–425. doi:10.1146/annurev-anchem-062012-092702

    CAS  Article  Google Scholar 

  104. 104.

    Janssens K, Dik J, Cotte M, Susini J (2010) Photon-based techniques for nondestructive subsurface analysis of painted cultural heritage artifacts. Acc Chem Res 43(6):814–825. doi:10.1021/ar900248e

    CAS  Article  Google Scholar 

  105. 105.

    Jarcho S (1964) Lead in the bones of prehistoric lead-glaze potters. Am Antiq 30(1):94–96

    CAS  Article  Google Scholar 

  106. 106.

    Kak A, Slaney M (2001) Principles of computerized tomographic imaging. Society of Industial and Applied Mathematics, Philadelphia, USA

    Google Scholar 

  107. 107.

    Kalsbeek N, Richter J (2006) Preservation of burned bones: an investigation of the effects of temperature and ph on hardness. Stud Conserv 51(2):123–138

    CAS  Article  Google Scholar 

  108. 108.

    Koon H, Nicholson R, Collins M (2003) A practical approach to the identification of low temperature heated bone using tem. J Archaeol Sci 30(11):1393–1399

    Article  Google Scholar 

  109. 109.

    Koon H, O’Connor T, Collins M (2010) Sorting the butchered from the boiled. J Archaeol Sci 37(1):62–69

    Article  Google Scholar 

  110. 110.

    Krueger KK (1974) The use of ultraviolet light in the study of fossil shells. Curator Mus J 17(1):36–49

    Article  Google Scholar 

  111. 111.

    Kunz M, Chen K, Tamura N, Wenk HR (2009) Evidence for residual elastic strain in deformed natural quartz. Am Mineral 94(7):1059–1062

    CAS  Article  Google Scholar 

  112. 112.

    Lakes R (1993) Materials with structural hierarchy. Nature 361(6412):511–515

    Article  Google Scholar 

  113. 113.

    Landis WJ, Glimcher MJ (1978) Electron diffraction and electron probe microanalysis of the mineral phase of bone tissue prepared by anhydrous techniques. J Ultrastruct Res 63(2):188–223

    CAS  Article  Google Scholar 

  114. 114.

    Langer M, Cloetens P, Pacureanu A, Peyrin F (2012) X-ray in-line phase tomography of multimaterial objects. Optics Lett 37(11):2151–2153

    Article  Google Scholar 

  115. 115.

    Larson B, Yang W, Ice G, Budai J, Tischler J (2002) Three-dimensional X-ray structural microscopy with submicrometre resolution. Nature 415(6874):887–890

    CAS  Article  Google Scholar 

  116. 116.

    Léa V (2005) Raw, pre-heated or ready to use: discovering specialist supply systems for flint industries in mid-Neolithic (Chassey culture) communities in southern France. Antiquity 79(303):51–65

    Article  Google Scholar 

  117. 117.

    Li J, Benzerara K, Bernard S, Beyssac O (2013) The link between biomineralization and fossilization of bacteria: insights from field and experimental studies. Chem Geol 359:49–69

    CAS  Article  Google Scholar 

  118. 118.

    Li J, Bernard S, Benzerara K, Beyssac O, Allard T, Cosmidis J, Moussou J (2014) Impact of biomineralization on the preservation of microorganisms during fossilization: An experimental perspective. Earth Planet Sci Lett 400:113–122

    CAS  Article  Google Scholar 

  119. 119.

    Lin Y, Seales WB (2005) Opaque document imaging: building images of inaccessible texts. In: Tenth IEEE international conference on computer vision, 2005. ICCV 2005, vol 1, pp 662–669. IEEE

  120. 120.

    Liu Z, Mehta A, Tamura N, Pickard D, Rong B, Zhou T, Pianetta P (2007) Influence of Taoism on the invention of the purple pigment used on the Qin terracotta warriors. J Archaeol Sci 34:1878–1883. doi:10.1016/j.jas.2007.01.005

    Article  Google Scholar 

  121. 121.

    Lynch PA, Tamura N, Lau D, Madsen I, Liang D, Strohschnieder M, Stevenson AW (2007) Application of white-beam X-ray microdiffraction for the study of mineralogical phase identification in ancient egyptian pigments. J Appl Cryst 40:1089–1096. doi:10.1107/S0021889807041003

    CAS  Article  Google Scholar 

  122. 122.

