Skip to main content
Log in

Node embedding approach for accurate detection of fake reviews: a graph-based machine learning approach with explainable AI

  • Regular Paper
  • Published:
International Journal of Data Science and Analytics Aims and scope Submit manuscript

Abstract

In recent years, online reviews have become increasingly important in promoting various products and services. Unfortunately, writing deceptive reviews has also become a common practice to promote one’s own business or tarnish the reputation of competitors. As a result, identifying fake reviews has become an intense and ongoing area of research. This paper proposes a node embedding approach to detect online fake reviews. The approach involves extracting features from the input data to create a distance matrix, which is then used to construct a Graph. From the graph, we extract graph nodes and use the Node2Vec biased random walk algorithm to create a model. We retrieve node embeddings from the Node2Vec model using Word2Vec and use different classifiers to classify the nodes. We trained and evaluated the machine learning models on the Deceptive Opinion Spam Corpus and YelpChi datasets and achieved superior results compared to prior work for detecting fake reviews, with SVM using the Hamming distance achieving 98.44% accuracy, 98.44% precision, 98.44% recall, and 98.44% F1-score. Furthermore, we explored different methods for explaining our proposed methods using explainable AI, demonstrating the interpretability of our approach. Our proposed node embedding approach shows promising results for detecting fake reviews and offers a transparent and interpretable solution for the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data and code used in the study are available from https://github.com/nzaki02/Fake_Review_2023.

References

  1. Rustagi, A., Padisetti, V., Subramaniam, S.: Fake review detection using machine learning. J. Stud. Res. 11, 1–8 (2022). https://doi.org/10.47611/jsrhs.v11i1.3281

    Article  Google Scholar 

  2. Ahmed, H., Traore, I., Saad, S.: Detecting opinion spams and fake news using text classification. Secur. Priv. 1, 9 (2018). https://doi.org/10.1002/spy2.9

    Article  Google Scholar 

  3. Kennedy, S., Walsh, N., Sloka, K., McCarren, A., Foster, J.: Fact or factitious? Contextualized opinion spam detection. In: ACL 2019—57th Annual Meeting of the Association for Computational Linguistics Proceedings. Student Research Workshop, pp. 344–350 (2019). https://doi.org/10.18653/v1/p19-2048

  4. Archchitha, K., Charles, E.Y.A.: Opinion spam detection in online reviews using neural networks. In: 2019 19th International Conference on Advances in ICT for Emerging Regions, pp. 1–6. IEEE (2019). https://doi.org/10.1109/ICTer48817.2019.9023695

  5. Ligthart, A., Catal, C., Tekinerdogan, B.: Analyzing the effectiveness of semi-supervised learning approaches for opinion spam classification. Appl. Soft Comput. 101, 107023 (2021). https://doi.org/10.1016/j.asoc.2020.107023

    Article  Google Scholar 

  6. Raza, S.: Automatic fake news detection in political platforms—a transformer-based approach. In: Hürriyetoğlu, A. (ed.) Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021), pp. 68–78. Association for Computational Linguistics (2021). https://doi.org/10.18653/v1/2021.case-1.10. https://aclanthology.org/2021.case-1.10

  7. Salminen, J., Kandpal, C., Kamel, A.M., Jung, S., Jansen, B.J.: Creating and detecting fake reviews of online products. J. Retail. Consum. Serv. 64, 102771 (2022). https://doi.org/10.1016/j.jretconser.2021

    Article  Google Scholar 

  8. Mohawesh, R., Xu, S., Springer, M., Al-Hawawreh, M., Maqsood, S.: Fake or genuine? Contextualised text representation for fake review detection. In: Natural Language Processing. Academy and Industry Research Collaboration Center, AIRCC, pp. 137–148 (2021). https://doi.org/10.5121/csit.2021.112311