    Manso M, Carvalho M (2009) Application of spectroscopic techniques for the study of paper documents: a survey. Spectrochim Acta B 64(6):482–490. doi:10.1016/j.sab.2009.01.009 10th Rio Symposium on Atomic Spectrometry

    Article  CAS  Google Scholar 

  123. 123.

    Maser J, Osanna A, Wang Y, Jacobsen C, Kirz J, Spector S, Winn B, Tennant D (2000) Soft X-ray microscopy with a cryo scanning transmission x-ray microscope: I. Instrumentation, imaging and spectroscopy. J Microsc 197(1):68–79

    CAS  Article  Google Scholar 

  124. 124.

    Meirer F, Cabana J, Liu Y, Mehta A, Andrews JC, Pianetta P (2011) Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission x-ray microscopy. Synchrotron Radiat 18(5):773–781

    CAS  Article  Google Scholar 

  125. 125.

    Meirer F, Liu Y, Pouyet E, Fayard B, Cotte M, Sanchez C, Andrews JC, Mehta A, Sciau P (2013) Full-field XANES analysis of Roman ceramics to estimate firing conditions—a novel probe to study hierarchical heterogeneous materials. J Anal At Spectrom 28:1870–1883

    CAS  Article  Google Scholar 

  126. 126.

    Mills D, Samko O, Rosin P, Thomas K, Wess T, Davis GR (2012) Apocalypto: revealing the unreadable. In: Stock SR (ed) Developments in X-ray tomography VIII, SPIE Optical Engineering and Applications, vol 8506. International Society for Optics and Photonics, San Diego, California, USA, p 85060A

  127. 127.

    Miot J, Li J, Benzerara K, Sougrati MT, Ona-Nguema G, Bernard S, Jumas JC, Guyot F (2014) Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation. Geochim Cosmochim Acta 139:327–343

    CAS  Article  Google Scholar 

  128. 128.

    Mocella V, Brun E, Ferrero C, Delattre D (2015) Revealing letters in rolled Herculaneum papyri by X-ray phase-contrast imaging. Nat Comm 6:5895

    CAS  Article  Google Scholar 

  129. 129.

    Moini M, Rollman C, Fleskes R (2014) Molecular level effects of natural aging, as well as chemical and radiation exposures on museums’ proteinaceous specimens. In: Proceedings of American Society for mass spectrometry meeting 2013

  130. 130.

    Mokso R, Marone F, Haberthür D, Schittny J, Mikuljan G, Isenegger A, Stampanoni M (2011) Following dynamic processes by X-ray tomographic microscopy with sub-second temporal resolution. In: The 10th international conference on X-ray microscopy, vol 1365. AIP Publishing, New York, pp 38–41

  131. 131.

    Momose A (1995) Demonstration of phase-contrast X-ray computed tomography using an X-ray interferometer. Nucl Instrum Methods Phys Res Sect A 352(3):622–628

    CAS  Article  Google Scholar 

  132. 132.

    Moreau JD, Cloetens P, Gomez B, Daviero-Gomez V, Néraudeau D, Lafford TA, Tafforeau P (2014) Multiscale 3D virtual dissections of 100-million-year-old flowers using X-ray synchrotron micro- and nanotomography. Microsc Microanal 20(1):305–312. doi:10.1017/S1431927613014025

    CAS  Article  Google Scholar 

  133. 133.

    Myneni SC (2002) Soft X-ray spectroscopy and spectromicroscopy studies of organic molecules in the environment. Rev Mineral Geochem 49(1):485–579

    CAS  Article  Google Scholar 

  134. 134.

    Nevin A, Osticioli I, Anglos D, Burnstock A, Cather S, Castellucci E (2007) Raman spectra of proteinaceous materials used in paintings: a multivariate analytical approach for classification and identification. Anal Chem 79(16):6143–6151. doi:10.1021/ac070373j

    CAS  Article  Google Scholar 

  135. 135.

    Obst M, Schmid G (2014) 3D chemical mapping: application of scanning transmission (soft) X-ray microscopy (STXM) in combination with angle-scan tomography in bio-, geo-, and environmental sciences. Methods Mol Biol 1117:757–781

    CAS  Article  Google Scholar 

  136. 136.

    Paganin D, Mayo S, Gureyev T, Miller P, Wilkins S (2002) Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsci Oxford 206(1):33–40

    CAS  Article  Google Scholar 

  137. 137.

    Picard A, Kappler A, Schmid G, Quaroni L, Obst M (2015) Experimental diagenesis of organo-mineral structures formed by microaerophilic Fe(II)-oxidizing bacteria. Nat Commun 6:6277

    CAS  Article  Google Scholar 

  138. 138.

    Pons MN, Le Bonté S, Potier O (2004) Spectral analysis and fingerprinting for biomedia characterisation. J Biotechnol 113(1):211–230

    CAS  Article  Google Scholar 

  139. 139.

    Popescu BFG, George MJ, Bergmann U, Garachtchenko AV, Kelly ME, McCrea RP, Lüning K, Devon RM, George GN, Hanson AD et al (2009) Mapping metals in Parkinson’s and normal brain using rapid-scanning X-ray fluorescence. Phys Med Biol 54(3):651

    Article  Google Scholar 

  140. 140.

    Posner AS (1969) Crystal chemistry of bone mineral. Physiol Rev 49(4):760–92

    CAS  Article  Google Scholar 

  141. 141.

    Pradel A, Langer M, Maisey JG, Geffard-Kuriyama D, Cloetens P, Janvier P, Tafforeau P (2009) Skull and brain of a 300-million-year-old chimaeroid fish revealed by synchrotron holotomography. Proc Natl Acad Sci USA 106(13):5224–5228. doi:10.1073/pnas.0807047106

    CAS  Article  Google Scholar 

  142. 142.

    Pusey PN (2002) Introduction to scattering experiments. Scattering methods applied to soft condensed matter, Neutrons, X-rays and light, pp 3–21

  143. 143.

    Reiche I, Favre-Quattropani L, Vignaud C, Bocherens H, Charlet L, Menu M (2003) A multi-analytical study of bone diagenesis: the Neolithic site of Bercy (Paris, France). Meas Sci Technol 14(9):1608

    CAS  Article  Google Scholar 

  144. 144.

    Reiche I, Lebon M, Chadefaux C, Müller K, Le Hô AS, Gensch M, Schade U (2010) Microscale imaging of the preservation state of 5,000-year-old archaeological bones by synchrotron infrared microspectroscopy. Anal Bioanal Chem 397(6):2491–2499. doi:10.1007/s00216-010-3795-4

    CAS  Article  Google Scholar 

  145. 145.

    Riekel C, Burghammer M, Müller M (2000) Microbeam small-angle scattering experiments and their combination with microdiffraction. J Appl Cryst 33(3):421–423. doi:10.1107/S0021889899014375

    CAS  Article  Google Scholar 

  146. 146.

    Robin N, Bernard S, Miot J, Blanc-Valleron MM, Charbonnier S, Petit G (2015) Calcification and diagenesis of bacterial colonies. Minerals 5(3):488–506

    CAS  Article  Google Scholar 

  147. 147.

    Rodenburg JM, Hurst AC, Cullis AG (2007) Transmission microscopy without lenses for objects of unlimited size. Ultramicroscopy 107(2–3):227–31. doi:10.1016/j.ultramic.2006.07.007

    CAS  Article  Google Scholar 

  148. 148.

    Rogers K, Daniels P (2002) An X-ray diffraction study of the effects of heat treatment on bone mineral microstructure. Biomaterials 23(12):2577–2585

    CAS  Article  Google Scholar 

  149. 149.

    Rorimer JJ (1931) Ultra-violet rays and their use in the examination of works of art. Metropolitan Museum of Art, New-York, USA

    Google Scholar 

  150. 150.

    Rouchon V, Bernard S (2015) Mapping iron gall ink penetration within paper fibres using scanning transmission X-ray microscopy. J Anal At Spectrom 30(3):635–641. doi:10.1039/C4JA00358F

    CAS  Article  Google Scholar 

  151. 151.

    Rousseau ME, Hernández Cruz D, West MM, Hitchcock AP, Pézolet M (2007) Nephila clavipes spider dragline silk microstructure studied by scanning transmission X-ray microscopy. J Am Chem Soc 129(13):3897–3905

    CAS  Article  Google Scholar 

  152. 152.