  9. Li, J., Ott, M., Cardie, C., Hovy, E.: Towards a general rule for identifying deceptive opinion spam. In: 52nd Annual Meeting of the Association for Computational Linguistics. ACL 2014—Proceeding Conference, pp. 1566–1576. Association for Computational Linguistics, Stroudsburg (2014). https://doi.org/10.3115/v1/p14-1147

  10. Shojaee, S., Murad, M., Azman, A., Sharef, N.M., Nadali, S.: Detecting deceptive reviews using lexical and syntactic features. In: 2013 13th International Conference on Intelligent Systems Design and Applications, pp. 53–58. IEEE (2013). https://doi.org/10.1109/ISDA.2013.6920707

  11. Algur, S.P., Patil, A.P., Hiremath, P., Shivashankar, S.: Conceptual level similarity measure based review spam detection. In: 2010 International Conference on Signal, Image Processing, pp. 416–423. IEEE (2010). https://doi.org/10.1109/ICSIP.2010.5697509

  12. Lau, R.Y.K., Liao, S.Y., Kwok, R.C.-W., Xu, K., Xia, Y., Li, Y.: Text mining and probabilistic language modeling for online review spam detection. ACM Trans. Manag. Inf. Syst. 2, 1–30 (2011). https://doi.org/10.1145/2070710.2070716

    Article  Google Scholar 

  13. Mukherjee, A., Liu, B., Glance, N.: Spotting fake reviewer groups in consumer reviews. In: Proceedings of the 21st International Conference on World Wide Web, pp. 191–200. ACM, New York (2012). https://doi.org/10.1145/2187836.2187863

  14. Yu, S., Ren, J., Li, S., Naseriparsa, M., Xia, F.: Graph Learning for Fake Review Detection. Front. Artif. Intell 5, 1–14 (2022). https://doi.org/10.3389/frai.2022.922589

    Article  Google Scholar 

  15. Zaki, N., Singh, H., Mohamed, E.A.: Identifying protein complexes in protein-protein interaction data using graph convolutional network. IEEE Access 9, 123717–123726 (2021). https://doi.org/10.1109/ACCESS.2021.3110845

    Article  Google Scholar 

  16. Li, A., Qin, Z., Liu, R., Yang, Y., Li, D.: Spam review detection with graph convolutional networks. In: International Conference on Information and Knowledge Management Proceedings, pp. 2703–2711 (2019). https://doi.org/10.1145/3357384.3357820

  17. Sun, Y., Loparo, K.: Opinion spam detection based on heterogeneous information network. In: Proceedings—International Conference on Tools with Artificial Intelligence. ICTAI, pp. 1156–1163. IEEE (2019). https://doi.org/10.1109/ICTAI.2019.00277

  18. Noekhah, S., Salim, N., Zakaria, N.H.: Opinion spam detection: using multi-iterative graph-based model. Inf. Process. Manag. 57, 102140 (2020). https://doi.org/10.1016/j.ipm.2019.102140

    Article  Google Scholar 

  19. Hamilton, W.L., Ying, R., Leskovec, J.: Representation Learning on Graphs: Methods and Applications. arXiv:1709.05584

  20. Henderson, K., Gallagher, B., Li, L., Akoglu, L., Eliassi-Rad, T., Tong, H., Faloutsos, C.: It’s who you know: graph mining using recursive structural features. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 663–671 (2017). https://doi.org/10.1145/2020408.2020512

  21. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 1–9 (2013)

  22. Ott, M., Choi, Y., Cardie, C., Hancock, J.T.: Finding deceptive opinion spam by any stretch of the imagination. In:, ACL-HLT 2011—Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 309–319 (2011)

  23. Feng, S., Banerjee, R., Choi, Y.: Syntactic stylometry for deception detection. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, vol. 2, pp. 171–175. Short Pap. Association for Computational Linguistics, Jeju Island (2012). https://aclanthology.org/P12-2034