    Ryan C, Kirkham R, Hough R, Moorhead G, Siddons D, de Jonge M, Paterson D, Geronimo GD, Howard D, Cleverley J (2010) Elemental X-ray imaging using the Maia detector array: the benefits and challenges of large solid-angle. Nucl Instrum Meth A 619(1–3):37–43. doi:10.1016/j.nima.2009.11.035

    CAS  Article  Google Scholar 

  153. 153.

    Ryan C, Siddons D, Kirkham R, Li Z, de Jonge M, Paterson D, Kuczewski A, Howard D, Dunn P, Falkenberg G et al (2014) Maia X-ray fluorescence imaging: capturing detail in complex natural samples. In: 499 (ed) J Phys Conf Ser 1:012002. IOP Publishing

  154. 154.

    Sadeghi B, Bergmann U (2010) The codex of a companion of the prophet and the qurān of the prophet. Arabica 57:343–436

    Article  Google Scholar 

  155. 155.

    Sanchez S, Ahlberg PE, Trinajstic KM, Mirone A, Tafforeau P (2012) Three-dimensional synchrotron virtual paleohistology: a new insight into the world of fossil bone microstructures. Microsc Microanal 18(05):1095–1105

    CAS  Article  Google Scholar 

  156. 156.

    Scherf H (2013) Computed tomography in paleoanthropology—an overview. Archaeol Anthropol Sci 5(3):205–214. doi:10.1007/s12520-013-0128-5

    Article  Google Scholar 

  157. 157.

    Schreiner M, Frühmann B, Jembrih-Simbürger D, Linke R (2004) X-rays in art and archaeology: an overview. Powder Diff 19(1):3–11. doi:10.1154/1.1649963

    CAS  Article  Google Scholar 

  158. 158.

    Schroer CG, Kurapova O, Patommel J, Boye P, Feldkamp J, Lengeler B, Burghammer M, Riekel C, Vincze L, van der Hart A et al (2005) Hard x-ray nanoprobe based on refractive X-ray lenses. Appl Phys Lett 87(12):124,103

    Article  CAS  Google Scholar 

  159. 159.

    Sciau P, Goudeau P, Tamura N, Dooryhée É (2006) Micro scanning X-ray diffraction study of Gallo-Roman Terra Sigillata ceramics. Appl Phys A 83(2):219–224. doi:10.1007/s00339-006-3512-5

    CAS  Article  Google Scholar 

  160. 160.

    Sciau P, Leon Y, Goudeau P, Fakra SC, Webb S, Mehta A (2011) Reverse engineering the ancient ceramic technology based on X-ray fluorescence spectromicroscopy. J Anal At. Spectrom 26(5):969–976

    CAS  Article  Google Scholar 

  161. 161.

    Sciau P, Relaix S, Mirguet C, Goudeau P, Bell AMT, Jones RL, Pantos E (2008) Synchrotron X-ray diffraction study of phase transformations in illitic clays to extract information on sigillata manufacturing processes. Appl Phys A 90(1):61–66. doi:10.1007/s00339-007-4249-5

    CAS  Article  Google Scholar 

  162. 162.

    Sciau P, Relaix S, Roucau C, Kihn Y, Chabanne D (2006) Microstructural and microchemical characterization of Roman period Terra sigillate slips from archaeological sites in Southern France. J Am Ceram Soc 89(3):1053–1058. doi:10.1111/j.1551-2916.2005.00827.x

    CAS  Article  Google Scholar 

  163. 163.

    Shahack-Gross R, Bar-Yosef O, Weiner S (1997) Black-coloured bones in hayonim cave, israel: differentiating between burning and oxide staining. J Archaeol Sci 24(5):439–446

    Article  Google Scholar 

  164. 164.

    Shipman P, Foster G, Schoeninger M (1984) Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage. J Archaeol Sci 11(4):307–325

    Article  Google Scholar 

  165. 165.

    Smith SY, Collinson ME, Rudall PJ, Simpson DA, Marone F, Stampanoni M (2009) Virtual taphonomy using synchrotron tomographic microscopy reveals cryptic features and internal structure of modern and fossil plants. Proc Natl Acad Sci USA 106(29):12013–12018

    CAS  Article  Google Scholar 

  166. 166.

    Smith TM, Tafforeau P, Le Cabec A, Bonnin A, Houssaye A, Pouech J, Moggi-Cecchi J, Manthi F, Ward C, Makaremi M et al (2015) Dental ontogeny in pliocene and early pleistocene hominins. PLoS One 10:e0118,118

    Article  CAS  Google Scholar 

  167. 167.