  24. Xu, Q., Zhao, H.: Using deep linguistic features for finding deceptive opinion spam. In: Proceedings of COLING 2012 Posters, pp. 1341–1350 (2012). http://www.aclweb.org/anthology/C12-2131

  25. Ott, M., Cardie, C., Hancock, J.T.: Negative deceptive opinion spam. In: NAACL HLT 2013—2013 Conference of the North American Chapter of the Association for Computational Linguistics, pp. 497–501 (2013)

  26. Cagnina, L.C., Rosso, P.: Classification of deceptive opinions using a low dimensionality representation. In: 6th work. Empir. Methods Nat. Lang. Process. EMNLP 2015—Proceedings, pp. 58–66 (2015). https://doi.org/10.18653/v1/w15-2909

  27. Kim, S., Chang, H., Lee, S., Yu, M., Kang, J.: Deep semantic frame-based deceptive opinion spam analysis. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1131–1140. ACM, New York (2015). https://doi.org/10.1145/2806416.2806551

  28. Chen, C., Zhao, H., Yang, Y.: Deceptive opinion spam detection using deep level linguistic features. In: Li, J., Ji, H., Zhao, D., Feng, Y. (eds.) Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, pp. 465–474. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25207-0_43

  29. Hernandez-Castaneda, A., Calvo, H., Gelbukh, A., Flores, J.J.G.: Cross-domain deception detection using support vector networks. Soft. Comput. 21, 585–595 (2017). https://doi.org/10.1007/s00500-016-2409-2

    Article  Google Scholar 

  30. Stanton, G., A.A.: Irissappane, gans for semi-supervised opinion spam detection. In: IJCAI: International Joint Conference on Artificial Intelligence, pp. 5204–5210 (2019-08). https://doi.org/10.24963/ijcai.2019/723

  31. Tian, Y., Mirzabagheri, M., Tirandazi, P., Bamakan, S.M.H.: A non-convex semi-supervised approach to opinion spam detection by ramp-one class SVM. Inf. Process. Manag. 57, 102381 (2020). https://doi.org/10.1016/j.ipm.2020.102381

    Article  Google Scholar 

  32. Kaggle, D.O.S.C. https://www.kaggle.com/datasets/rtatman/deceptive-opinion-spam-corpus. Accessed 15 Jan 2023

  33. Mukherjee, A., Venkataraman, V., Liu, B., Glance, N., Doing, W.Y.F.R.F.M.B., Proceedings: International AAAI Conference on Web and Social Media, vol. 7, pp. 409–418 (2021). https://doi.org/10.1609/icwsm.v7i1.14389

  34. Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python. O’Reilly Media Inc., Sebastopol (2009)

    Google Scholar 

  35. spaCy 101: Everything you need to know. https://spacy.io/usage/spacy-101. Accessed 6 July 2022

  36. Vajjala, S., Majumder, B., Gupta, A., Surana, H.: Practical Natural Language Processing: A Comprehensive Guide to Building Real-World NLP Systems. O’Reilly Media, Sebastopol (2020)

    Google Scholar 

  37. NLTK, N. https://www.nltk.org/_modules/nltk/stem/wordnet.html. Accessed 6 July 2022

  38. documentation. https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn-feature-extraction-text-countvectorizer. Accessed 6 July 2022

  39. sklearnfeature_extractiontextTfidfVectorizer. https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html. Accessed 6 July 2022

  40. documentation. https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.chi2.html. Accessed 15 Jan 2023

  41. documentation. https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html. Accessed 15 Jan 2023

  42. Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13–17-August, pp. 855–864 (2016). https://doi.org/10.1145/2939672.2939754

  43. Node classification with weighted Node2Vec–StellarGraph 1.2.1 documentation. https://stellargraph.readthedocs.io/en/stable/demos/node-classification/node2vec-node-classification.html#Introduction. Accessed 15 Jan 2023