    Snigirev A, Snigireva I, Kohn V, Kuznetsov S, Schelokov I (1995) On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev Sci Instrum 66(12):5486–5492

    CAS  Article  Google Scholar 

  168. 168.

    Solomon D, Lehmann J, Kinyangi J, Liang B, Heymann K, Dathe L, Hanley K, Wirick S, Jacobsen C (2009) Carbon (1s) NEXAFS spectroscopy of biogeochemically relevant reference. Soil Sci Soc Am J 73(6):1817–1830

    CAS  Article  Google Scholar 

  169. 169.

    Spalla O (2002) General theorems in small-angle scattering. Neutrons, X-rays and light: scattering methods applied to soft condensed matter. Lindner and Zemb, North-Holland, Elsevier edition

  170. 170.

    Stampanoni M, Groso A, Isenegger A, Mikuljan G, Chen Q, Bertrand A, Henein S, Betemps R, Frommherz U, Böhler P, Meister D, Lange M, Abela R (2006) Trends in synchrotron-based tomographic imaging: the SLS experience. In: Bonse U (ed) Developments in X-ray tomography V, Proceedings of SPIE, vol 6318, p 63180M. SPIE. doi:10.1117/12.679497

  171. 171.

    Stiner MC, Kuhn SL, Weiner S, Bar-Yosef O (1995) Differential burning, recrystallization, and fragmentation of archaeological bone. J Archaeol Sci 22(2):223–237

    Article  Google Scholar 

  172. 172.

    Strullu-Derrien C, Kenrick P, Tafforeau P, Cochard H, Bonnemain JL, Le Hérissé A, Lardeux H, Badel E (2014) The earliest wood and its hydraulic properties documented in c. 407-million-year-old fossils using synchrotron microtomography. Bot J Linn Soc 175(3):423–437

    Article  Google Scholar 

  173. 173.

    Sutton MD (2008) Tomographic techniques for the study of exceptionally preserved fossils. Proc Roy S B 275(1643):1587–1593

    Article  Google Scholar 

  174. 174.

    Tafforeau P, Boistel R, Boller E, Bravin A, Brunet M, Chaimanee Y, Cloetens P, Feist M, Hoszowska J, Jaeger JJ, Kay RF, Lazzari V, Marivaux L, Nel A, Nemoz C, Thibault X, Vignaud P, Zabler S (2006) Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Appl Phys A 83(2):195–202. doi:10.1007/s00339-006-3507-2

    CAS  Article  Google Scholar 

  175. 175.

    Tafforeau P, Smith TM (2008) Nondestructive imaging of hominoid dental microstructure using phase contrast X-ray synchrotron microtomography. J Human Evol 54(2):272–278. doi:10.1016/j.jhevol.2007.09.018

    Article  Google Scholar 

  176. 176.

    Tamura N, Celestre R, MacDowell A, Padmore H, Spolenak R, Valek B, Chang NM, Manceau A, Patel J (2002) Submicron X-ray diffraction and its applications to problems in materials and environmental science. Rev Sci Instrum 73(3):1369–1372

    CAS  Article  Google Scholar 

  177. 177.

    Tamura N, Kunz M, Chen K, Celestre R, MacDowell A, Warwick T (2009) A superbend X-ray microdiffraction beamline at the advanced light source. Mater Sci Eng A 524(1):28–32

    Article  CAS  Google Scholar 

  178. 178.

    Tamura N, MacDowell AA, Spolenak R, Valek BC, Bravman JC, Brown WL, Celestre RS, Padmore HA, Batterman BW, Patel JR (2003) Scanning X-ray microdiffraction with submicrometer white beam for strain/stress and orientation mapping in thin films. J Synchrotron Rad 10(2):137–143. doi:10.1107/S0909049502021362

    CAS  Article  Google Scholar 

  179. 179.

    Thoury M, Echard JP, Réfrégiers M, Berrie B, Nevin A, Jamme F, Bertrand L (2011) Synchrotron UV-visible multispectral luminescence micro-imaging of historical samples. Anal Chem 83(5):1737–1745. doi:10.1021/ac102986h

    CAS  Article  Google Scholar 

  180. 180.