  44. CSIRO’s Data61, StellarGraph Machine Learning Library, GitHub Repos. https://github.com/stellargraph/stellargraph

  45. Khan, W., Zaki, N., Ahmad, A., Bian, J., Ali, L., Masud, N., Ghenimi, M.M., Ahmed, L.: Infant low birth weight prediction using graph embedding features. Int. J. Environ. Res. Public Health 20, 1317 (2023). https://doi.org/10.3390/ijerph20021317

    Article  Google Scholar 

  46. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, A.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

  47. Raschka, S., Mirjalili, V.: Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, Packt (2019)

  48. Bradley, A.P.: The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognit 30, 1145–1159 (1997). https://doi.org/10.1016/S0031-3203(96)00142-2

    Article  Google Scholar 

  49. Fawcett, T.: An introduction to roc analysis. Pattern Recognit. Lett. 27, 861–874 (2006). https://doi.org/10.1016/j.patrec.2005.10.010

    Article  Google Scholar 

  50. Zaki, N., Wolfsheimer, S., Nuel, G., et al.: Conotoxin protein classification using free scores of words and support vector machines. BMC Bioinform. 12, 217 (2011). https://doi.org/10.1186/1471-2105-12-217

    Article  Google Scholar 

  51. McHugh, M.L.: Interrater reliability: the kappa statistic. Biochem. Med. 22, 276–282 (2012). https://doi.org/10.11613/bm.2012.031

    Article  Google Scholar 

  52. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 37–46 (1960). https://doi.org/10.1177/001316446002000104

    Article  Google Scholar 

  53. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2012). https://doi.org/10.1109/TPAMI.2013.50

    Article  Google Scholar 

  54. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  55. Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    Google Scholar 

  56. 3.3. Metrics and scoring: quantifying the quality of predictions. https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics. Accessed 5 April 2023

  57. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding (2018). arXiv:1810.04805

  58. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., Stoyanov, V.: Roberta: a robustly optimized Bert pretraining approach (2019). arXiv:1907.11692

  59. Clark, K., Luong, M.-T., Le, Q.V., Manning, C.D.: Electra: pre-training text encoders as discriminators rather than generators (2020). arXiv:2003.10555

  60. Budhi, G.S., Chiong, R., Wang, Z., Dhakal, S.: Using a hybrid content-based and behaviour-based featuring approach in a parallel environment to detect fake reviews, electron. Commer. Res. Appl. 47, 101048 (2021). https://doi.org/10.1016/j.elerap.2021.101048

    Article  Google Scholar 

  61. Wang, J., Kan, H., Meng, F., Mu, Q., Shi, G., Xiao, X.: Fake review detection based on multiple feature fusion and rolling collaborative training. IEEE Access 8, 182625–182639 (2020). https://doi.org/10.1109/ACCESS.2020.3028588

    Article  Google Scholar 

  62. Budhi, G.S., Chiong, R., Wang, Z.: Resampling imbalanced data to detect fake reviews using machine learning classifiers and textual-based features. Multimed. Tools Appl. 80, 13079–13097 (2021). https://doi.org/10.1007/s11042-020-10299-5

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the partial support received from the College of Information Technology (CIT) at the United Arab Emirates University (UAEU). In addition, the authors would like to thank the Research Office at the UAEU for providing a summer grant (Grant code: G00003895) that supported the research work presented in this paper.

Funding

The work is supported by the Research Office at the UAEU (Grant code: G00003895)

Author information

Authors and Affiliations

Authors

Contributions

NZ and ST conceptualized the paper. All authors contributed to the experimental work, with NZ, AK, ST, ZR, and JR contributing to the writing of the manuscript. NZ provided project supervision.

Corresponding author

Correspondence to Nazar Zaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 746 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaki, N., Krishnan, A., Turaev, S. et al. Node embedding approach for accurate detection of fake reviews: a graph-based machine learning approach with explainable AI. Int J Data Sci Anal (2024). https://doi.org/10.1007/s41060-024-00565-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41060-024-00565-2

Keywords

Navigation