    Wagermaier W, Gourrier A, Aichmayer B (2013) Understanding hierarchy and functions of bone using scanning X-ray scattering methods. In: Materials design inspired by nature: function through inner architecture, pp 46–73. RSC

  181. 181.

    Wang Y, Jacobsen C, Maser J, Osanna A (2000) Soft X-ray microscopy with a cryo scanning transmission X-ray microscope: II. Tomography. J Microsc 197(1):80–93. doi:10.1046/j.1365-2818.2000.00629.x

    CAS  Article  Google Scholar 

  182. 182.

    Weitkamp T, Diaz A, David C, Pfeiffer F, Stampanoni M, Cloetens P, Ziegler E (2005) X-ray phase imaging with a grating interferometer. Opt Exp 13(16):6296–6304

    Article  Google Scholar 

  183. 183.

    Weymouth JW (1973) X-ray diffraction analysis of prehistoric pottery. Am Antiq 38(3):339–344

    Article  Google Scholar 

  184. 184.

    Willneff E, Ormsby B, Stevens J, Jaye C, Fischer D, Schroeder S (2014) Conservation of artists’ acrylic emulsion paints: XPS, NEXAFS and ATR-FTIR studies of wet cleaning methods. Surf Interface Anal 46(10–11):776–780

    CAS  Article  Google Scholar 

  185. 185.

    Wogelius RA, Manning PL, Barden HE, Edwards NP, Webb SM, Sellers WI, Taylor KG, Larson PL, Dodson P, You H, Da-qing L, Bergmann U (2011) Trace metals as biomarkers for eumelanin pigment in the fossil record. Science 333(6049):1622–1626. doi:10.1126/science.1205748. http://www.sciencemag.org/content/333/6049/1622.abstract

  186. 186.

    Young ML (2012) Archaeometallurgy using synchrotron radiation: a review. Rep Prog Phys 75(3):036,504. doi:10.1088/0034-4885/75/3/036504

    Article  CAS  Google Scholar 

  187. 187.

    Zazzo A, Balasse M, Patterson WP (2006) The reconstruction of mammal individual history: refining high-resolution isotope record in bovine tooth dentine. J Archaeol Sci 33(8):1177–1187

    Article  Google Scholar 

  188. 188.

    Zazzo A, Lebon M, Quiles A, Reiche I, Vigne JD (2015) Direct dating and physico-chemical analyses cast doubts on the coexistence of humans and dwarf hippos in cyprus. PloS One 10(8):e0134,429

    Article  CAS  Google Scholar 

  189. 189.

    Zhou H, Burger C, Sics I, Hsiao BS, Chu B, Graham L, Glimcher MJ (2007) Small-angle X-ray study of the three-dimensional collagen/mineral superstructure in intramuscular fish bone. Applied crystallography

  190. 190.

    Ziv V, Weiner S (1994) Bone crystal sizes: a comparison of transmission electron microscopic and X-ray diffraction line width broadening techniques. Connect Rissue Res 30(3):165–175

    CAS  Article  Google Scholar 

Download references


The IPANEMA platform is jointly developed by CNRS, the French Ministry of Culture and Communication and MNHN, and benefits from a CPER grant (MENESR, Région Ile-de-France) [23]. IPANEMA and Synchrotron SOLEIL are supported by the Research Infrastructures activity IPERION CH of the Horizon2020 Programme of the EU (Grant Agreement No. 654028). Support from the ERC project PaleoNanoLife (P.I.: F. Robert), the PATRIMA LabEx and within the agreement between the MNHN and IPANEMA is acknowledged. LB and UB acknowledge support from the France–Stanford Center for Interdisciplinary Studies Program. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource (SSRL), a user facility of the U.S. Department of Energy (DOE), Office of Basic Energy Sciences. The work performed on the 12.3.2 beamline was supported by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy, who operates ALS under contract No. DE-AC02-05CH11231.

Author information



Corresponding author

Correspondence to Loïc Bertrand.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bertrand, L., Bernard, S., Marone, F. et al. Emerging Approaches in Synchrotron Studies of Materials from Cultural and Natural History Collections. Top Curr Chem (Z) 374, 7 (2016). https://doi.org/10.1007/s41061-015-0003-1

Download citation


  • Synchrotron
  • Palaeontology
  • Cultural heritage
  • Archaeometry
  • Imaging